1函数

合集下载

高中数学人教版必修一:第二单元 一次函数的性质与图象 pptx

高中数学人教版必修一:第二单元  一次函数的性质与图象 pptx

解析 ∵C中y=1+2x为一次函数且一次项系数大于零, ∴y=1+2x在R上为增函数,故选C.
12345
解析 答案
2.一次函数y=kx(k≠0)的图象上有一点坐标为(m,n),当m>0,n<0时,
则直线经过
√A.第二、四象限
C.第二、三象限
B.第一、三象限 D.第一、四象限
解析 ∵点(m,n)的坐标中m>0,n<0,
解析 答案
反思与感悟
求一次函数的解析式的一般步骤 (1)设一次函数的解析式为y=kx+b,其中k≠0. (2)根据题目中所给的条件(或隐含条件)列出实数k与b满足的方程组. (3)求出k与b的值,代入y=kx+b即可.
跟踪训练2 一次函数的图象经过y=x+1与y=2x-3的交点A,并且与x轴交 于点B(-1,0),求这个一次函数的解析式,并画出其图象.
解答
反思与感悟
解此种类型的题目,首先要正确理解正比例函数、一次函数的概念及 一次函数的性质,从概念和性质入手,问题便可迎刃而解.
跟踪训练1 设函数y=(m-3)x m2-6m+9 +m-2: (1)m为何值时,它是一次函数? 解 由一次函数的表达式知,mm- 2-36≠m0+,9=1.
解答
反思与感悟
(1)一次函数 f(x)=kx+b(k≠0)在[m,n]上恒为正⇔ffmn>>00., (2)一次函数 f(x)=kx+b(k≠0)在[m,n]上恒为负⇔ffmn<<00.,
跟踪训练3 已知f(x)=ax+2在区间[1,3]上大于零恒成立,则a的取值范 围为_(_-__23_,__+__∞__) _. 解析 ∵f(x)=ax+2在区间[1,3]上大于零恒成立, ∴ff31>>00,, 解之得 a>-23.
解答

1-07函数的连续性

1-07函数的连续性
x 0
f
( x0

x)
f
( x0 )]
0,那末就称函数
f ( x)在点 x 0 连续, x 0 称为 f ( x) 的连续点.
设 x x0 x,
y f ( x) f ( x0 ),
x
0 就是
x

x, 0
y
0 就是
f
(x)
f ( x ). 0
定义 1′设函数 f ( x) 在U ( x0 ) 内有定义,如果
断点. 三、1、x 1 为第一类间断点;
2、 x k 为可去间断点, 2
x k(k 0)为第二类间断点.
f1(
x)


x tan
x
,
x

k,
k

2
1, x 0
(k 0,1,2,) ,
二、函数连续性的运算定理
1. 连续函数的四则运算
定理1 若函数 f ( x), g( x)在点 x0处连续,
x x0
f ( x)
f 2( x0 )
故| f ( x) |、 f 2 ( x) 在x0 都连续.
但反之不成立.

f
(
x)

1, 1,
x0 x0
在 x0 0不连续
但 | f ( x) |、 f 2 ( x) 在x0 0 连续
练习题
一、填空题:
1、指出 y x 2 1 在 x 1 是第_______类间 x2 3x 2
恒有 f (u) f (a) 成立.
又 lim ( x) a, x x0
对于 0, 0,使当0 x x0 时,

1函数的定义及表示 - 中等 - 讲义

1函数的定义及表示 - 中等 - 讲义

函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()∈,(),x a bu m n∈,那么[()]y f u=,(),=,()u g xy f x称为复合函数,u称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是()y f xx称为y的原象,映射f也可记为::f A B()x f xf x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c dac =+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .【解答】解:B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性, A ,C ,D 满足函数的定义, 故选:B .2.(2017秋•大观区校级期中)已知集合P={x |0≤x ≤4},集合N={y |0≤y ≤2},下列从P 到N 的各对应关系f 不是函数的是( ) A .f :x→y=12xB .f :x→y=13xC .f :x→y=23xD .f :x→y=√x【解答】解:f :x→y=12x ,是函数,f :x→y=13x ,是函数,f :x→y=23x ,不是函数,4→23×4=83∉N ;f :x→y=√x ,是函数, 故选:C .3.(2017秋•定远县期中)下列各式中,表示y 是x 的函数的有( ) ①y=x ﹣(x ﹣3); ②y=√x −2+√1−x ; ③y={x −1(x <0)x +1(x ≥0) ④y={0(x 为有理数)1(x 为实数)..A .4个B .3个C .2个D .1个【解答】解:根据函数的定义,当自变量x 在它的允许取值范围内任意取一个值,y 都有唯一确定的值与之对应,故①③表示y 是x 的函数;在②中由{x −2≥01−x ≥0知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x的函数;在④中若x=0,则对应的y 的值不唯一,可以等于0,也可以等于1,所以④不表示y 是x 的函数. 故选:C .4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是( )A .y=x 与y=√x 2B .y=2lgx 与y=lgx 2C .y =√x 33与y=xD .y=x ﹣1与y=x 2−1x+1【解答】解:要表示同一个函数,必须有相同的对应法则,相同的定义域和值域, 观察四个选项,得到A 答案中两个函数的对应法则不同,B 选项中两个函数的定义域不同,C 选项中两个函数相同,D 选项中两个函数的定义域不同, 故选:C .5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=√x 2B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2−1x−1,g (x )=x +1D .f (x )=√x +1•√x −1,g (x )=√x 2−1【解答】解:对于A ,∵g (x )=√x 2=|x|,f (x )=|x |,∴两函数为同一函数; 对于B ,函数f (x )的定义域为{x |x ≠0},而函数g (x )的定义域为{x |x >0},两函数定义域不同,∴两函数为不同函数;对于C ,函数f (x )的定义域为{x |x ≠1},而函数g (x )的定义域为R ,两函数定义域不同,∴两函数为不同函数;对于D ,函数f (x )的定义域为{x |x >1},而函数g (x )的定义域为{x |x <﹣1或x >1},两函数定义域不同,∴两函数为不同函数. 故选:A .6.(2018春•天心区校级期末)定义运算a*b ,a ∗b ={a(a ≤b)b(a >b),例如1*2=1,则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]【解答】解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x1,x≥0∴f(x)={2x,x<0由图知,函数y=1*2x的值域为:(0,1].故选:D.7.(2018春•海州区校级期末)若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【解答】解:由题意:函数y=√ax2+2ax+3是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:{a>0f(−1)≤0⇒{a>0a−2a+3≤0解得:a≥3所以a的取值范围是[3,+∞).故选:B.8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x【解答】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32【解答】解:∵f(x)满足关系式f(x)+2f(1x)=3x,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【解答】解:设t=x+1,∵函数f(x+1)=3x+2=3(x+1)﹣1∴函数f(t)=3t﹣1,即函数f(x)=3x﹣1故选:C.11.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4B.x2﹣x﹣4C.x2+8x D.x2﹣4【解答】解:由于f(x﹣2)=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4,从而f(x)=x2﹣4.故选:D.12.(2017秋•潮南区期末)已知函数f(x)=√3x−13ax2+ax−3的定义域是R,则实数a的取值范围是()A.a>13B.﹣12<a≤0C .﹣12<a <0D .a ≤13【解答】解:由a=0或{a ≠0△=a 2−4a ×(−3)<0可得﹣12<a ≤0, 故选:B .二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f (x 2﹣1)的定义域为(﹣2,2),函数g (x )=f (x ﹣1)+f (3﹣2x ).则函数g (x )的定义域为 [0,2) . 【解答】解:由函数y=f (x 2﹣1)的定义域为(﹣2,2), 得:﹣1≤x 2﹣1<3,故函数f (x )的定义域是[﹣1,3), 故﹣1≤x ﹣1<3,﹣1≤3﹣2x <3, 解得:0≤x <2,故函数g (x )的定义域是[0,2), 故答案为:[0,2).14.(2017•重庆模拟)设函数f (x )={log 2(−x2),x ≤−1−13x 2+43x +23,x >−1,若f (x )在区间[m ,4]上的值域为[﹣1,2],则实数m 的取值范围为 [﹣8,﹣1] . 【解答】解:函数f (x )的图象如图所示,结合图象易得 当m ∈[﹣8,﹣1]时, f (x )∈[﹣1,2].故答案为:[﹣8,﹣1].15.(2018•榆林三模)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a+1c +c+1a的最小值为 4 . 【解答】解:由题意知,a ,>0,△=4﹣4ac=0,∴ac=1,c >0,则a+1c +c+1a =a c +1c +c a +1a =(a c +c a )+(1a +1c)≥2+2√1ac =2+2=4,当且仅当a=c=1时取等号.∴a+1c +c+1a的最小值为4.16.(2017秋•南阳期中)函数f (x )=x ﹣√1−x 的值域是 (﹣∞,1] .【解答】解:设√1−x =t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣12,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].17.(2017秋•天心区校级期末)已知函数f (x +1)=3x +2,则f (x )的解析式是 f (x )=3x ﹣1 .【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=1.【解答】解:∵a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,∴1通过映射可得1∈N,解得a=1,b a →ba∈N,可得ba=0,解得b=0,∴a+b=1,故答案为1;19.(2018•开封一模)f(x)={2e x−1,x<2log3(x2−1),x≥2.则f(f(2))的值为2.【解答】解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为2三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f (x )满足f (x +1)=lg (2+x )﹣lg (﹣x ).(1)求函数f (x )的解析式及定义域;(2)解不等式f (x )<1.【解答】解:(1)由已知令t=x +1,则f (t )=lg (t +1)﹣lg (1﹣t ), 即f (x )=lg (x +1)﹣lg (1﹣x );由{x +1>01−x >0得到﹣1<x <1,所以函数定义域为(﹣1,1); (2)f (x )=lg (x +1)﹣lg (1﹣x )=lg 1+x 1−x <1,即{1+x 1−x <10−1<x <1,解得﹣1<x <911.。

高一数学必修一函数知识点总结

高一数学必修一函数知识点总结
/ 7 ○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题: 1.求下列函数的定义域: ⑴221533xxyx ⑵211()1xyx 2.设函数fx()的定义域为[]01,,则函数fx()2的定义域为_ _ 3.若函数(1)fx的定义域为[]23,,则函数(21)fx的定义域是 4.函数22(1)()(12)2(2)xxfxxxxx ,若()3fx,则x= 5.求下列函数的值域: ⑴223yxx ()xR ⑵223yxx [1,2]x (3)12yxx (4)245yxx 6.已知函数2(1)4fxxx,求函数()fx,(21)fx的解析式 7.已知函数()fx满足2()()34fxfxx,则()fx= 。

1函数的定义

1函数的定义

① y=x (x≥0) ③ y=x
② y=x (x≠0)

y=|x|=
x
(x x(
x
0) 0)
3. 区间的表示:
设a、b是两个实数,而且a<b,规定:
①满足不等式a≤x≤b的实数x的集合叫闭区 间。表示为:[a,b].
②满足不等式a<x<b的实数x的集合叫开区 间。表示为(a,b).
③不等式a≤x<b或a<x≤b的实数x的集合叫 半开半闭。分别表示为:[a, b)、(a, b].
2倍与 y对应; y=3x+1
记作: y=f(x ) x∈A
其中x叫做自变量,x的取值范围 叫做 函数的定义域。与x对应的y的值叫做函数 值,函数值的集合叫做值域。
构成函数的三要素:定义域、值域、对应 法则。
如:一次函数 y =f(x)=ax+b (a≠0) 定义域R、值域R
反比例函数:y =f(x)= k/x (k≠0) 定义域:A={x|x≠0};值域:B={y|y≠0} 二次函数:y=ax2+bx+c (a≠0)
x x
2, 且x 2 1, 或x 1
x x
2, 且x 1
2

x x
2, 1
且x
2
x 1, 且x 2 ;或 x 1, 且x 2。
例6 已知a满足下列条件:
(1) 3 2a 1, 3a 1
(2) 点p(a,2a 6)在坐标系中 位于第四象限. 试求a的取值范围
解: 2a 1 3a 1 2 / 3 a 2 2a 1 3 3a 1
如: ①
A f:乘2加1 B
3
1
4
2
5
6

第一章 函数

第一章  函数

第一讲函数及其表示知识梳理考点一 函数定义域一、 具体函数的定义域例1、(2015•湖北)函数()256lg 3x x f x x -+=+-的定义域为( )A .()2,3B .(]24,C .()(]23,3,4 D .()(]136-,3,例2、(2019•江苏)函数y =的定义域是 .例3、已知函数函数()1lg 4f x x ⎛⎫=- ⎪⎝⎭的定义域_______________.变式练习1. (山东)函数()f x =的定义域为( )A .()0,2B .(]02,C .()2+∞,D .[)2+∞,2. (2018秋•宜昌期中)函数()012f x x ⎛⎫=- ⎪⎝⎭的定义域为( )A .B .[)2+-∞,C .112+22⎡⎫⎛⎫-∞⎪ ⎪⎢⎣⎭⎝⎭,,D .1+2⎛⎫∞⎪⎝⎭,3. (2020•广东学业考试)函数()f x =的定义域是( )A .4+3⎛⎫∞ ⎪⎝⎭,B .53⎛⎫∞ ⎪⎝⎭-,C .4533⎛⎫ ⎪⎝⎭,D .4533⎛⎤⎥⎝⎦,4. (2013•山东)函数()f x =的定义域为( )A .(]30-,B .(]31-,C .(](]33-∞--,,0 D .()(]3-∞-,-3,15. (2017•深圳一模)函数y = )A .()2-,1B .[]2-,1C .()01,D .(]01,6. 已知函数()()lg tan 1f x x =-则()f x 的定义域是________________.二、 抽象函数定义域例1、(2019•西湖区校级模拟)已知函数()f x 的定义域为()11-,,则 函数()()11g x f f x x ⎛⎫=-- ⎪⎝⎭的定义域为( )A .()1,2B .()0,2C .()01,D .()11-,例2、(2019秋•辛集市校级月考)已知函数()21f x -的定义域为()0,1,则函数()13f x - 的定义域是( ) A .112⎛⎫⎪⎝⎭,B .103⎛⎫ ⎪⎝⎭,C .()11-,D .203⎛⎫⎪⎝⎭,例3、(2019秋•景德镇期中)若函数()y f x =的定义域为[]11-,,则()||1y f x =-的 定义域为( )A .[]11-,B .[]10-,C .[]01,D .[]22-,例4、已知()f x 是定义域在[)1+-∞,上的单调增函数,则不等式()222x x f e f -⎛⎫≥- ⎪⎝⎭ 的解集是_________. 变式练习1. (2019秋•崂山区校级期中)已知函数()y f x =的定义域为[]6-,1, 则函数()()212f xg x x +=+的定义域是( )A .()(]22-∞--,,3B .(]11-,3C .722⎡⎤--⎢⎥⎣⎦,D .[﹣,﹣2)(]2-,2. 已知函数()24y f x =-的定义域是[]15-,,则函数2x f ⎛⎫⎪⎝⎭的定义域是______________.3. 函数)1(+x f 的定义域[)32,-∈x ,求)21(+xf 的定义域.4. 设函数()2342||xf x e x +=-++,则不等式()()253f x f x -<-成立的x 的 取值范围是__________________.5. (2019秋•河南月考)已知函数f (x )的定义域是[]1,4,则函数()2()1x f g x x =-的定义域为( )A .[)(]01,1,2B .()0,2C .[]0,2D .()()0112,,6. (2019秋•城关区校级期中)已知函数()1f x +的定义域为[]21-,,则 函数()()122g x f x x =+--的定义域为( ) A .[]1,4 B .[]03, C .[)(]12,2,4 D .[)(]123,2,三、已知函数定义域求参例1、函数25lg 4y kx kx ⎛⎫=++ ⎪⎝⎭的定义域为R ,则实数k 的取值范围是 .例2、已知函数y =[]3-,6,求实数a b ,的值.例3、已知函数()2f x ax bx =+是定义在[]1a a -,2上的偶函数,那么a b +的值是例4、已知()f x 是定义在()4-,4上的奇函数,它在定义域内单调递减,若a 满足()()1230f a f a -+-<.求a 的取值范围.变式练习1. 已知函数()2log 21a y ax x =++.(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(()22+-∞-+∞,,求a 的值.2. 已知函数()f x =(Ⅰ)若()f x 的定义域为R ,试求a 的取值范围.(Ⅱ)若()f x 在[]2,3上有意义,试求a 的取值范围.3. 已知函数()22lg1a xy x a -=-+的定义域为集合A ,若4A ∉,则实数a 的取值集合是 .4. 已知()f x 是偶函数,且()f x 在[)0+∞,上是增函数,如果()()12f ax f x +≤-在112x ⎡⎤∈⎢⎥⎣⎦,上恒成立,则实数a 的取值范围是_________________.考点二 抽象函数的解析式例1、 已知()y f x =是一次函数,且有()1615f f x x =-⎡⎤⎣⎦,则()f x 的解析式为 .例2、已知函数)14fx =-,则()f x 的解析式为 .例3、已知函数22113f x x x x ⎛⎫+=++ ⎪⎝⎭,求()f x 的解析式,及 ()3f 及()2f 的值.变式练习1. (1)已知()f x 是一次函数,且()94f f x x =+⎡⎤⎣⎦,求()f x 的解析式.(2)已知()f x 为二次函数,且()02f =,()()11f x f x x +-=-,求()f x .2. 若)1fx =+()f x 的解析式为( )A .()2f x x x =-B .()()20f x x x x =-≥C .()()21f x x x x =-≥D .()2f x x x =+3. 已知()2211x f x x -=+,则()f x 的解析式为( )A .()21x f x x =+B .()221xf x x=-+ C .()221xf x x =+ D .()21xf x x =-+4. 若)1f x =+则()3f = ;()f x = .5. 已知函数()1221x f x x -=-+,则()f x =( ) A .2x +1﹣2x ﹣1B .2x +1﹣2x +1C .2x ﹣1﹣2x +1 D .2x ﹣1﹣2x ﹣16. 若函数()f x 对于任意实数x 恒有()()231f x f x x --=-,则()f x 等于( ) A .1x +B .1x -C .21x +D .33x +考点三 分段函数一、 求函数值例1、(2015•新课标Ⅱ)设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,,,则()()22log 12f f -+=( )A .3B .6C .9D .12例2、(2020•汉中二模)设()[]210(6)10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,,,则()5f 的值为( )A .10B .11C .12D .13例3、已知()()sin 023202x x f x f x x π⎧≤⎪⎪=⎨⎪-+>⎪⎩,,,则53f ⎛⎫⎪⎝⎭的值为 . 变式练习1. (2017秋•抚顺期末)若()()()200x x f x x x ⎧≥⎪=⎨-<⎪⎩,,,则()2f f -=⎡⎤⎣⎦( )A .2B .3C .4D .52.(2019•西湖区校级模拟)已知函数()()()3log 020x x x f x x >⎧⎪=⎨≤⎪⎩,,,则19f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值为 .3.(2017春•普宁市校级月考)已知()()sin 08520x x f x f x x π⎧≥⎪=⎨⎪++<⎩,,则()2016f -的值为( )A .810B .809C .808D .8064.(2019•深圳模拟)已知函数()()22log 0log 0x x a x x f x a x x ⎧>⎪=⎨+-<⎪⎩,,()01a a >≠且,若()()21224f f +-=,则a =二、求参数或自变量的值或范围例1、(2019•全国)已知()2200x x f x x x <⎧=⎨≥⎩,,,若()()20f a f +-=,则a = .例2、(2018·全国卷Ⅰ)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]-∞,-1B .()0+∞,C .()10-,D .()0-∞,例3、(2017·全国卷Ⅲ)设函数f (x )=()+1020x x x f x x ≤⎧=⎨>⎩,,则满足()1+12f x fx ⎛⎫-> ⎪⎝⎭的x 的 取值范围是________.例4、(上海)设()()201x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,,,若()0f 是()f x 的最小值,则a 的 取值范围为( )A .[]1-,2B .[]10-,C .[]12,D .[]02,变式练习1. (2019•佛山模拟)已知函数()()2cos f n n n π=,且()()1n a f n f n =++,则123100=a a a a +++⋅⋅⋅+( ) A .0B .100C .100-D .102002. (江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .3. (2018秋•苏州期末)已知函数()2211222x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,,,,若()3f x =,则x = .4. (2018秋•罗湖区校级月考)若函数()1sin x af x x x x a ⎧-<⎪=⎨⎪≥⎩,,,的值域是[]1-,1,则实数a 的取值范围是( )A .2π⎛⎤-∞- ⎥⎝⎦,B .(]1-∞-,C .[11]-,D .(][)11+-∞-∞,,家庭作业1. (2020•郑州二模)设函数y =A ,函数()ln 3y x =-的定义域为B ,则AB =( )A .()3-∞,B .()83--,C .{}3D .[)-3,3 2. 函数f (x )的定义域为12⎛⎫⎪⎝⎭,3,则()lg 1f x +的定义域为( )A .()0+∞,B .12⎛⎫⎪⎝⎭,3C .1100100⎛⎫ ⎪⎝⎭,D.100⎫⎪⎪⎝⎭3. 已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠ ⎪⎝⎭,则()2f -=( )A .72-B .92C .72 D .92-4. (2015•新课标Ⅰ)函数()()12221log 11x x f x x x -⎧-≤⎪=⎨-+>⎪⎩,,,且()3f a =-,则()6f a -=( )A .74-B .54-C .34-D .14-5. (2020•焦作一模)已知函数()1212log 18212x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,,.若()()()f a f b a b =<,则ab 的最小值为( ) AB .12CD6.已知函数()()2lg 3f x mx mx m =--+的定义域为R ,则实数m 的取值范围为 .7.(江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .8.(2017春•双辽市校级月考)已知函数()()()()2211222x x f x x x xx +≤-⎧⎪=-<<⎨⎪≥⎩ (1)在坐标系中作出函数的图象; (2)若()12f a =,求a 的取值集合.第二讲 单调性考点梳理考点一:单调函数的定义自左向右看图象是上升的自左向右看图象是下降的考点二:复合函数单调性形如()()x g f y =类的函数叫做复合函数同增异减:“同增”指内层函数和外层函数单调性相同时,整体为单调递增函数;“异减”指内层函数和外层函数单调性不同时,整体为单调递减函数. (1)当()0≠x f 时,函数()x f 和()x f 1单调性相反; (2)当()x f 非负时,函数()x f 和()x f 单调性相同.考点三:单调性的性质1.增+增=增,增-减=增,减+减=减,减-增=减2.()()x f k x g ⋅=,当0>k 时,()()x g x f ,单调性相同;当0<k 时,()()x g x f ,单调性相反3.奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点的区间上单调性相反题型一.判断单调性例1、 下列函数()x f 中,满足“对任意()0,,21∞-∈x x ,当21x x <时,都有()()21x f x f <”的是( )A .()x x f 24-=B .()21-=x x f C .()222--=x x x f D .()x x f -=例2、已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )A .B .C .D .例3、性质①()()R x x f x f ∈=-,;②在()∞+,0对任意()2121,x x x x ≠,都有()()()[]02121<--x f x f x x .下列函数中,性质①②均满足的是( )A .13+-=x y B .⎪⎩⎪⎨⎧<--≥+--=0,10,122x x x x x x yC .114-=x y D .()x x x y -+=1lg2变式训练1.下列函数既是偶函数,又在()∞+,0上为减函数的是( ) A.1-=x y B .xy 1ln= C .xxy --=22 D .⎪⎩⎪⎨⎧<->+=0,20,222x x x x x x y2.设函数()x f y =在R 上为增函数,则下列结论一定正确的是( ) A .()x f y 1=在R 上为减函数 B .()x f y =在R 上为增函数 C .()[]2x f y =在R 上为增函数 D .()x f y -=在R 上为减函数题型二.求单调区间例1、画出下列函数的图像,并写出其单调区间.① ()21+-=x x f ; ②()2.-=x x x f ; ③()⎩⎨⎧>+-≤+=0,220,12x x x x x f例2、设函数()⎪⎩⎪⎨⎧><++-≤≤-=20,1220,12x x x x x x x f 或则函数()x f 的单调递增区间为( )A .()()2,1,0,∞-B .()()2110,,,C .(][]1,0,0,∞-D .()()2,1,0,∞-变式训练1.如果函数()x f y =在区间I 上是增函数,且函数()xx f y =在区间I 上是减函数,那么称函数()x f y =是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数()542+-=x x x f 是区间I上的“缓增函数”,则“缓增区间”I 为( )A .[)∞+,2 B .[]52, C .[]50, D .[]20,2.函数()R x x f y ∈=,的图象如图所示,则函数()()x f x g ln -=的单调减区间是( )A .⎥⎦⎤ ⎝⎛e 10,B .⎥⎦⎤⎢⎣⎡1,1e C .[)∞+,1 D .⎥⎦⎤⎝⎛e 10,和[)∞+,1题型三.单调性的运用应用(一) 比较函数值或自变量的大小例1、已知函数()x f 的图象关于直线1=x 对称,当112>>x x 时,()()[]()01212<--x x x f x f 恒成立,设()()e f c f b f a ==⎪⎭⎫⎝⎛-=,2,21,则c b a ,,的大小关系为( ) A .b a c >> B .a b c >> C .b c a >>D .c a b >>2、已知函数()x x x f 2sin -=,且()3.022,31log ,23ln f c f b f a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,则以下结论正确的是( ) A .b a c >> B .b c a >> C .c b a >> D .c a b >>变式训练1.定义在R 上的函数()x f 满足:①()1-=x f y 的图象关于直线1=x 对称;②对任意的(]0,,21∞-∈x x ,当21x x ≠时,不等式()()02121>--x x x f x f 成立。

第一章 1.2.1函数的概念

第一章 1.2.1函数的概念
第一章 集合与函数概念
§1.2 函数及其表示
1.2.1 函数的概念
探要点、究所然
1.2.1
[情境导学] 初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并 未完全揭示出函数概念的本质.对于 y=1(x∈R)是不是函数,如果用运动 变化的观点去看它,就不好解释,显得牵强.但如果用集合与对应的观点 来解释,就十分自然.因此,用集合与对应的思想来理解函数,对函数概 念的再认识,就很有必要.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
阅教材P15-16 思(5分钟) 议(5分钟)
1.2.1
探究点一 :函数的概念
思考 1 初中学习的函数的概念是如何定义的?
思考 2
阅读教材 15 页~16 页中的三个实例, 并指出三个实例存在哪些变
量?变量之间的对应关系是采用什么形式表达的?三个实例中变量的关 系有什么共同点? 思考 3 函数的概念如何从集合及对应的角度定义?函数的定义域及值域
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.2.1
探究点二 :映射的概念及应用
解 (1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数
与之对应,所以这个对应 f:A→B 是从集合 A 到集合 B 的一个映射.
(2)按照建立平面直角坐标系的方法可知, 平面直角坐标系中的任意一个点, 都有唯一的一个实数对与之对应,所以这个对应 f:A→B 是从集合 A 到集 合 B 的一个映射.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然

课件1:3.1.1 函数的概念

课件1:3.1.1  函数的概念

{x|x≤b}
_____(_-__∞__,__b_]_____
数轴表示
{x|x<b}
_____(_-__∞__,__b_)_____
[微体验]
1.下列区间与集合{x|x<-2或x≥0}相对应的是( )
A.(-2,0)
B.(-∞,-2]∪[0,+∞)
C.(-∞,-2)∪[0,+∞)
D.(-∞,-2]∪(0,+∞)
第三章 函数的概念与性质
3.1 函数的概念及其表示
3.1.1 函数的概念
课程标准
核心素养
1.在初中用变量之间的依赖关系描
述函数的基础上,用集合语言和对 应关系刻画函数,建立完整的函数

通过对函数概念的学习,提
概念,体会集合语言和对应关系在 升“数学抽象”、“逻辑推
刻画函数概念中的作用.
理”、“数学运算”的核心
解 (1)两函数定义域不同,所以不是同一个函数. (2)y1= x+1· x-1的定义域为{x|x≥1}, 而 y2= (x+1)(x-1)的定义域为{x|x≥1 或 x≤-1},定义域不同, 所以不是同一个函数.
随堂本课小结
1.对函数概念的五点说明 (1)对数集的要求:集合A,B为非空数集. (2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯 一性. (3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含 义不一样.
A.1
B.2
C.3
D.4
图2
解析 (1)A中的元素0在B中没有对应元素,故不是A到B的函数; (2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都 有唯一确定的整数x2与其对应,故是集合A到集合B的函数; (3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有 唯一确定的数0和它对应,故是集合A到集合B的函数; (4)集合B不是确定的数集,故不是A到B的函数; (5)集合A中的元素3在B中没有对应元素,且A中元素2在B中有两个元素5和6 与之对应,故不是A到B的函数. 答案 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
上页
下页

设函数
,求f -1(x+1).
解 函数y=f(x+1)可看成y=f(u),u=x+1复合而成.所求的 反函数y=f –1(x+1)可看成y=f –1(u),u=x+l复合而成. x u 1 u 1 f ( u) , u 0, 即y x 1 u u 1 从 而, u( y 1) 1, u , 1 y 1 1 所 以 y f ( u) , 1 u 1 1 1 因 此 f ( x 1) ,x0 1 ( x 1) x
所以
x 1 1 f ( f ( f ( x ))) , x 1, , . 3x 1 2 3
下页
返回
上页
2. 反函数 设y=f(x)的定义域为X,值域为Y={f(x)∣x∈X},且
f(x)满足:对任意的x1,x2∈X,若x1 ≠x2,则f(x1)≠f(x2).此时,
对任意的y∈Y,必存在唯一确定的x∈X满足y=f(x),换
1 函数 y 在(0,1)内无上界,但有下界. x
返回
上页
下页
4.周期性 定义7 设y=f(x)的定义域为D(f),若存在常数T≠0,使
得 对 任 意 的 x∈D(f), 有 x±T∈D(f),且 f(x±T)=f(x),
则称f(x)为周期函数,T称为f(x)的周期. 若T为f(x)的周期,则f(x)有无穷多个周期,kT(k∈Z)都 是f(x)的周期.通常函数的周期是指它的最小正周期
返回 上页
下页
0
0
三.函数的概念
定义1 设D为非空实数集,若存在对应规则f,使得 对任意的x∈D,按照对应规则f,都有唯一确定的 y∈R与之对应,则称f为定义在D上的一个一元函数, 简称函数.D称为f的定义域.函数f的定义域常记作 Df(或D(f)).对于x∈Df.称其对应值y为函数f在点x处 的函数值.记作f(x).即y=f(x).全体函数值所构成的集 合称为f的值域.记作f(D)、Rf(或R(f)) ,即 Rf={f(x)︱x∈Df}. 注意:f与f(x) 的区别.
返回 上页
下页
二.区间与邻域 设a和b都是实数,将满足不等式a<x<b的所有实 数组成的数集称为开区间,记作(a,b)即 (a,b) ={x|a<x<b}, a和b称为开区间(a,b)的端点,这里a (a,b)且b (a,b).
数集 [a,b]={x|a≤x≤b}为闭区间,a和b也称为闭区间 [a,b]的端点 , a∈[a,b]且b∈[a,b].
解 令 y=f(w),w=f(u),u=f(x), 则 y=f(f(f(x))) 是 通 过 两 个 中间变量w和u复合而成的函数.
返回
上页
下页
x u x 1 x , x 1; w f ( u) x u1 2x 1 2 1 x 1 x w 2x 1 x , x 1 ; y f (w) x w 1 3 1 3x 1 2x 1
返回 上页
下页
关于反函数还有一些常用结论:
(1) y=f(x)(定义域为X,值域为Y)存在反函数y=f-1(x) (x∈Y)的充要条件是对任意的x1,x2∈X,若x1≠x2,则 f(x1)≠f(x2). (2)若y=f(x),x∈X存在反函数y=f-1(x),则在同一直 角坐标系xOy中,y=f(x)和y=f -1(x)的函数图形关于直 线y=x对称.
返回 上页
下页
y
y f ( x)
y
O
x
O
y f (x )
x
从几何上看,若y=f(x)的定义域D是严格单调函数,则 任意一条平行于x轴的直线与它的图像最多交于一 点,因此y=f(x)有反函数.
返回
上页
下页
2. 奇偶性 定义4 设函数f(x)的定义域D(f)关于原点对称(即若 x∈D,则-x∈D),对于任意的x∈D, (1)若有f(-x)=-f(x),则称f(x)为D内的奇函数; (2) 若有f(-x)=f(x),则称f(x)为D内的偶函数. 奇函数的图形 关于原点对称, 而偶函数的图 形关于y轴对称
A
B
由同时属于A与B的元素组成的集称为A与B的交集, 记作A∩B ,即A∩B ={x|x∈A且x∈B} A B 差集
由属于A但不属于B的元素组成的 集称为A与B的差集,记作A–B,即 A B { x | x A但x B}
返回 上页
下页
A
B
集合运算的基本法则:
定理1 设A,B,C为三个集合,则 (1) A∪B =B∪ A , A∩B = B∩A ; (交换律) (2) (A∪B)∪C= A∪(B∪C), (A∩B)∩C= A∩(B∩C); (结合律) (3) (A∪B)∩C=(A∩C)∪(B∩C), (A∩B)∪C=(A∪C)∩(B∪C), (A - B)∩C=(A∩C)-(B∩C); (分配律) (4) A∪A =A , A∩A =A ; (幂等律) (5) A∪= A , A∩=; 若AB,则A∪B=B,A∩B=A. (吸收律) 特别地,由于A∩B A A∪B, 所以有,A∪(A∩B)=A,A∩(A∪B)=A.
有∣f(x)∣M,或Mf(x)M.注意到
f(x)表示函数y= f(x)的图形上点(x,
f(x))的纵坐标,因此,y=f(x)在(a,b)内
有界在几何上表示y=f(x)在区间 (a,b)内的函数图形必夹在两平行 于x轴的直线y=±M之间.反之亦然.
返回 上页
下页
例如: 函数y=sinx在其定义域(-∞,+∞)内是有界的, 因为对任一x∈(-∞,+∞)都有|sinx|≤1.
第一节
函数的概念及其基本性质
第二节 初等函数 第三节 经济学中常见的函数
第一节 函数的概念及其基本性质
一.集合及其运算 集合:具有某种确定性质的对象的全体,简称集。 集合的元素:组成集合的各个对象。
用大写的英文字母A、B、C……表示集合,用小写 的英文字母a、b、c……表示集合的元素。 若a属于集合A的元素,则称a属于A,记作 ;否 则称a不属于A ,记作 a A (或 a A )。 含有限元素的集合称为有限集,不含任何元素的集合 称为空集;用表示空集。 不是有限集也不是空集的 集合称为无限集。
返回
上页
下页
设x0是 一 个 给 定 的 实 数 是 某 一 正 数称 数 集: , , { x | x0 x x0 } 为 点x0的邻 域, 记 作U ( x0 , ), 称 点x0为 这 邻 域 的 中 心 为 这 邻 域 的 半 径 。 ,
0
x0
(
x0
数集[a,b)={x|a≤x<b}和(a,b]={x|a<x≤b}为半开半闭 区间. 以上这些区间都称为有限区间,数b-a称为区间长度.
返回 上页
下页
无限区间
( , ) { x | x } R, ( , b] { x | x b}. ( , b) { x | x b}. [a , ) { x | a x }. (a , ) { x | a x }. 记 号" " 与" " 分 别 表 示 负 无 穷 大 与" 正 无 穷 大 " " ".
返回
上页
下页
例 设y=f(u)=ln(u-2),u= (x)=sinx,问f(u)和 (x)能否 构成复合函数f((x))? 解 将u=sinx代入到y=ln(u-2)中,得y=ln(sinx-2),
Hale Waihona Puke 由于-1≤sinx≤1,sinx-2<0,故函数的定义域为空集,
所以不能构成复合函数.
返回
上页
成立, 则称f(x)在D内有上界(或有下界),也称f(x)是 D内有上界(或有下界)的函数.A称为f(x)在D内的 一个上界(下界).
函数f(x)在D上有界的充要条件是该函数在D内 既有上界又有下界.
返回
上页
下页
有界函数的几何意义:
设y=f(x)在区间(a,b)内有界,
即存在M>0,使得对任意的x(a,b),
返回 上页
下页
例 求函数y
4 x
2
1 的定义域. x 1
解 要使数学式子有意义,x必须满足
4 x 2 0, x 2, 即 x 1, x 1 0, 由此有 1 x 2
因此函数的定义域为(1,2].
返回
上页
下页
四.复合函数与反函数 1.复合函数 设y=f(u),u∈U,而u=(x),x∈X,任取x∈X, 由这个x可确定唯一的u与之对应,对这个由x所确定 的u(当u∈U时),又可确定唯一一个y与u对应, f 即 x u y ,由函数定义知y是x的函数,得 y=f( (x)),称为由f(u)和 (x)构成的复合函数.
下页
定义2 若y=f(u)的定义域为U,而u= (x)的定义域为X, 值域为U *,且U∩U*≠,则y通过变量u成为x的函数, 称它为由f(u)和 (x)构成的复合函数,记作f( (x)). u称 为中间变量.
x ( x 1),求f ( f ( f ( x ))). 例 设f ( x ) x 1
言之,对Y中的任何一个y,通过函数y=f(x),可以反解出
唯一的一个x,使得y与这个x相对应,根据函数定义,x是 y的函数.这个函数的自变量是y,因变量是x,定义域是Y, 值域是X.称之为y=f(x)的反函数.记为x=f-1(y). 习惯上用x表示自变量,y表示因变量,因此反函数常 写成y=f –1(x).
作A被B包含(或B包含A ). 若A B,且有元素a∈B ,但a A,则说A是B 的真子集,记作AB. 规定: A. 相等 若AB ,且BA,则称A与B相等,记作A=B.
相关文档
最新文档