样条插值函数与应用

合集下载

三次样条插值例题解析matlab

三次样条插值例题解析matlab

三次样条插值例题解析matlab 三次样条插值是一种常用的插值方法,可以通过一定数量的离散数据点,拟合出一个光滑的曲线。

在MATLAB中,插值函数interp1可以实现三次样条插值。

该函数的基本语法为:y_interp = interp1(x, y, x_interp, 'spline');其中,x和y分别是原始数据的横坐标和纵坐标,x_interp是插值点的横坐标,'spline'表示使用三次样条插值方法。

插值函数会根据原始数据拟合出一个插值曲线,在插值点的位置上返回相应的纵坐标值。

下面我们以一个具体的例子来解析三次样条插值的使用。

假设我们有如下一组离散数据点:```matlabx = [0, 1, 2, 3, 4];y = [2, 3, 1, 4, 2];```我们希望通过这些离散数据点拟合出一个光滑的曲线,并在插值点处求取纵坐标值。

首先,我们需要在插值区间内定义一组插值点。

这里我们取0.1为步长,生成插值点:```matlabx_interp = 0:0.1:4;```然后,使用interp1函数进行插值计算:```matlaby_interp = interp1(x, y, x_interp, 'spline');```最后,我们可以通过图表来比较原始数据和插值结果:```matlabplot(x, y, 'o', x_interp, y_interp, '-');legend('原始数据', '插值结果');```在生成的图表中,原始数据以圆点表示,插值结果以实线表示。

通过比较可以看出,插值结果在原始数据之间形成了光滑的曲线。

以上就是使用MATLAB进行三次样条插值的基本步骤和方法。

然而,三次样条插值在某些情况下可能会产生不稳定的结果。

这是因为三次样条插值的结果受到了边界条件的影响。

插值计算的原理及应用

插值计算的原理及应用

插值计算的原理及应用1. 概述插值计算是一种通过已知数据点推测出未知数据点的数值的方法。

这种计算方法被广泛应用于各个领域,如数值分析、数据处理、图像处理等。

2. 原理插值计算的原理是基于一个假设:已知数据点之间存在某种规律或趋势,可以通过这种规律或趋势推测出未知数据点的数值。

插值计算的基本思想是在给定的数据点之间构建一个适当的插值函数,根据这个函数来推测出未知数据点的数值。

3. 插值方法插值计算有多种方法,下面列举了一些常用的插值方法:•线性插值:线性插值是最简单的插值方法之一。

它假设数据点之间的关系是线性的,通过这些已知点之间的直线来推测未知点的数值。

•拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。

它通过在已知数据点上构建一个多项式来推测未知数据点的数值。

•牛顿插值:牛顿插值也是一种基于多项式的插值方法。

它通过使用插值多项式的差商表来推测未知数据点的数值。

•样条插值:样条插值是一种通过在已知数据点之间构建多项式部分来推测未知数据点的数值的方法。

这些多项式部分称为样条函数。

4. 插值应用插值计算在各个领域都有广泛的应用,下面列举了一些常见的插值应用:•数值分析:在数值计算中,插值计算可以在给定数据点之间进行数值逼近,从而得到更加精确的结果。

•数据处理:在数据处理中,插值计算可以填补数据缺失的部分,从而得到完整的数据集。

•图像处理:在图像处理中,插值计算可以用于图像的放大、缩小、旋转等操作,从而得到更高质量的图像。

•地理信息系统:在地理信息系统中,插值计算可以根据已知地理数据点推测未知地理数据点的数值,从而进行地理信息的分析和预测。

5. 总结插值计算是一种通过已知数据点推测出未知数据点的数值的方法。

它基于已知数据点之间存在某种规律或趋势的假设,并通过构建适当的插值函数来推测未知数据点的数值。

插值计算有多种方法,如线性插值、拉格朗日插值、牛顿插值和样条插值等。

插值计算在各个领域都有广泛的应用,如数值分析、数据处理、图像处理和地理信息系统等。

样条曲面插值

样条曲面插值

样条曲面插值
样条曲面插值是一种数学方法,用于从离散的点集构建平滑的曲面。

这些点通常表示在二维或三维空间中的位置,而样条曲面则用于近似这些点并创建一个连续的曲面。

插值是指根据已知的离散数据点来推断出其他位置上的数值。

样条曲面插值的目标是通过一个连续且光滑的曲面,最好地逼近这些离散数据点。

常见的样条曲面插值方法包括:
1. 双三次插值样条曲面(Bicubic Interpolation):这种方法使用双三次样条插值来创建一个连续的曲面,它在每个方向上都使用三次多项式来逼近数据点。

2. Bezier曲面:Bezier曲面是由Bezier曲线推广而来的,它利用多个Bezier曲线的控制点来构建曲面。

3. B样条曲面(B-spline Surface):B样条曲面使用多个B样条来构建曲面,这些B样条由节点序列和控制点确定。

4. 样条插值基础上的曲面拟合:在这种方法中,通过使用已知数据点,先进行样条插值以获得一个曲面网络,然后利用这个网络进行曲面拟合。

这些方法都有其独特的优势和适用场景,但都旨在从离散的点集构建出平滑、连续的曲面,使得对数据的预测和分析更加准确和可靠。

插值的基本定义及应用

插值的基本定义及应用

插值的基本定义及应用插值是数学中的一种数值计算方法,用于根据给定的有限数据点,构造出一个函数,该函数在这些数据点上与原函数具有相同的性质。

基本上,插值问题可以总结为如何利用已知数据点来估计未知数据点的数值。

插值问题的基本定义是:给定一些已知的数据点,我们需要找到一个函数或曲线,使得这个函数或曲线通过这些已知的数据点,并且在这些点附近具有某种特定的性质。

具体而言,插值函数要满足以下两个条件:1. 插值函数通过已知的数据点,即对于给定的数据点(x_i, y_i),插值函数f(x)满足f(x_i) = y_i。

2. 插值函数在已知的数据点之间具有某种连续性或平滑性。

这意味着在已知的数据点之间,插值函数f(x)的一阶导数、二阶导数或其他导数连续或平滑。

插值方法可以用于解决各种实际应用问题,例如:1. 数据重构:在一些实际应用中,我们只能获得有限的数据点,但是我们需要整个函数的完整数据。

通过插值方法,我们可以从这些有限的数据点中恢复出整个函数的形状,以满足我们的需求。

2. 函数逼近:有时候,我们需要找到一个与已知数据点非常接近的函数或曲线,以便在未知点处进行预测。

通过插值方法,我们可以构造出一个逼近函数,在已知数据点附近进行预测。

3. 数据平滑:在一些实际问题中,我们的数据可能受到噪声或误差的影响,从而产生不规则或不平滑的曲线。

通过插值方法,我们可以使用平滑的插值曲线来去除噪声或误差,从而得到更加平滑的数据。

4. 图像处理:在图像处理中,插值方法被广泛应用于图像的放大、缩小、旋转、变形等操作中。

通过插值方法,可以在图像上生成新的像素值,以获得更高的图像质量。

常见的插值方法包括:1. 线性插值:线性插值是最简单的插值方法之一,它假设函数在已知数据点之间是线性的。

线性插值的插值函数是一条直线,通过已知数据点的两个端点。

2. 拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。

它通过一个n 次的多项式来插值n+1个已知数据点,保证插值函数通过这些已知数据点。

样条插值函数 matlab

样条插值函数 matlab

样条插值函数 matlab样条插值函数是一种广泛应用于数值计算中的插值技术。

它的主要功能是使用已经给定的数据点来构建一个连续且平滑的函数,该函数可以通过插值来预测在给定数据点之间的值。

在 MATLAB 中,我们可以使用 spline() 函数来实现样条插值函数的操作。

样条插值函数的主要思想是在给定的数据点上构建一组多项式,以实现对在数据点之间位置的函数的插值。

这些多项式通常在相邻数据点之间的区间上定义,并满足一系列的平滑条件。

在实践中,可以使用不同的插值多项式来构建样条插值函数,例如线性样条,二次样条或三次样条。

为了使用 MATLAB 中的 spline() 函数进行样条插值的操作,我们需要先确定要插值的数据点以及在这些数据点上的值。

通常我们会使用一维数组来存储这些数据点的值,例如:x = [0 0.5 1 1.5 2];接下来,我们需要为这些数据点上的值生成一个一维数组,例如:y = [0 0.4794 0.8415 0.9975 0.9093];为了使用 spline() 函数进行样条插值,我们需要将这些数据点作为输入参数传递给该函数,例如:yy = spline(x,y);这将返回一个样条插值函数,可以使用该函数来计算在数据点之间位置的函数值。

例如,要计算在 0.25 处的函数值,我们可以使用以下代码:val = ppval(yy,0.25);上述代码将返回插值函数在 0.25 处的函数值。

我们还可以使用 plot() 函数来可视化样条插值函数的结果,例如:plot(x,y,'o',0:0.01:2,ppval(yy,0:0.01:2));该代码将绘制原始数据点以及样条插值函数在给定范围内的函数值。

样条插值函数是一种强大的数值计算技术,可以用于许多科学和工程应用。

在 MATLAB 中,我们可以使用 spline() 函数轻松实现样条插值函数的操作并可视化结果。

几种常用的插值方法

几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。

1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。

对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。

2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。

常用的多项式插值方法包括拉格朗日插值和牛顿插值。

- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。

具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。

具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。

常用的样条插值方法有线性样条插值和三次样条插值。

-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。

-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。

三次样条插值具有良好的平滑性和精度。

4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。

样条函数插值

样条函数插值

样条函数插值样条函数插值,是在有限的几何点中求出一组平滑函数,可以精确的贴近原来的数据的过程。

样条函数插值最早是在19世纪末由V. Schoenberg提出的,用于在复合空间中进行自由流体动力学和扩散模拟的数值方法,随着被提出的时间的推移,样条函数插值得到了不断的发展,现如今被广泛的用于数据拟合、函数拟合、仿射变换、几何曲线建模、机器学习等应用上。

样条函数插值法,通常指用于数据拟合的办法。

它是将原先的数据点(插值点)集合连接,形成一系列的平滑曲线,然后在这些曲线上根据每一条曲线规律生成具有明确调整参数的单个函数,即样条曲线函数,该函数可用来表示插值点集合中每一处点,从而可以实现数据拟合。

使用样条函数插值拟合数据的不同之处,就在于样条函数插值拟合完成初始数据可以尽可能的扩展,边界地带可以沿着给定点扩展,此外,它也有良好的几何特性,可以连续变化,具有一定的多参数优化能力,确定多参数的优化问题的逼近度,确定拟合的参数等强大的能力,使其能更有效的完成拟合。

此外,样条函数拟合的原理可以用简单的几何形式来描述,即将整个空间中的点分为三种不同的情况。

将首尾的点假定为特定参考点,而中间的点连接成一个平滑曲线,内部每一条曲线段以某种最小二乘拟合方式来生成具体的样条曲线,每条曲线段有两个参数,斜率和曲线弧度。

并且根据参数调整,可以使得这条曲线会拟合出原始数据点集中最佳的接近度,同时这条曲线也可以优化在给定参数范围内的定义域内的曲线,以使得样条函数拟合所得结果最接近数据集的原始值。

样条函数拟合的技术广泛应用于数据拟合、函数拟合、图像处理等领域,比如计算机视觉领域中可以应用于精细分割,几何形状拟合,曲线和曲面建模等等。

样条函数拟合一般应用在缺少精确计算的情况下,比如波形拟合和几何图形拟合等情形,它具有在定义域内的精度可控性和多参数优化也很有用,这在曲面建模和机器学习上也有大的应用价值,证明其对普遍的函数估计有着不可忽略的作用。

样条函数插值

样条函数插值

样条函数插值样条函数插值是以样条函数的形式模拟原始数据的一种方法,它可以帮助我们更好地了解测量数据。

样条函数插值一般在处理测量、导航、地图绘制、图形、几何计算、统计分析、认知分析等领域有广泛应用。

它是计算机科学中应用最广泛的一类数值分析方法。

样条函数插值方法是由法国数学家埃洛夫于20世纪初发明的,它是基于样条函数(Spline Function)或线性函数(Linear Function)的一种插值方法。

样条函数插值的核心思想是用多个(最低二次)相连的函数段来拟合原始数据,整个拟合结果是一个函数。

它允许对数据点的过渡大小自由改变,因此可以在不使用多项式的情况下,构建出平滑的曲线,从而可以更好地反映出被测量的原始数据。

样条函数插值的主要特征是使用若干条样条曲线(比如,三次样条曲线)来拟合原始数据,每条曲线满足独立的插值约束,使得拟合效果可以更精确。

这一特点使得样条函数插值能够帮助我们更好地表现出原始数据的细节,帮助我们更好地拟合原始数据,以提高我们的数据分析准确度。

样条函数插值也是由原始数据点估计产生函数方程的有效方法,它与多项式拟合不同,多项式拟合是通过给定一定点数计算出一定函数来拟合原始数据,而样条函数插值通过给定几何约束,使几个拟合函数段构成一条样条曲线,更能够体现原始数据的细节。

此外,样条函数插值还可以用于解决多维插值问题。

它可以用于计算多维情况下的样条曲线,比如三维及更高维的复杂场景中的样条曲面,能够有效地推导出多维数据的连续函数表示。

总之,样条函数插值是一种经常用于多维插值的有效方法,它可以更好地表示原始数据的细节,还可以帮助我们提高数据分析的准确度。

它在多个领域中有广泛应用,可以极大地改变我们对数据的认知和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样条插值函数及应用摘要样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。

在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。

根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。

插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。

早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。

而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。

因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。

关键词三次样条函数;插值法目录引言 0第一章三次样条插值 (1)1.1 样条插值函数简介 (1)1.2 三次样条函数应用 (2)第二章AMCM91A 估计水塔水流量 (4)2.1 理论分析及计算 (5)2.2运用MATLAB软件计算 (8)参考文献 (13)引言样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。

上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。

在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。

在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。

现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

第一章 三次样条插值1.1 样条插值函数简介在实际问题中所遇到许多函数)(x f 往往很复杂,有些甚至是很难找到解析表达式的。

有时通过实验或者数值计算所得到的也只是一些离散的点()n i x i ...2,10,=上的函数值,即n i x f i i ...2,1,0),(y ==。

根据函数)(x f 已有的数据来计算函数)(x f 在一些新的点x 处的函数值,就是插值法所需要解决的问题。

插值法的基本思想就是,首先根据已有的函数值来构造一个简单的函数)(y x 作为)(x f 的近似表达式,然后用)(y x 来计算新的点上的函数值作为)(x f 的近似值。

通常可以选多项式函数作为近似函数)(y x ,因为多项式具有各阶导数,求值也比见方便。

常用的有Lagrange 插值、Newton 插值、Hermite 插值和样条插值。

线性插值在分段点上仅连续而不可导,三次埃尔米特插值有连续的一阶导数,这样的光滑程度常不能满足物理问题的需要,样条函数可以同时解决这两个问题,使插值函数既是低阶分段函数,又是光滑的函数,并且只需在区间端点提供某些导数信息。

三次样条函数定义:设在区间[]b ,a 上取1n +个节点b x x x x a n =<<<=...210,函数)(y x f =在各个节点处的函数值为,,...,1,0),(y i n i x f i ==若)(S x 满足:(1) ;,...1,0,y )(S n i x i i ==(2) 在区间[]b ,a 上,)(S x 具有连续的二阶导数;(3) 在区间[])(1,...,1,0x ,x 1-=-n i i i 上,)(S x 是x 三次的多项式;则称)(S x 是函数)(y x f =在区间[]b ,a 上的三次样条插值函数。

由以上定义可以看出,虽然每个子区间上的多项式可以各不相同,但在相邻子区间的连接处却是光滑的。

因此,样条插值也称为分段光滑插值。

从定义知要求出)(S x ,在每一个小区间[])(1,...,1,0x ,x 1-=-n i i i 上确定4个待定系数,共有n 个小区间,故应有4n 个参数。

根据)(S x 在[]b ,a 上二阶导数连续,在节点()1-...2,1n i x i =出满足连续性条件)0()0(S +=-i i x S x )0()0(S ''+=-i i x S x )0()0(S ''''+=-i i x S x共有3n-3个条件,再加上)(S x 满足插值条件;,...1,0,y )(S n i x i i ==共有4n-2个条件,因此还需要2个条件才能确定)(S x 。

通常可在区间端点上各加一个条件(称为边界条件),可根据实际问题的要求给定,通常有以下三种:(1)已知端点的一阶导数值,即'''00')(S ,)(S n n f x f x ==(2)俩端点的二阶导数已知,即''''''00'')(S ,)(S n n f x f x ==其特殊情况,0)(S )(S ''0''==n x x 称为自然边界条件。

(3)当)(x f 是以0x x n -为周期的函数时,则要求)(S x 也是周期函数。

这时边界条件应满足)0()0(S +=-i i x S x )0()0(S ''+=-i i x S x )0()0(S ''''+=-i i x S x而此时n y y =0。

这样确定的样条函数)(S x ,称为周期函数。

1.2 三次样条函数应用作函数)2sin()73(42x e x x y x ⨯+-=-在[]1,0取间隔为0.1的点图,用插值进行实验。

使用MATLAB 软件 程序代码如下: %产生原始数据 x=0:0.1:1;y=(x.^2-3*x+7).*exp(-4*x).*sin(2*x);%作图subplot(1,2,1);plot(x,y,x,y,'ro')%待求插值点xx=0:0.02:1;yy=interp1(x,y,xx,'spline');%作图subplot(1,2,2)plot(x,y,'ro',xx,yy,'b')运行截图图1.1 运行结果第二章AMCM91A 估计水塔水流量美国某洲的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天总的用水量,但许多社区并没有测量水流入或流出当地水塔的水量的设备,他们只能代之以每小时测量水塔中的水位,精度在0.5%以内,更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水至某一最高水位H,但也无法得到水泵的供水量的测量数据。

因此,在水泵工作时,人们容易建立水塔中的水位与水泵工作时的用水量之间的关系。

水泵每天向水塔充水一次或两次,每次约两小时。

表1 白某小镇某天的水塔水位试估计在任何时刻,甚至包括水泵正在工作期间内,水从水塔流出的流量)f,(t并估计一天的总用水量,表1中给出了某个真实小镇某一天的真实数据。

表1中给出了从第一次测量开始的以秒为单位的时刻,以及该时刻的高度单位为百分之一英尺的水塔中水位的测量值,例如,3316秒后,水塔中的水位达到31.10英尺。

水塔是一个垂直圆形柱体,高为40英尺,直径57英尺,通常当水塔的水位降至27.00英尺时水泵开始向水塔充水,而当水塔的水位升至35.50英尺时水泵停止工作。

2.1 理论分析及计算1. 水塔充水时间的确定 (1) 第一次充水时间的确定当时间t=32284秒时,水位26.97英尺,约低于最低水位27英尺,因此可作为第一次开始充水时刻。

当t=39435秒时,水塔水位35.5英尺,恰为最高水位,因此可作为第一次充水的结束时刻。

充水时间为dt =(39435-32284)/3600=1.9864小时,也接近充水时间2小时。

(2) 第二次充水时间的确定当时间t=75021秒时,水位26.97英尺,约低于最低水位27英尺,因此可作为第二次开始充水时刻。

当t=82649秒时,水泵在工作,但充水时间达到dt =(8264-7502)/3600=2.1189小时;但下一时刻t=85968时,水塔水位34.75英尺,低于最高水位35.50 英尺。

因此可将t=82649秒作为第二次充水的结束时刻,且该时刻水位为最大充水高度35.50 英尺。

2.计算各时刻塔内水的体积单位转换为1英尺=0.3048米, 1升=1/3.785411加仑 体积计算公式为4/.2h d v π=表2 不同时刻水体积表其中(1)表示第一段开始,(2) 表示第二段开始,(3) 表示第三段开始; 单位:时间(小时),水流量:加仑/小时;3.计算各时刻点的水流量(加仑/小时) 水流量公式为:dtt dv t f )()(=以上25个时刻处的水流量采用差分的方法得到,共分三段分别处理。

差分公式为:(1) 对每段前两点采用向前差分公式)(243)(121i i i i i i t t V V V t f --+-=+++(2) 对每段最后两点采用向后差分公式12134()2()i i i i i i V V V f t t t ----+=-(3) 对每段中间点采用中心差分公式)(1288)(12112i i i i i i i t t V V V V t f -+-+-=+--++得到各点水流量表表3 不同时刻水流量表其中(1)表示第一段开始,(2) 表示第二段开始,(3) 表示第三段开始: 单位:时间(小时),水流量:加仑/小时; 4.用三次样条拟合流量数据对表3中25个时刻点的流量数据采用三次样条插值得到一条光滑曲线,作为任意时刻的流量曲线,见图2.1。

图2.1 水塔流量图其中*表示数据点,实线为样条曲线5.一天总用水量计算一天流水总量计算:方法1:直接积分法:⎰==2401)332986()(加仑dt t f S 方法2:分段计算法第一次充水前用水912535148726061251=-=V (加仑)第一次充水后第二次充水前用水1628435148726777152=-=V (加仑)[22.9581,23.88]期间用水143186633976777153=-=V (加仑)第一次充水期间用水: ⎰==9542.109678.84)30326()(加仑dt t f V 第二次充水期间用水: ⎰==9581.228392.205)(31605)(加仑dt t f V[23.88,24]期间用水: ⎰==2488.236)(1524)(加仑dt t f V总共用水)(331869612加仑==∑=i i V S 两种方法结果相差%34.0121=-=S S S err 6.水泵水流量计算 第一次充水期间水塔体积增加)(1628435148726777151加仑=-=∆V充水时间:)(9864.19678.89542.101小时=-=∆t第一次充水期间水泵平均流量)/(97246)(19542.109678.811小时加仑=∆+∆=⎰t dtt f V p第二次充水期间水塔体积增加)(1628435148726777152加仑=-=∆V充水时间:)(1189.28392.209581.222小时=-=∆t第二次充水期间水泵平均流量)/(91769)(29581.228392.2022小时加仑=∆+∆=⎰t dtt f V p则整个充水期间水泵平均流量)/(945072/)(21小时加仑=+=p p p 2.2运用MATLAB 软件计算1.依据理论分析,编写程序代码。

相关文档
最新文档