高三数学教案

合集下载

高中数学教学设计7篇

高中数学教学设计7篇

高中数学教学设计7篇高中数学教学设计篇1教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:通过实例理解分层抽样的方法。

教学难点:分层抽样的步骤。

教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。

即40,32,28。

三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2、三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3、分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

高中数学深度备课教案范文

高中数学深度备课教案范文

高中数学深度备课教案范文
教学目标:
1. 了解向量的定义和性质。

2. 掌握向量的加法、减法、数量乘法和向量的数量乘积。

3. 能够解决平面内向量的相关问题。

教学重点:
1. 向量的定义和性质。

2. 向量的加法、减法、数量乘法。

3. 向量的数量乘积。

教学难点:
1. 向量的数量乘积。

2. 解决平面内向量相关问题。

教具准备:
1. 板书和彩色粉笔。

2. 教材《高中数学》。

3. 数学练习册。

4. 讲台和幻灯片投影仪。

教学过程:
1. 引入:通过举例向学生介绍什么是向量,引导学生思考向量的意义和特点。

2. 学习向量的定义和性质,包括平行向量、共线向量、零向量等。

3. 学习向量的加法和减法,并进行相关练习。

4. 学习向量的数量乘法,讲解向量数量乘积的性质和计算方法。

5. 讲解向量的数量积,引导学生理解向量的数量积的概念和性质。

6. 练习:分小组进行向量练习题,巩固所学知识。

7. 总结:回顾本节课的内容,强化学生对向量的理解和应用能力。

8. 作业布置:布置相关练习作业,加深学生对向量的理解。

课后反思:通过本节课的教学,学生对向量的概念和相关运算有了更深入的理解,但教学内容较为抽象,需加强实例训练和应用能力的培养。

下节课需引导学生进行更多的实际问题解决,提高学生的应用能力和创新思维。

高中高三数学教案:组合

高中高三数学教案:组合

高中高三数学教案:组合一、教学目标1.理解组合的概念,掌握组合数的计算公式。

2.能够运用组合知识解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:组合的概念及组合数的计算公式。

难点:实际问题的解决。

三、教学过程1.导入师:同学们,我们之前学习了排列,今天我们来学习排列的兄弟——组合。

大家先来看一个例子:从a,b,c,d四个元素中任选两个元素,可以组成哪些不同的组合?生:ab,ac,ad,bc,bd,cd。

师:很好,这就是组合。

下面我们来详细学习一下组合的概念。

2.教学新课(1)组合的概念师:组合是指从n个不同元素中,任取m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合。

(2)组合数的计算公式师:那么,如何计算组合数呢?这里有一个公式:C(n,m)=n!/[m!(n-m)!],其中n!表示n的阶乘,即1×2×3×…×n。

(3)实例讲解师:下面我们来讲解几个实例,加深大家对组合的理解。

实例1:从5名男生和4名女生中,任选3名男生和2名女生组成一个班级,一共有多少种组合方式?实例2:一个班级有10名学生,其中3名是班委,现要从非班委中选2名学生参加比赛,一共有多少种组合方式?3.练习与讨论师:现在请大家来做几个练习题,巩固一下组合的知识。

练习1:从a,b,c,d,e五个元素中,任选3个元素组成一个组合,一共有多少种组合方式?练习2:一个篮球队有12名队员,其中5名是主力,现要从非主力中选2名队员参加比赛,一共有多少种组合方式?师:同学们,你们在解题过程中遇到了什么问题吗?我们来一起讨论一下。

师:通过今天的学习,我们了解了组合的概念和组合数的计算公式,也解决了一些实际问题。

现在请大家回顾一下,我们今天学习了哪些内容?有哪些收获?生1:我们学习了组合的概念和组合数的计算公式。

生2:我们学会了如何运用组合知识解决实际问题。

高三数学复习教案

高三数学复习教案

高三数学复习教案作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的高三数学复习教案,欢迎阅读,希望大家能够喜欢。

高三数学复习教案1教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由XX《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察————发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:…。

二、等差数列通项公式:已知等差数列{an}的首项是a1,公差是d。

则由定义可得:a2—a1=da3—a2=da4—a3=d……an—an—1=d即可得:an=a1+(n—1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。

代入通项公式解:∵a1=3,d=2∴an=a1+(n—1)d=3+(n—1)×2=2n+1例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=—2,先求出通项公式an,再求出a20 解:∵a1=10,d=8—10=—2,n=20由an=a1+(n—1)d得∴a20=a1+(n—1)d=10+(20—1)×(—2)=—28例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)高三数学教案设计篇1一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。

请说出角α、β、γ各是多少度?2、象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

高三数学教案设计篇2一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。

高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。

提高学生的学习能力仍是我们的奋斗目标。

近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。

高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。

二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。

三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】等差数列前n项和公式的推导和应用。

【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。

你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

高三数学教案:排列

高三数学教案:排列

高三数学教案:排列
教学目标:
1. 了解排列的概念。

2. 学会计算排列的个数。

3. 掌握计算有重复元素的排列的个数。

教学重点:
1. 排列的概念和计算方法。

2. 有重复元素的排列的计算方法。

教学难点:
有重复元素的排列的计算方法。

教学准备:
教材、复习资料、白板、彩笔。

教学过程:
Step 1: 导入新知
教师介绍排列的概念,并给出一些实际生活中的例子来说明排列的应用场景。

例如,从一堆书中取出不同的几本书进行阅读的排列等。

Step 2: 计算没有重复元素的排列的个数
教师讲解如何计算没有重复元素的排列的个数。

引导学生观察问题,例如三张不同的扑克牌、四本不同的书籍等的排列,然后解释计算排列的方法。

Step 3: 计算有重复元素的排列的个数
教师给出有重复元素的排列的例子,例如由不同的字母组成的单词的排列。

引导学生
思考如何计算有重复元素的排列的个数,并提供解决方法。

Step 4: 练习
教师带领学生进行一些排列计算的练习。

可以分成两部分,一部分是没有重复元素的
排列,另一部分是有重复元素的排列。

Step 5: 总结和拓展
教师总结排列的概念和计算方法,并提醒学生注意在实际应用中正确使用排列的方法。

鼓励学生在生活中发现更多排列的应用场景,拓展他们的思维。

Step 6: 课堂小结
教师对本节课的内容进行小结,并布置相应的练习作业。

Step 7: 课后作业
要求学生完成教师布置的练习作业,并在下节课的开头进行相关讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量及其线性运算
教学内容:平面向量及其线性运算(2课时)
教学目标:理解平面向量的概念、向量的几何表示及向量相等的含义,掌握平面向量的线性
运算(向量加法、减法、数乘)的性质及其几何意义,理解平面向量共线的条件 和平面向量的基本定理.
教学重点:平面向量的线性运算.
教学难点:用基底表示平面内的向量.
教学用具:三角板
教学设计:
一、知识要点
1. 平面向量的有关概念
(1)向量:既有大小又有方向的量;向量的基本要素:大小和方向.
(2)向量的表示: ①几何表示法;用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的 方向表示向量的方向;②字母表示:a 或AB .
(3) 向量的长度(模):即向量的大小,记作||a 或||AB .
(4) 特殊的向量:零向量:0||0=⇔=a a ;单位向量:a 为单位向量⇔1||=a .
(5) 相等的向量:大小相等,方向相同的向量.
(6) 相反向量:b a -=⇔a b -=⇔0=+b a .
(7) 平行(共线)向量:方向相同或相反的向量,称为平行(共线)向量,记作a ∥b .
2. 运算 运算法则 运算性质
向量加法 b a +是一个向量, 平行四边形法则
三角形法则 AC BC AB =+ a b b a +=+ ()()a b c a b c ++=++ 向量减法 b a -是一个向量,
三角形法则 AB OA OB =-
()a b a b -=+- AB BA =-
数乘向量 a λ是一个向量,
满足||||||a a λλ=,
0>λ时, a a λ与同向;
0<λ时, a a λ与异向;
0=λ时, 0a λ=. ()()a a λμλμ= ()a a a λμλμ+=+ ()a b a b λλλ+=+
3.(1)平面向量基本定理:如果1e ,2e 是同一平面内两个不共线的向量,那么,对于这个平 面内任一向量a ,有且仅有一对实数1λ,2λ,使2211e e a λλ+=. 其中不共线的向量1e ,2e 称为基底.
(2)向量共线定理:向量b 与向量a 共线的充要条件是有且仅有一个实数λ,使得a b λ=, 即a ∥b ⇔)0(≠=a a b λ.
二、典型例示
例1 判断下列命题是否正确:
① 零向量没有方向;② 两个向量当且仅当它们的起点相同,终点也相同时才相等; ③ 单位向量都相等;④ 在平行四边形ABCD 中,一定有DC AB =;
⑤ 若b a =,c b =,则c a =;⑥ 若a ∥b ,b ∥c ,则a ∥c ;
⑦ b a =的充要条件是||||b a =且a ∥b ;⑧ 向量AB 就是有向线段AB ; ⑨若AB ∥CD ,则直线AB ∥直线CD ;⑩ 两相等向量若共起点,则终点也相同.
解:只有 ④、⑤、⑩ 三个命题正确. 如⑧不正确,是因为有向线段仅仅是向量的直观体 现,我们可以用有向线段AB 来表示向量AB ,但向量AB 可以用不同的有向线段表示,只要 这些有向线段的长度相等方向相同即可,因此向量与有向线段是有区别的.
注:正确理解向量的有关概念是作出正确判断的前提.
例2 (1)化简下列各式:①CA BC AB ++;②BC CD AB ++)(; ③)()(CM BC MB AD +++;④CD OC OA ++-;⑤)(AM AD MB --.
(2)若B 是AC 的中点,则=AB AC ,=AB CA ,=AC BA .
注:正确运用向量的运算法则和运算律进行化简,尤其要注意差向量起点和终点的选择. 例3 已知AB AD 32=,AC AE 3
2=,则DE 等于( ) A. CB 3
1 B. CB 31- C. CB 3
2 D. CB 32- 注:逆用向量的运算法则,体现逆向思维.
例4 设a AB =,b BC =,c CA =,判断下列命题的真假:(1)若0=++c b a ,则 三个向量可构成ABC ∆;(2)若三个向量可构成ABC ∆,则0=++c b a ;并由此回答下列 问题:若命题甲为0=++c b a ,命题乙为三个向量可构成ABC ∆,则命题甲是命题乙的什 么条件?
注:注意向量运算的几何意义,体现数形结合思想.
例5如图,梯形ABCD 中,AB ∥CD 且CD AB 2=,M ,N 分别是CD 和AB 的中 点,设a AB =,b AD =,试用a ,b 表示BC 和MN . 解:AB AD AB DC AD BA BC 2
1++-=++= a b AB AD 2
121-=-=; a b AB AD DC AD BA DN AD MA MN 41412121-=-=++=++=. 注:关键在于确定一条从所求向量起点到终点的路径,然后再借助于向量的运算逐步转 化成用基底表示.
三、课堂练习
1.已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 为( ) A.
4233a b + B. 2433a b + C. 2233a b - D. 2233
a b -+ 2.已知,,AB a BC b CA c ===,则0a b c ++=是,,A B C 三点构成三角形的 ( ) A. 充分不必要条件 B. 必要不充分条件
C. 充要条件
D.既不充分也不必要条件
3. 对平面内任意的四点A,B,C,D ,则AB BC CD DA +++= .
4. 化简:
(1)AB BC CD ++=_____________;
(2)AB AD DC --=______________;
(3)()()AB CD AC BD ---=______________.
5. 判断下列命题是否正确
(1)若a b =,则a b =.
(2)两个向量相等的充要条件是它们的起点相同,终点相同.
(3)若AB DC =,则ABCD 是平行四边形.
(4)若ABCD 是平行四边形,则AB DC =.
(5)若,a b b c ==,则a c =.
(6)若//,//a b b c ,则//a c .
6. 若3||=a ,5||=b ,b 与a 的方向相反,则=a b .
四、课堂小结
五、课外作业
1.下面给出四个命题:①对于实数m 和向量,a b ,恒有()
m a b ma mb -=-
②对于实数m 、n 和向量a ,恒有()m n a ma na -=-
③若(,0),ma mb m R m a b =∈≠=则
④若(0)ma na a =≠,则m=n 其中正确的命题个数是
( ) A. 1 B. 2 C. 3 D. 4 2.在平行四边形ABCD 中,若AB AD AB AD +=-,则必有 ( )
A. 0AD =
B. 00AB AD ==或
C.ABCD 是矩形
D.ABCD 是正方形
3.下列命题中,正确的是( )
A.若a b =,则a b =
B. 若a b =,则//a b
C. 若a b >,则a b >
D. 若1a =,则1a =
4. 下列说法中错误的是( )
A. 向量AB 的长度与向量BA 的长度相等
B. 任一非零向量都可以平行移动
C. 长度不等且方向相反的两个向量不一定是共线向量
D. 两个有共同起点而且相等的向量,其终点必相同.
5.,,D E F 分别是ABC ∆的边,,BC CA AB 的中点,且,,BC a CA b ==给出下列命题 ①12AD a b =-- ②12BE a b =+ ③ 1122
CF a b =-+ ④0AD BE CF ++=
其中正确的序号是_________。

6.若112()(3)032
x a b c x b --+-+=,则x =__________。

7. 两列火车,先各从一站台沿相反方向开出,走了相同的路程,这两列火车位移的和是______。

8. 如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33
BM BC CN CD ==,试用,a b 表示,,OM ON MN 。

9. 已知O 是ABC ∆内的一点,若0OA OB OC ++=,
求证:O 是ABC ∆的重心.
10. 在水流速度为43/km h 的河中,如果要使船的速
度行驶方向与两岸垂直,并使船速达到12/km h ,求
船的航行速度与方向。

相关文档
最新文档