机械能守恒定律计算题与答案
高中物理---机械能守恒定律-----典型例题(含答案)【经典】

第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
机械能守恒定律习题及答案

机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。
这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。
习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。
求小球的初始速度。
解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。
自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。
在自由落体过程中,小球的动能为mgh,势能为0。
在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。
根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。
习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。
求物体的初始动能和弹簧的势能。
解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。
在撞击后,物体的动能为0,弹簧的势能为kx^2/2。
根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。
习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。
求M与m的比值。
解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。
在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。
高中物理机械能守恒定律100题(带答案)

一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
机械能守恒定律(含答案)

9.质量为 的物体,从静止开始以 的加速度下落高度 的过程中()
A.物体的机械能守恒B.物体的机械能减少
C.物体的重力势能减少 D.物体克服阻力做
10.某同学身高 ,在运动会上参加跳高比赛,起跳后身体横着越过了 高度的横杆,据此可估算他起跳时竖直向上的速度大约为( 取 )
A. B. C. D.
15.如图所示,斜面倾角 ,小球从斜面上A点做平抛运动的初动能为6J,不计空气阻力,小球落在斜面上P点的动能为多少.
16.如图所示,小球用不可伸长的长度为 的轻绳悬于O点,小球A在最低点需获得多大的速度才能在竖直平面内做完整的圆周运动?
答案:
1、D 2、CD 3、ABD 4、D 5、C 6、BD 7、A 8、B
11.如图所示,轻弹簧的一端悬挂于O点,另一端与小球P相连接,将P提起使弹簧处于水
平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中()
A.小球的机械能守恒
B.小球的动能增加
C.小球的机械能减小
D.不能确定小球的机械能是否守恒
12.一个质量为 的物体以 的加速度竖直向下加速运动,则在此物体下降 高度的过程中,物体的重力势能减小了_____,动能增加了______,机械能增加了_______.
13.如图所示,ABC是一段竖直平面内的光滑的 圆周长的圆形轨道,圆轨道的半径为R,O为圆心,OA水平,CD是一段光滑的水平轨道,一根长 粗细均匀的细杆开始时正好搁在圆轨道的两个端点上,现由静止开始,释放细杆,则此杆最后在水平轨道上滑行的速度为________.
14.一人在高出地面 处抛出一个质量为 的小球,不计空气阻力,小球落地时的速率为 ,则人抛球时对小球做的功为________.
(完整版)机械能守恒定律练习题及其答案

机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习)1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s2的加速度匀加速上升,求头3s 力F 做的功.(取g =10m /s2)2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s2)图5-2-5图5-1-8图5-3-1图5-4-44.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h1和h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?图5-3-27.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m ,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s2).图5-4-2图5-4-8HA BR图5-5-119.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l=80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?图5-5-1机械能守恒定律计算题答案1.【解析】利用w =Fscosa 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N则力2F F '==60N 物体从静止开始运动,3s 的位移为221at s ==21×2×32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s/=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F ’对物体做的功相等.即='=='s F W W F F 120×9=1080J2.【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mg Pv m /12==μ图5-1-8图5-3-1(2) 汽车作匀加速运动,故F 牵-μmg=ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v=8m/s 设汽车作匀加速运动的时间为t ,则v=at 得t=16s3.【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有 F -mg=ma 解得 =a 2m/s2 5s 物体的位移221at s ==2.5m所以5s 拉力对物体做的功 W=FS=24×25=600J 5s 拉力的平均功率为5600==t W P =120W5s 末拉力的瞬时功率 P=Fv=Fat=24×2×5=240W4.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mghmgl W G ==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则22mgS W f μ-=对物体在全过程中应用动能定理:ΣW=ΔEk . 所以 mglsin α-μmglcos α-μmgS2=0得 h -μS1-μS2=0.式中S1为斜面底端与物体初位置间的水平距离.故S hS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.图5-2-5图5-4-45.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,WG=mgR ,fBC=umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR-umgS-WAB=0即WAB=mgR-umgS=1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6. 【解析】取水平地面为零势能的参考平面,阀门关闭时两桶液体的重力势能为:2)(2)(22111h sh h sh E P ρρ+=)(212221h h gs +=ρ阀门打开,两边液面相平时,两桶液体的重力势能总和为221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功22121)(41h h gs E E W P P G -=-=ρ7.【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212B mv R mg =⋅从而得gR v B 2=【错因】小球到达最高点A 时的速度vA 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足R v mN mg AA 2=+式中,NA 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当NA=0时,vA 最小,vA=gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度vA gR ≥【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力.图5-3-2图5-4-2小球在圆形轨道最高点A 时满足方程R v mN mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2)解(1),(2)方程组得A B N m RgR v +=5当NA=0时,vB 为最小,vB=gR 5.所以在B 点应使小球至少具有vB=gR 5的速度,才能使小球到达圆形轨道的最高点A. 8.【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv +=解得=C v 3m/s9.【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v mmg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A = 根据机械能守恒定律 ACE E = 列等式:Rmg mgR mgh 221+=解得R h 25= 同理,小球在最低点机械能221B B mv E =gR v E E B CB5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mgF Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1BRV 0图5-4-8图5-5-1110.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k =∆.机械能守恒定律还可以表达为=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg l v m 又在最低点时,有l v mmg T 2=- 在最低点时绳对小球的拉力大小N N mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.【解析】以小球和地球为研究对象,系统机械能守恒,即221A mv mgH =………………………①Rmg mv mgH B 2212+= …………②小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :R v mmg F AA 2=-…………③在最高点B :R v mmg F BB 2=+………④ 由①③解得: RH mgmg F A 2+=由②④解得:)52(-=R Hmg F Bmg F F B A 6=-6=-∴mg F F BA。
【高考物理必刷题】机械能守恒定律(后附答案解析)

12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。
机械能守恒定律练习含答案

机械能守恒定律精选练习一夯实基础1.如图所示实例中均不考虑空气阻力,系统机械能守恒的是()【答案】D【解析】:人上楼、跳绳过程中机械能不守恒,从能量转化角度看都是消耗人体的化学能;水滴石穿,水滴的机械能减少的部分转变为内能;弓箭射出过程中是弹性势能与动能、重力势能的相互转化,只有重力和弹力做功,机械能守恒。
2.(2019·浙江省温州市诸暨中学高一下学期期中)关于以下四幅图,下列说法中正确的是()A.图1中“蛟龙号”被吊车吊下水的过程中它的机械能守恒B.图2中火车在匀速转弯时动能不变,故所受合外力为零C.图3中握力器在手的压力作用下弹性势能增加了D.图4中撑杆跳高运动员在上升过程中机械能守恒【答案】C【解析】:图1中“蛟龙号”被吊车吊下水的过程,钢绳对它做负功,所以机械能不守恒,故A错误;图2中火车在匀速转弯时做匀速圆周运动,所受的合外力指向圆心且不为零,故B错误;图3中握力器在手的压力下形变增大,所以弹性势能增大,C正确;图4中撑杆跳高运动员在上升过程中撑杆的弹性势能转化为运动员的机械能,所以运动员的机械能不守恒,故D错误。
3.(2019·山东省济南外国语学校高一下学期月考)如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面。
设物体在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h ,则物体运动到C 点时,弹簧的弹性势能是( )A .mgh -12mv 2 B .12mv 2-mgh C .mghD .mgh +12mv 2 【答案】B【解析】:由A 到C 的过程运用机械能守恒定律得:mgh +E p =12mv 2所以E p =12mv 2-mgh ,故选B 。
4.如图,质量为m 的苹果,从离地面H 高的树上由静止开始落下,树下有一深度为h 的坑。
若以地面为零势能参考平面,则当苹果落到坑底时的机械能为( )A .-mghB .mgHC .mg (H +h )D .mg (H -h )【答案】B【解析】:苹果下落过程机械能守恒,开始下落时其机械能为E =mgH ,落到坑底时机械能仍为mgH 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律计算题(期末复习)1 •如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为vm= 10kg 的物体,以大小为a = 2m )/s2的加速度匀加速上升, 求 头3s 力F 做的功.(取g = 10m /s2)2. 汽车质量5t ,额定功率为60kW 当汽车在水平路面上行驶时,受到的阻力是车重的 0.1 倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?3. 质量是2kg 的物体,受到 24N 竖直向上的拉力,由静止开始运动,经过5s ;求:① 5s 拉力的平均功率② 5s 末拉力的瞬时功率(g 取10m/s2)mg图 5-2-5L F* 1t4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行段距离后停止,测得停止处对开始运动处的水平距离为S,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同•求动摩擦因数卩.图5-3-15.如图5-3-2所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m BC处的摩擦系数为卩=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止.求物体在轨道AB段所受的阻力对物体做的功•图5-3-24. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行6.如图5-4-4所示,两个底面积都是S的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶装有密度为P的同种液体,阀门关闭时两桶液面的高度分别为h1和h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?图5-4-47.如图5-4-2使一小球沿半径为R的圆形轨道从最低点B上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).图5-4-2.圆轨道半径R=0.4m, —小图5-4-89.如图5-5-1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l=80cm的细绳上端固定,下端系一个质量m= 100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.11.质量为m的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?图5-5-11机械能守恒定律计算题答案1.【解析】利用w =Fscosa 求力F 的功时,要注意其中的 s 必须是 力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所 做的功具有等效关系•物体受到两个力的作用:拉力F /和重力mg,由牛顿第二定律得端点的位移为s/ = 2s = 18m,所以,力F 做的功为WFs F2s60 x 18=1080J解法二:本题还可用等效法求力F 的功.即 WF WFF S 120x 9=1080J2. 【解析】(1)当汽车达到最大速度时,加速度 a=0,此时F f mg ① PFv m ②F mg ma所以 F mg ma10X 10+10X 2=120NF 则力F s2=60N 物体从静止开始运动,3s 的位移为 -at 22 =2X 2 x 32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的由于滑轮和绳的质量及摩擦均不计,所以拉力 F 做的功和拉力F '对物体做的功相等(2)汽车作匀加速运动,故 F 牵-卩mg=ma 解得F 牵=7.5 X 103N 设汽车刚达到额定功率时的速度为 v ,贝U P = F 牵• v ,得v=8m/s 设汽车作匀加速运动的时间为 t ,则v=at 得 t=16s3. 【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F — mg=ma解得 a2m/s25s 物体的位移1 .2 s at2=2.5m所以5s 拉力对物体做的功W=FS=2X 25=600J 5s 拉力的平均功率为W 600 Pt 5 =120W5s 末拉力的瞬时功率 P=Fv=Fat=24 X 2 X 5=240W 4.【解析】 设该斜面倾角为a,斜坡长为 I ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:W Gmglsin mghW f1 mgl cos物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为 S2,图 5-3-1则 W f2 mgS 2对物体在全过程中应用动能定理:》 W=A Ek .所以 mglsin a — 口 mglcos a —口mgS2=0得 h 一 卩 S1 一 a S2=0.式中S1为斜面底端与物体初位置间的水平距离.故【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然 分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较 上述两种研究问题S 1 S 2图 5-2-5的方法,不难显现动能定理解题的优越性.5. 【解析】物体在从 A 滑到C 的过程中,有重力、 AB 段的 阻力、BC 段的摩擦力共三个力做功, WG=mgRfBC=umg 由于物 体在AB 段受的阻力是变力,做的功不能直接求 •根据动能定理 可知: W 外 =0,所以 mgR-umgS-WAB=O即 WAB=mgR-umgSN10X 0.8-1 x 10X 3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都 是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算 时,用动能定理就可以求出这个变力所做的功6. 【解析】取水平地面为零势能的参考平面,阀门关闭时两桶液体的重力势能为:由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功1 2W G E p1 E p2gs(h 1 h 2)47. 【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点 B 时的动能(以B 点作为零势能位置),所 以为2mg 2R - mv B从而得V B 2 gR【错因】小球到达最高点 A 时的速度vA 不能为零,否则小球早在到达 A 点之前就离开了圆形轨道.要使小球到达 A 点(自然不脱离圆形轨道),则小球在 A 点的速度必须满足2V Amg N Am式中,NA 为圆形轨道对小球的弹力.上式表示小球在 A 点作圆周运动所需要的向心力由 轨道对它的弹力和它本身的重力共同提供.当NA=0时,vA 最小,vA= gR.这就是说,要使小球到大 A 点,则应使小球在 A 点具有速度vAgR图 5-3-2h ih 2E pi ( sh)"^( sh 2)—1gs(h 2 h ;)2阀门打开,两边液面相平时,两桶液体的重力势能总和为h ih 2▼ MM ・图 5-4-4E p2s(h i h 2)g1 h 1 h2 2 ~T~图 5-4-2【正解】以小球为研究对象•小球在轨道最高点时,受重力和轨道给的弹力22据牛顿第三定律,小球对轨道压力为 6mg.方向竖直向下.小球在圆形轨道最高点 A 时满足方程2V Amg N A mR(1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程1212mv A mg2R mv B 2 2 (2)解(1),⑵方程组得I RV B #5gR —N A当NA=0时,vB 为最小,vB= 5gR.所以在B 点应使小球至少具有 vB= 5gR的速度,才能使小球到达圆形轨道的最高点A.8.【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒 1 2 mv o 2 mgh2R1 2 mv c2 解得 v C 3m/s9.【解析】 小球在运动过程中,受到重力和轨道支持力, 轨道支持力对小球不做功, 只有重力做功,小球机械能守恒.取 轨道最低点为零重力势能面. 因小球恰能通过圆轨道的最高点 C ,说明此时,轨道对小球 作用力为零,只有重力提供向心力,根据牛顿第二定律可列 mg V c1 v 2m — 2 R在圆轨道最高点小球机械能1E C mgR 2mgR在释放点,小球机械能为:EAmgh根据机械能守恒定律E C E A列等式:1mgh mgR mg2R2h解得同理,小球在最低点机械能 1 2E B—V BB2 BEB ECVB5 gR小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列F mgm VBF6mg612mv 2mgl (1 cos600) 022vm 一 2mg(1 cos60 ) 整理得 I在最低点时绳对小球的拉力大小2T mg m — mg 2mg(1 cos60°)题的基本方法11.【解析】以小球和地球为研究对象, 系统机械能守恒,mgH fmv A1 2 mgH mv B mg2R 2小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供F A F B 6mgF A F Bmg10.【解析】小球运动过程中,重力势能的变化量E p mgh mgl(1 cos60°),此过E k _mv程中动能的变化量 k2机械能守恒定律还可以表达为EpE k 02mg 2 0.1 10N 2N通过以上各例题, 总结应用机械能守恒定律解决问2vmg mT又在最低点时,有在最咼点AF A mg2V Am-AR在最咼点B: F Bmg2V Bm —R由①③解得: F Amg2H mg — R由②④解得:2H mg( 5) R。