伺服电机原理及选型.
伺服电机的选型计算方法

伺服电机的选型计算方法伺服电机是一种应用于自动控制系统中的电动机,它具有高精度、高速度、高可靠性和高动态性等特点,广泛应用于工业自动化领域。
在进行伺服电机选型计算时,需要考虑以下几个方面:1.负载特性分析:首先需要对负载进行特性分析,包括负载的惯性矩、负载力矩和负载转矩等参数的测量和计算。
负载特性分析是伺服电机选型计算的基础,它直接影响到电机输出的动力和转速。
2.动力需求计算:在进行伺服电机选型计算时,需要考虑到所需的动力大小。
动力大小与负载的力矩和转速有关,可以通过下式计算:动力大小=负载力矩×负载转速动力大小的计算可以参考负载特性分析中得到的参数。
3.转矩需求计算:转矩需求是指伺服电机在运行过程中所需的最大转矩。
转矩需求可以通过下式计算:转矩需求=负载转矩+惯性转矩负载转矩和惯性转矩可以通过负载特性分析中得到的参数进行计算。
4.速度需求计算:速度需求是指伺服电机在运行过程中所需的最大转速。
速度需求可以通过下式计算:速度需求=负载转速+加速度×加速时间负载转速是伺服电机在运行过程中所需的最大转速,加速度是伺服电机在加速阶段的加速度大小,加速时间是加速阶段的时间。
5.动态性能计算:伺服电机的动态性能是指其快速响应的能力,包括动态转矩响应和动态速度响应。
动态性能的计算需要考虑到转矩和速度的波动范围,以及加速度和减速度的大小。
6.选型参数计算:在进行伺服电机选型计算时,还需要考虑到电机的额定功率、额定转矩、额定转速、额定电压和额定电流等参数。
这些参数可以通过上述计算得到,也可以通过伺服电机的性能曲线和规格表进行查询。
总之,伺服电机的选型计算方法需要综合考虑负载特性、动力需求、转矩需求、速度需求和动态性能等方面的因素。
同时,还需要根据具体的应用场景和要求进行合理的选型。
伺服电机的选型和计算

电机的选择:(1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达:FL M =π2式中 M-----电动机轴转距;F------使机械部件沿直线方向移动所需的力; L------电动机转一圈(2πrad )时,机械移动的距离2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。
实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算:z z M h h F M B spSPao P K 211122⎪⎪⎭⎫ ⎝⎛++=ηππ M 1-----等速运动时的驱动力矩π2hF spaoK---双螺母滚珠丝杠的预紧力矩Fao------预紧力(N),通常预紧力取最大轴向工作载荷Fm ax的1/3,即F ao =31Fm ax当F m ax 难于计算时,可采用F ao =~)(N C a ;C a-----滚珠丝杠副的额定载荷,产品样本中可查: hsp-----丝杠导程(mm);K--------滚珠丝杠预紧力矩系数,取~;P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=;W1-----移动部件重力(N),包括最大承载重力;P 1-------有夹板夹持时(如主轴箱)的夹板夹持力;μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ;η1-------滚珠丝杠的效率,取~;M B----支撑轴承的摩擦力矩,即叫启动力矩,可以从滚珠丝杠专用轴承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题)z 1--------齿轮1的齿数 z2--------齿轮2的齿数最后按满足下式的条件选择伺服电机M Ms ≤1Ms-----伺服电机的额定转距(2)惯量匹配计算 为使伺服进给系统的进给执行部件具有快速相应能力,必须选用加速能力大的电动机,亦即能够快速响应的电机(如采用大惯量伺服电机),但又不能盲目追求大惯量,否则由于不能从分发挥其加速能力,会不经济的。
伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种精密控制器件,广泛应用于各种自动化设备和机械领域。
在进行伺服电机选型时,需要考虑多个因素,包括负载特性、控制精度、环境条件、成本等,才能选择到最适合的产品。
下面将介绍一些伺服电机选型的原则和注意事项,希望能为大家在选择伺服电机时提供一些帮助。
一、负载特性在进行伺服电机选型时,首先要考虑的是负载特性。
需要根据负载的特点来选择合适的伺服电机。
负载的特性可以通过负载转矩和负载惯量来描述。
负载转矩是指负载所需的最大转矩,而负载惯量则是负载对于运动的惯性。
根据负载的特性,可以确定所需的伺服电机的转矩和速度范围,以便选择合适的型号。
二、控制精度在伺服系统中,控制精度是非常重要的指标。
控制精度取决于伺服电机的性能和控制器的精度。
需要根据实际需要确定所需的控制精度,然后选择合适的伺服电机和控制器。
控制系统的动态响应速度也是一个重要的指标,需要根据实际应用来确定。
三、环境条件在选择伺服电机时,还需要考虑环境条件。
包括温度、湿度、震动等因素。
一些特殊的工作环境可能需要选择耐高温、防尘防水等特殊的型号。
还需要考虑伺服电机的安装方式和外壳材质等因素,以确保伺服电机可以在恶劣的环境条件下正常运行。
四、成本在进行伺服电机选型时,成本是一个重要的考虑因素。
除了伺服电机本身的成本外,还需要考虑安装、维护和使用成本。
需要综合考虑各种因素,选择性价比最高的产品。
还需要考虑产品的品牌和售后服务等因素,确保选择到性能可靠、服务完善的产品。
五、其他注意事项1. 选型人员需要了解伺服电机的基本原理和性能指标,避免因为对产品不熟悉而选择错误的型号。
2. 需要对负载特性进行准确的测量和分析,以确保选型的准确性。
3. 在选择伺服电机时,还需要考虑到未来的发展需求,以避免产品在后期无法满足实际需求的情况。
伺服电机选型是一个复杂的过程,需要综合考虑多个因素才能选择到最合适的产品。
希望上述原则和注意事项能够帮助大家在伺服电机选型时有所帮助。
伺服电机怎么选型

伺服电机多用在数控机床,用来补助马达间接变速,但是对于很多第一次接触该产品的人员来说,如何选择一台适合自己工厂的伺服电机显然是个难题。
小编今天就给大家讲讲伺服电机怎么选型更好。
伺服电机选型一般从几个方面出发:
1、电机的最高转速,这个关系到机床的行程时间,即运行速度。
2、惯量匹配及负载惯量,跟设备运行的稳定性及精确度有关系。
3、空载加速转矩,涉及到电机从零速到额定速度的快慢。
4、负载转矩,例如切削负载转矩不得超过额定转矩的80%。
5、连续过载时间,过载时间应控制在电机允许过载时间范围内剩下的就是经济、货期、质保等方面的考虑了。
以上就是由四川志方科技有限公司为大家提供的关于伺服电机选型的相关信息,为了保证伺服电机使用的稳定性,所有伺服电机都应该在使用前进行测试。
因此,在需要用到伺服电机的企业有必要购进一台专业的伺服电机测试系统。
采购伺服电机测试系统建议咨询专业厂家。
伺服电机选型

1)牙科贝思直线电机选型软件
考试题
已知:丝杠传动类型,负载重量W=10Kg, 负载垂直升降距离30mm,加(减)速时 间0.1s,匀速0.1s。设计最优结构,根据 所选丝杠,计算满足负载需求的最小功率 的伺服电机(三菱电机)。
已知:同步带传动类型,负载重量
W=3Kg,负载垂直升降距离300mm,加
负载重量:5kg 带轮选型:5M-18齿 电机选型:200W(三菱伺服电机)
核算:
3)伺服电机选型计算 (齿轮齿条传动类型)
齿轮齿条传动类型的伺服电机选型计算与同步带类似。 计算时需注意: 上述公式中同步带直径为带轮节径,具体数值可查标准《圆弧齿带
轮直径JB/T 7512.2》、《周节制带轮直径GB/T 11361》。 渐开线圆柱齿轮直径为齿轮的分度圆直径,直齿轮分度圆直径D=m
负载的惯量:JW=
M(D)2 / 2
R
2
JB
③负载转矩的计算
水平运动时负载转矩:TW=μMg
D 2
/
R
垂直运动时负载转矩:TW=μMg
D 2
/
R
Mg
D 2
/
R
加减速转矩的计算:TA= (JM J机)2tπ1 • N
最大转矩:T=TA+TW
3)伺服电机选型计算 (同步带传动类型)
示例:S4000(样机)-68部
2)三菱伺服电机HG-KN系列参数表
2)三菱伺服电机HG-KN系列参数表
3)伺服电机选型计算 (丝杆传动类型)
①根据总方案结构、节拍图、电池片工位图确定
负载质量M
丝杠的导程P
丝杠直径D
丝杆质量MB
导轨、丝杆运行摩擦系数μ(一般取值0.15)
伺服电机的选型计算办法

伺服电机的选型计算办法一、确定负载惯量:负载惯量是指伺服电机需要驱动的负载系统的惯性矩阵。
负载的形状、质量、分布和转动部件的位置等都会影响到负载的惯性矩阵。
1.如果负载是刚体,惯性矩阵可以通过测量负载的质量和尺寸,并进行计算得到。
2.如果负载是连续变形的物体,可以通过将其分为多个刚体部分,分别计算惯性矩阵,再进行合成得到整个负载的惯性矩阵。
二、计算定格转矩和定格转速:1.根据应用的工作周期,计算出所需的平均定格转矩。
定格转矩是指电机在长时间运行情况下,能够稳定输出的转矩。
2.根据应用的工作周期和速度要求,计算出所需的平均定格转速。
定格转速是指电机能够稳定运行的最大转速。
三、选择电机型号:1.根据定格转矩和定格转速的要求,查找电机制造商提供的电机规格表,找到满足要求的电机型号。
2.选择电机型号时还需要考虑其他因素,如电机的功率、最大转矩、过载能力、加速度能力等。
根据具体应用的需求进行综合考虑,选取合适的电机型号。
四、校核选型:1.根据选择的电机型号,计算电机的部分负载转矩和转矩脉冲响应时间。
与应用要求进行比较,确保选型的合理性。
2.根据负载惯量和转矩要求,计算伺服电机的加速时间。
与应用的加速要求进行比较,确保选型的合理性。
3.根据电机的定格转矩和转速,计算电机的输出功率。
与应用的功率需求进行比较,确保选型的合理性。
五、其他因素考虑:除了上述的基本选型计算办法外,还需考虑其他因素,例如电机的可靠性、寿命、环境适应性、维护和保养成本等。
总结:伺服电机的选型计算是一个综合考虑电机的转矩、转速、功率和其他性能指标的过程。
根据负载的惯性矩阵、应用的工作周期和速度要求,选择合适的电机型号,并进行校核以确保选型的合理性。
同时,还需要考虑其他因素,如电机的可靠性、寿命和维护成本等。
以上是伺服电机选型计算的一般步骤,具体要根据具体的应用需求来选择,需要结合实际情况进行综合决策。
伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够输出力矩的机电传动装置,可以将输入的电信号转化成相应的运动规律。
因其具有速度高、精度高、响应快等特点,广泛应用于机械制造、自动化设备、机器人、航空航天等领域。
在选择伺服电机时,需要考虑多种因素,包括性能、规格、成本、环境等。
下面我们将详细介绍伺服电机选型的原则和注意事项。
一、伺服电机选型的原则1. 性能匹配原则:选择伺服电机时,需充分考虑其输出功率、转速范围、定位精度、响应速度等性能指标,确保能够满足实际应用的要求。
通常情况下,需根据具体的负载特性、作业环境以及工作要求等方面综合考虑。
2. 稳定性原则:伺服电机在工作中需要具有稳定的运行特性,因此在选型时需要注意其输出稳定性、温升特性、抗扰性等指标,以确保其在各种工况下都能够稳定运行。
3. 经济性原则:在选型时,需综合考虑伺服电机的成本、维护费用、能耗等因素,选择性价比较高的产品。
在确保性能和质量的前提下,尽量降低成本。
4. 可靠性原则:伺服电机作为机械传动的重要部件,其可靠性直接关系到设备的稳定运行。
因此在选型时需选择品质可靠、性能稳定的产品,尽量避免使用劣质产品。
5. 适用性原则:伺服电机的选型需考虑其适用范围和使用环境,例如是否需要防尘防水、是否需要防爆功能、工作温度范围等。
选型时需根据实际工况选择适合的产品。
6. 可维护性原则:选型时需考虑伺服电机的可维护性,例如易损件的更换和维护难易程度、厂家售后服务的支持等方面,以确保设备的长期稳定运行。
1. 了解负载特性:在选型前需要充分了解实际应用中的负载特性,包括负载的惯性、摩擦力、阻尼力等,以便合理选择伺服电机的输出功率和转矩。
2. 确定运动要求:需明确了解设备对于速度、加速度、定位精度等方面的要求,以便选择适合的伺服电机类型和规格。
3. 注意温升和过载能力:在选型时需考虑伺服电机的持续运行能力和过载能力,以确保其在长期工作和瞬时过载情况下都能够正常运行。
伺服电机选型计算

伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。
负载惯性大会对电机的加速度和精度要求产生一定的影响。
伺服电机需要
具备足够的能力来加速和控制负载。
负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。
根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。
2.加速度计算
加速度是指负载达到一定速度所需的时间。
加速度较大可以提高生产
效率,但可能会引起震动和噪音。
确定合适的加速度需要根据应用需要进
行权衡。
加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。
3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。
根据应用需求可以计算出负载所需的最大扭矩。
扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。
4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。
根据应用需求可以计算出对应负载的最大功率。
功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。
5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。
速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是伺服电机?伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机是可以连续旋转的电-机械转换器。
作为液压阀控制器的伺服电机,属于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。
伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。
伺服电机的分类:直流伺服电机和交流伺服电机。
直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。
具有起动转矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷的磨损和易产生火花会影响其使用寿命。
近年来出现的无刷直流伺服电机避免了电刷摩擦和换向干扰,因此灵敏度高,死区小,噪声低,寿命长,对周围电子设备干扰小。
直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机电时间常数一般大约在十几毫秒到几十毫秒之间。
而某些低惯量直流伺服电机(如空心杯转子型、印刷绕组型、无槽型的时间常数仅为几毫秒到二十毫秒。
小功率规格的直流伺服电机的额定转速在3000r/min以上,甚至大于10000r/min。
因此作为液压阀的控制器需配用高速比的减速器。
而直流力矩伺服电机(即低速直流伺服电机可在几十转/分的低速下,甚至在长期堵转的条件下工作,故可直接驱动被控件而不需减速直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷,产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
交流伺服电机的工作原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数。
交流伺服电机和无刷直流伺服电机在功能上有什么区别?交流伺服要好一些,因为是正弦波控制,转矩脉动小。
直流伺服是梯形波。
但直流伺服比较简单,便宜。
永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。
在目前国内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方式上相似(脉冲串和方向信号,但在使用性能和应用场合上存在着较大的差异。
现就二者的使用性能作一比较。
一、控制精度不同两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。
也有一些高性能的步进电机步距角更小。
如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。
交流伺服电机的控制精度由电机轴后端的旋转编码器保证。
以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。
对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。
是步距角为1.8°的步进电机的脉冲当量的1/655。
二、低频特性不同步进电机在低速时易出现低频振动现象。
振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。
这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。
当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。
交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。
交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT,可检测出机械的共振点,便于系统调整。
三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。
交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM以内,都能输出额定转矩,在额定转速以上为恒功率输出。
四、过载能力不同步进电机一般不具有过载能力。
交流伺服电机具有较强的过载能力。
以松下交流伺服系统为例,它具有速度过载和转矩过载能力。
其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。
步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。
五、运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。
交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
六、速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转需要200~400毫秒。
交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。
综上所述,交流伺服系统在许多性能方面都优于步进电机。
但在一些要求不高的场合也经常用步进电机来做执行电动机。
所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。
交流伺服电机原理交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似,其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子,空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
电动机选型参考在购置电动机时怎样选型,如何来选则!下面我就这方面涉及的问题作出以下的介绍,希望对您有所帮助!首先,就是电机结构形式的选择:我们主要是根据使用环境来选择电动机结构形式:1.在正常环境条件下,一般采用防护式电动机;在粉尘较多的工作场所,采用封闭式电动机;2.在湿热带地区或比较潮湿的场所,尽量采用湿热带型电动机;3.在露天场所使用,采用户外型电动机,若有防护措施,也可采用封闭式或防护式电动机;4.在高温工作场所,应根据环境温度,选用相应绝缘等级的电动机,并加强通风改善电动机工作条件;5.在有爆炸危险场所,必须选用防爆型电动机;6.在有腐蚀气体的场所,应选用防腐式电动机.其次,是对电动机类型的选择:不需要调速的机械装置应优先选用笼型异步电动机;对于负载周期性波动的长期工作机械,宜用绕线型异步电动机;需要补偿电网功率因数及获得稳定的工作速度时,优先选用同步电动机;只需要几种速度,但不要求调速时,选用多速异步电动机,采用转换开关等来切换你所需要的工作速度;需要大的起动转矩和恒功率调速的机械,宜选用直流电动机;起制动和调速要求较高的机械,可选用直流电动机或带调速装置的交流电动机;需要自动伺服控制的情况下,需要选择伺服电机。
再其次,我们来看看电机转速的选择:电动机转速应符合机械传动的要求。
在市电标准频率(50HZ作用下,由于磁极对数不同,异步电动机同步转速有3000r/min,500 r/min,1000r/min,750/r/min,600r/min 等几种.由于存在转差率,其实际转速比同步转速低2-5%.因此,选择电机转速方法如下:对于不需要调速的机械,一般选用与之转速接近的电机,这样电机就可以方便地与机械转轴通过联轴器直接连接;对于不需调速的低转速的传动,一般选用稍高转速的电机,通过减速机来传动,但电机转速不应过高.一般,可优先选用同步转速1500r/min的电机,因为在这个转速的电机适应性最好;您的机械装置的输出转速比较低而电动机的转速又很高那怎么办?那您就要考虑使用带减速器的电机(马达或者和减速机配套使用!建议您选用进口的品牌电机及减速机,因为国外的技术较好地解决了电机、减速机体积外型大的问题。