2020重庆中考数学试题及复习资料Word版

合集下载

2020年重庆市中考数学试卷(A卷)答案及解析(Word版)

2020年重庆市中考数学试卷(A卷)答案及解析(Word版)

2020年~2021年最新重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。

3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。

4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。

重庆市2020年中考数学试题A卷及详解(word版)

重庆市2020年中考数学试题A卷及详解(word版)

第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)(1-10)第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题解析(A 卷)(11-25)一、选择题1.下列各数中,最小的数是( )A. -3B. 0C. 1D. 22.下列图形是轴对称图形的是( ) A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21 5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A. 5B. 2C. 4D. 259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )A. 7B. -14C. 28D. -5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )A. 5B. 25C. 45D. 43 12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24二、填空题13.计算:0(1)|2|π-+-=__________.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5 a 7 45%八年级7.5 8 b c八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数;(2)求证:AE CF =.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261x y x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4 -3 -2 -1 0 1 2 3 4 5 … 261x y x =+ … 1513- 2417- 125- -3 0 3 125 2417 1513 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( )(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211x x x >-+的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加20%9a,求a的值.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:2CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)解析一、选择题1、有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.【详解】∵3012-<<<,∴最小的数是-3,故选:A .2、根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误;故选:A .3、科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .4、根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .5、根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线 ∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.6、根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB .2不是同类二次根式,不能合并,此选项计算错误;C ==D .2不是同类二次根式,不能合并,此选项错误;故选:C .7、根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .8、把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF故选:D .9、构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC=10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.10、不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤≤⎧⎨⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解,得到a=1,7,1×7=7,故选:A.11、首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB =22BF DF +=2212+=5,设点F 到BD 的距离为h ,则12•BD •h =12•BF •DF , ∴h =25, 故选:B .12、先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .二、填空题13、根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.14、由多边形的外角和等于360°,可得多边形的内角和为720°,根据多边形的内角和公式,即可求解.【详解】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,∴内角和是720度,∵720÷180+2=6, ∴这个多边形是六边形.故答案为:6.15、画树状图展示所有16种等可能结果数,利用第二象限内点的坐标特征确定点P (m ,n )在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图:共有16种等可能的结果数,其中点P (m ,n )在第二象限的结果数为3,所以点P (m ,n )在第二象限的概率=316. 故答案为:316. 16、根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC∵点O 是AC 的中点,∴2, ∴2902)3602S ππ︒==︒扇形, ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.17、先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯=即点E 的坐标为(4,160)故答案为:(4,160).18、先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 三、解答题 19、(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可;【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++- 23(3)3(3)(3)m m m m +=⋅++- 33m =- 20、(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论;(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7,∴7a =, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50%∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)七年级合格人数:18人,八年级合格人数:18人, 181********%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.21、(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEOCFO AAS 可得结论. 【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE, 40EAO , CA 平分DAE ∠,40DAC EAO ,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ,AOE COF ∠=∠,()AEO CFO AAS ,AE CF ∴=.22、(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断;(3)根据图象求解即可.【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.23、(1)直接根据“差一数”的定义计算即可; (2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”,∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.24、(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩,解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.25、(1)将点A 、B 的坐标代入抛物线表达式,即可求解; (2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得 1||2PAB B A SPF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E(D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =,故点E (-3,-4)或(-3,-);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(34--,,或(34--,或(1,−3).∴存在,1234(12)(34(34(13)E E E E ---+----,,,,,, 26、(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ==,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC中,推出AG =,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒, ∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==, ∵CF DF =,∴2CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=, ∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴222218254AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD为a,∴BD=,又AD BD=,∴a m+,=m a1)a=又BD CE∴CE.。

2020年重庆市中考数学试卷-(含答案)

2020年重庆市中考数学试卷-(含答案)

2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(10分)计算: (1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8.19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒, CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”; 745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389. 24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-. 26.证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE ,AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE AD =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点,1222CF DE AD ∴==;(2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC a ∴===, 由(1)可知:BAD CAE ∆≅∆,2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴= 3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BN ∴=,BC BM =,60PBN CBM ∠=︒=∠, BPN ∴∆是等边三角形,CBM ∆是等边三角形, 60BPN BNP ∴∠=∠=︒,BM CM =, BM CM =,AB AC =,AM ∴垂直平分BC , AD BC ⊥,60BPD ∠=︒,3BD ∴=,AB AC =,90BAC ∠=︒,AD BC ⊥,AD BD ∴=, ∴3PD PD AP =+,312PD +∴=, 3332BD PD +∴==, 由(1)可知:332CE BD +==.。

2020年重庆中考数学复习含根号3的几何题专题训练(Word修改版)

2020年重庆中考数学复习含根号3的几何题专题训练(Word修改版)

含3的几何题专题训练1、如图,在菱形ABCD中,AC,BD相交于点O,BC=2OC,E为BC边上一点.(1)若CE=6,∠ACE=15°,求BC的长;(2)若F为BO上一点,且BF=EF,G为CE中点,连接FG,AG,求证:AG=3FG.G F ODCEO DABE2、如图1,在ABCD中,BD为对角线,且AB⊥BD,AB=BD.将BD绕点B顺时针旋转060得到BE,连接AE 与∠ABD的角平分线交于点F,连接DF.(1)若AF=2,求CD的长度(2)如图2,以AD为边在ABCD外作△DAG,且∠DGA=60°,连接GF.求证3GFDFEDFEG图1 图23、已知ABCD 中,点P 为AD 上一点,连CP ,交对角线BD 于点E ,使∠EPD=∠EDP ,过点E 作EH ⊥BC 于点H ,点F 为EH 上一点,连接DF 、CF ,且DFC ∆是等边三角形.(1)若13,5,BD DC FH EH ====求DP 的长度;(2)求证:+.3DE EF BC =A4、如图,已知ABCD 中,E 为AD 上一点,连接BE ,CE ,BF 平分EBC ∠交CD 于F.且FH 为EC 的直平分线, 060CBE ∠=.(1)若BF=12,FC=8,求AD 的长度; (2)求证:.BC BE +=A5、在菱形ABCD 中,∠ABC=60°,BD 为菱形的一条对角线.(1)如图1,过A 作AE ⊥BC 于点E,交BD 于点F,若EF=2,求菱形ABCD 的面积;(2)如图2,M 为菱形ABCD 外一点,过A 作AN ⊥BM 交BM 的延长线于点M,连接AM ,DM ,AG ⊥DM 于点G,且∠AMN=∠AMD,求证:3.DM BM AM =+6、如图,平行四边形ABCD 中,DB=DC, 0120BDC ∠=,点M 是底边上一动点,连接DM,以线段DM 为边向线段DM 的右侧作等边△DME,连接BE,点F 是线段BE 中点,连接DF 。

2020年重庆市中考数学试题(word版)(含答案)

2020年重庆市中考数学试题(word版)(含答案)

2020年重庆市中考数学试题(word 版)(含答案)〔全卷共五个大题,总分值150分,考试时刻120分钟〕题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为〔—b 2a ,4ac —b 24a 〕,对称轴公式为x =—b2a. 一、选择题:〔本大题共10个小题,每题4分,共40分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.3的倒数是〔〕A .13B .— 13 C .3 D .—32.运算2x 3·x 2的结果是〔〕A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为〔〕A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,假设∠C =50°,∠BDE =60°,那么∠CDB 的度数等于〔〕A .70°B .100°C .110°D .120° 5.以下调查中,适宜采纳全面调查〔普查〕方式的是〔〕A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情形的调查C .对我市市民实施低碳生活情形的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,假设∠ABC =70°,那么∠AOC 的度数等于〔〕 A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如下图,那么它的俯视图是〔〕8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,那么第10次旋转后得到的图形与图①~④中相同的是〔〕A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锤炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

2020年重庆市中考数学试卷(A卷)(含详细解析)

2020年重庆市中考数学试卷(A卷)(含详细解析)

外………………○……_______班级:_内………………○……保密★启用前2020年重庆市中考数学试卷(A 卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题1.下列各数中,最小的数是( ) A .-3B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )○…………外…装…………○…………………○……※※要※※在※※装※※订※※线※※○…………内…装…………○…………………○……A .40°B .50°C .60°D .70°6.下列计算中,正确的是( ) A =B .2+=C =D .27.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A B .2 C .4D .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)…○…………装…………………○…学校:___________姓名:_______考号:___________…○…………装…………………○…10.若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A.7 B.-14 C.28 D.-5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把ABD△沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DG GE=,3AF=,2BF=,ADG的面积为2,则点F到BC的距离为( )A B C D12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分OAE∠,反比例函数(0,0)ky k xx=>>的图象经过AE上的两点A,F,且AF EF=,ABE△的面积为18,则k的值为()A.6 B.12 C.18 D.24二、填空题13.计算:0(1)|2|π-+-=__________.14.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全…装…………○………○…………不※※要※※在※※装※※※※题※※…装…………○………○…………相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291m m -⎛⎫-÷⎪.…………○…………名:___________班级:_________…………○…………20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.……外…………○……………○……※※请……内…………○……………○……22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数○…………外…………○…………内…………为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元. (1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.……订…………○…※※内※※答※※题※※……订…………○…26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF ; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.参考答案1.A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.【详解】-<<<,∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】42.62600010⨯=,故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.B 【解析】 【分析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数. 【详解】解:∵第①个图案中黑色三角形的个数为1, 第②个图案中黑色三角形的个数3=1+2, 第③个图案中黑色三角形的个数6=1+2+3, ……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B . 【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n . 5.D 【解析】 【分析】根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.∵AB 是O 的切线∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6.C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB .2不是同类二次根式,不能合并,此选项计算错误;C ==D .2不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.D【解析】【分析】把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.B【解析】【分析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.【详解】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC=10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.B【解析】【分析】首先求出ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据1 2•BD•h=12•BF•DF,求出BD即可解决问题.【详解】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,ADB≌ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12•(AF+DF)•BF=4,∴12•(3+DF)•2=4,∴DF=1,∴DB设点F到BD的距离为h,则12•BD•h=12•BF•DF,∴h,故选:B.【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12.B【解析】【分析】先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×ka =18,求解即可.【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,ka ),∵AF=EF ,∴F 点的纵坐标为2ka ,代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.13.3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14.六【解析】【分析】n 边形的内角和可以表示成(n ﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.316【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P (m ,n )在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P (m ,n )在第二象限的结果数为3,所以点P (m ,n )在第二象限的概率=316. 故答案为:316. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了点的坐标.16.4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2,∴AC∵点O 是AC 的中点,∴,∴2903602S ππ︒==︒扇形, ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17.()4,160【解析】【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160)故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18.18【解析】【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ ,解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 【点睛】 本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.19.(1)222x y +;(2)33m - 【解析】【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可;(2)先把分子分母因式分解,然后按顺序计算即可;【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++- 23(3)3(3)(3)m m m m +=⋅++- 33m =- 【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20.(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人【解析】【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论;(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7,∴7a =, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50%∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)七年级合格人数:18人,八年级合格人数:18人, 181********%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21.(1)40ACB ∠=︒;(2)见解析【解析】【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEOCFO AAS 可得结论. 【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE, 40EAO , CA 平分DAE ∠,40DAC EAO ,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ,AOE COF ∠=∠,()AEO CFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22.(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8. 【解析】【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可;(2)结合函数图象可从增减性及对称性进行判断;(3)根据图象求解即可.【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x ≈,30.3x =≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389【解析】【分析】(1)直接根据“差一数”的定义计算即可;(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”,∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,本题用逐步增加条件的方法依此找到满足条件的所有数是解决本题的关键.24.(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10.【解析】【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(34(34(13)E E E E ---+----,,,,,,【解析】【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =--23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4); ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =,故点E (-3,-4)或(-3,-); ②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(34--,,或(34--,或(1,−3).∴存在,1234(12)(34(34(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.(1)证明见解析;(2)BC =;(3)CE 【解析】【分析】(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ===,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出2AG ==,即可得出答案;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =, ∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE △中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形,∴2AF DF AD ==, ∵CF DF =,∴CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,DE ==,∵F 为DE 中点,∴12DE EF DE ==, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF =,∴AG ===,即BC =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD 为a ,∴BD =,又AD BD =,∴a m +,1)m a =a =又BD CE =∴CE . 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷(A卷)含详细解析姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A. −3B. 0C. 1D. 22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是()A. √2+√3=√5B. 2+√2=2√2C. √2×√3=√6D. 2√3−2=√37.解一元一次方程12(x+1)=1−13x时,去分母正确的是()A. 3(x+1)=1−2xB. 2(x+1)=1−3xC. 2(x+1)=6−3xD. 3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x的一元一次不等式组{3x−12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是()A. 7B. −14C. 28D. −5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 24二、填空题(本大题共6小题,共24.0分)13.计算:(π−1)0+|−2|=______.14. 一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______. 15. 现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P(m,n)在第二象限的概率为______.16. 如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17. A ,B 两地相距240km ,甲货车从A 地以40km/ℎ的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD −DE −EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是______.18. 火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是______. 三、解答题(本大题共8小题,共78.0分) 19. 计算:(1)(x +y)2+x(x −2y);(2)(1−mm+3)÷m 2−9m 2+6m+9.20. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6xx2+1性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx2+1…−1513−2417______ −125−303125______24171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x−1的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A 的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售a%.求a的价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209值.25.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(−3,−4),B(0,−1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+ 3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC =10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.【答案】C【解析】解:不等式组整理得:{x ≤7x ≤a,由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a , 解得:y =a+23,由y 为正整数解,得到a =1,4,7 1×4×7=28, 故选:C .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:∵DG =GE , ∴S △ADG =S △AEG =2, ∴S △ADE =4,由翻折可知,△ADB≌△ADE ,BE ⊥AD , ∴S △ABD =S △ADE =4,∠BFD =90°, ∴12⋅(AF +DF)⋅BF =4, ∴12⋅(3+DF)⋅2=4,∴DF =1,∴DB =√BF 2+DF 2=√12+22=√5,设点F 到BD 的距离为h ,则有12⋅BD ⋅ℎ=12⋅BF ⋅DF , ∴ℎ=2√55,故选:B .首先求出△ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12⋅BD ⋅ℎ=12⋅BF ⋅DF ,求出BD 即可解决问题.本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题. 12.【答案】B【解析】解:如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,∴k=12.故选:B.如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ), ∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米), ∴点E 的坐标是(4,160). 故答案为:(4,160).根据点C 与点D 的坐标即可得出乙货车的速度,进而得出乙货车从B 地到A 地所用时间,据此即可得出点E 的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型. 18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b , 由题意可得:{7b −2a =2x20b −10a =5x ,解得:{a =x6b =x 3,∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b −5a):20b =1:8, 故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b ,由题意列出方程组,可求a ,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键. 19.【答案】解:(1)(x +y)2+x(x −2y), =x 2+2xy +y 2+x 2−2xy , =2x 2+y 2;(2)(1−mm+3)÷m 2−9m 2+6m+9, =(m+3m+3−mm+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3, =3m−3.【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提. 20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6, ∴a =7,由条形统计图可得,b =(7+8)÷2=7.5, c =(5+2+3)÷20×100%=50%,即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(20−2)+(20−2)20+20=1080(人),即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】−959 5【解析】解:(1)补充完整下表为:画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x =1时,函数取得最大值3;当x =−1时,函数取得最小值−3,说法正确;③当x <−1或x >1时,y 随x 的增大而减小;当−1<x <1时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式6xx 2+1>2x −1的解集为x <−1或−0.3<1.8.(1)将x =−3,3分别代入解析式即可得y 的值,再画出函数的图象; (2)结合图象可从函数的增减性及对称性进行判断; (3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”; 74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解; (2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,{y −x =10010×2.4(x +y)=21600,解得:{x =400y =500,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%),解得:a =0.1,答:a 的值为0.1.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得{−4=9−3b =c c =−1,解得{b =4c =−1, 故抛物线的表达式为:y =x 2+4x −1;(2)设直线AB 的表达式为:y =kx +t ,则{−4=−3k +t t =−1,解得{k =1t =−1,故直线AB 的表达式为:y =x −1,过点P 作y 轴的平行线交AB 于点H ,设点P(x,x 2+4x −1),则H(x,x −1),△PAB 面积S =12×PH ×(x B −x A )=12(x −1−x 2−4x +1)×(0+3)=−32x 2−92x ,∵−32<0,故S 有最大值,当x =−32时,S 的最大值为278;(3)抛物线的表达式为:y =x 2+4x −1=(x +2)2−5, 则平移后的抛物线表达式为:y =x 2−5, 联立上述两式并解得:{x =−1y =−4,故点C(−1,−4);设点D(−2,m)、点E(s,t),而点B、C的坐标分别为(0,−1)、(−1,−4);①当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即−2+1=s且m+3=t①或−2−1=s且m−3=t②,当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,3);联立②④并解得:s=1,t=−4±√6,故点E(1,−4+√6)或(1,−4−√6);②当BC为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=−3,故点E(1,−3),综上,点E的坐标为:(−1,2)或(1,−4+√6)或(1,−4−√6)或(1,−3).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)△PAB面积S=12×PH×(x B−x A)=12(x−1−x2−4x+1)×(0+3)=−32x2−92x,即可求解;(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DE=√2AD,又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CF=12DE=√22AD;(2)AG=√26BC,理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=AC=√2=3√22a,由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴CECD =GHCH=2,∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BG=√2BH ∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=2√2a,∴AG=BG−AB=√22a=√22CD=√26BC;(3)如图3−1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时,如图3−2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+12m,∴BD=√3PD=3+√32m,由(1)可知:CE=BD=3+√32m.【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE= 90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√22a,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√22a=√22CD=√26BC;(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM 是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷(A卷)含详细解析姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A.−3B.0C.1D.22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°6.下列计算中,正确的是()A.√2+√3=√5B.2+√2=2√2C.√2×√3=√67.解一元一次方程1(x+1)=1−1x时,去分母正确的是()23D.2√3−2=√3A.3(x+1)=1−2x C.2(x+1)=6−3xB.2(x+1)=1−3x D.3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,则线段DF的长度为()≤x+3,A.√5B.2C.4D.2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:si n28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A.76.9mB.82.1mC.94.8mD.112.6m10.若关于x的一元一次不等式组{3x1x≤a2的解集为x≤a;且关于y的分式方程yay2+3y4=1有正整数解,则所有满足条件的整数a的值之积是()y2A.7B.14C.28D.5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD△,把ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A.√55B.2√55C.4√55D.4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=k(k>0,x>0)的x 图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()第2页,共19页m+3)÷14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.15.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17.A,B两地相距240km,甲货车从A地以40km/ℎ的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是______.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的2,则摆摊的营业额将达5到7月份总营业额的7,为使堂食、外卖7月份的营业额之比为8:5,则7月份20外卖还需增加的营业额与7月份总营业额之比是______.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(x+y)2+x(x−2y);(2)(1−m m2−9m2+6m+9.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级七年级平均数7.5众数a中位数78分及以上人数所占百分比45%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.x21性质及其应用的部分过程,…−−______−−30x21>2x−1的解集(保留1位小数,误差不超过0.2).22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx21152412131753125______24151713…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6x23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”..19 ÷ 5 = 3 … 4,但19 ÷ 3 = 6 … 1,所以 19 不是“差一数”. (1)判断 49 和 74 是否为“差一数”?请说明理由; (2)求大于 300 且小于 400 的所有“差一数”.24. “中国人的饭碗必须牢牢掌握在咱们自己手中” 为优选品种,提高产量,某农业科技小组对 A ,B 两个小麦品种进行种植对比实验研究.去年 A ,B 两个品种各种 植了 10 亩.收获后 A ,B 两个品种的售价均为2.4元/kg ,且 B 的平均亩产量比 A 的平均亩产量高 100kg ,A ,B 两个品种全部售出后总收入为 21600 元. (1)请求出 A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在 A ,B 种植亩数不变的情况下,预计 A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而 A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20 a%.求 a 的9值.25. 如图,在平面直角坐标系中,已知抛物线y = x 2 + bx + c 与直线 AB 相交于 A ,B两点,其中A (−3, −4),B(0, −1). (1)求该抛物线的函数表达式;(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 P A ,PB △,求 PAB 面积的最大值;(3)将该抛物线向右平移 2 个单位长度得到抛物线y = a 1x 2 + b 1x + c 1(a 1 ≠ 0),平 移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面 直角坐标系中是否存在点 E ,使以点 B ,C ,D ,E 为顶点的四边形为菱形,若存 在,请直接写出点 E 的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+ 3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C0.75=4,【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DE=EC 13设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出D E、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计【解析】解:不等式组整理得:{ ,10.【答案】Cx ≤ 7x ≤ a由解集为x ≤ a ,得到a ≤ 7,分式方程去分母得:y − a + 3y − 4 = y − 2,即3y − 2 = a ,解得:y = a+2 ,3由 y 为正整数解,得到a = 1,4,7 1 × 4 × 7 = 28, 故选:C .不等式组整理后,根据已知解集确定出 a 的范围,分式方程去分母转化为正整数方 程,由分式方程有非负整数解,确定出 a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的 关键.11.【答案】B【解析】解:∵ DG = GE , ∴ △?? ADG = △?? AEG = 2, ∴ △?? ADE = 4,由翻折可知,△ ADB≌△ ADE ,BE ⊥ AD , ∴ △?? ABD = △?? ADE = 4,∠BFD = 90°,∴ 1 ⋅ (AF + DF) ⋅ BF = 4,2∴ 1 ⋅ (3 + DF) ⋅ 2 = 4,2∴ DF = 1,∴ DB = √BF 2 + DF 2 = √12 + 22 = √5,设点 F 到 BD 的距离为 h ,则有1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,22∴ ℎ = 2√5,5故选:B .首先求出△ ABD 的面积.根据三角形的面积公式求出 DF ,设点 F 到 BD 的距离为 h ,根据1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,求出 BD 即可解决问题.22本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知 识解决问题,学会利用参数构建方程解决问题.12.【答案】B【解析】解:如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于 M .△??3 EOF = 3,由此即可解决问题.21 1 1 21∵ AN//FM ,AF = FE , ∴ MN = ME ,∴ FM = 1 AN ,2∵ A ,F 在反比例函数的图象上,∴ △?? AON = △?? FOM = k,∴ 1 ⋅ ON ⋅ AN = 1 ⋅ OM ⋅ FM ,22∴ ON = 1 OM ,2∴ ON = MN = EM ,∴ ME = 1 OE ,3∴ △?? FME = 3 △?? FOE ,∵ AD 平分∠OAE , ∴ ∠OAD = ∠EAD ,∵四边形 ABCD 是矩形, ∴ OA = OD ,∴ ∠OAD = ∠ODA = ∠DAE , ∴ AE//BD , ∴ △?? ABE = △?? AOE , ∴ △?? AOE = 18, ∵ AF = EF ,∴ △?? EOF = 2 △?? AOE = 9,∴ △?? FME = 3 △?? EOF = 3,∴ △?? FOM = △?? FOE − △?? FME = 9 − 3 = 6 = k ,∴ k = 12. 故选:B .如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于M.证明BD//AE ,推出△?? ABE = △?? AOE = 18,推出△?? EOF = 2 △?? AOE = 9,可得△?? FME =116.解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3故答案为3.16画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.由题意可得:{,解得:{6,b=m+3)÷m+3)×(m+3)(m−3),m+3×m+3,m−3.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到底A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,7b−2a=2x20b−10a=5xa=xx3∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b−5a):20b=1:8,故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意列出方程组,可求a,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键.19.【答案】解:(1)(x+y)2+x(x−2y),=x2+2xy+y2+x2−2xy,=2x2+y2;(2)(1−m m2−9m2+6m+9,=(m+3−m+3m(m+3)2= =33m−3【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提.20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,∴a=7,由条形统计图可得,b=(7+8)÷2=7.5,2020=1080(人),即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(202)(202)即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)△证明AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】9955【解析】解:(1)补充完整下表为:x…54321012345…y=6x1524…x211317951253031259524151713…(3)由图象可知:不等式x21>2x−1的解集为x<−1或−0.3<1.8.画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3,说法正确;③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大,说法正确.6x(1)将x=−3,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”;74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解;(2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;y−x=100根据题意得,{10×2.4(x y)=21600,x=400解得:{y=500,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1a%) 2.4(1a%)×500×10(12a%)=21600(120a%),9解得:a=0.1,25.【答案】解:(1)将点A、B的坐标代入抛物线表达式得{−4=9−3b=c,解得{,(2)设直线AB的表达式为:y=kx+t,则{,解得{,222答:a的值为0.1.【解析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.c=−1b=4c=−1故抛物线的表达式为:y=x2+4x−1;−4=−3k+t k=1t=−1t=−1故直线AB的表达式为:y=x−1,过点P作y轴的平行线交AB于点H,设点P(x,x2+4x−1),则H(x,x−1),△PAB面积S=1×PH×(xB−xA)=1(x−1−x2−4x+1)×(0+3)=−3x2−9x,2∵−3<0,故S有最大值,当x=−3时,S的最大值为27;228(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5,则平移后的抛物线表达式为:y=x2−5,x=−1联立上述两式并解得:{y=−4,故点C(−1,−4);222设点D(−2, m)、点E(s, t ),而点 B 、C 的坐标分别为(0, −1)、(−1, −4); ①当 BC 为菱形的边时,点 C 向右平移 1 个单位向上平移 3 个单位得到 B ,同样D(E)向右平移 1 个单位向上平 移 3 个单位得到E(D),即−2 + 1 = s 且m + 3 = t①或−2 − 1 = s 且m − 3 = t②,当点 D 在 E 的下方时,则BE = BC ,即s 2 + (t + 1)2 = 12 + 32③, 当点 D 在 E 的上方时,则BD = BC ,即22 + (m + 1)2 = 12 + 32④,联立①③并解得:s = −1,t = 2或−4(舍去−4),故点E(−1,3);联立②④并解得:s = 1,t = −4 ± √6,故点E(1, −4 + √6)或(1, −4 − √6); ②当 BC 为菱形的的对角线时,则由中点公式得:−1 = s − 2且−4 − 1 = m + t⑤, 此时,BD = BE ,即22 + (m + 1)2 = s 2 + (t + 1)2⑥, 联立⑤⑥并解得:s = 1,t = −3, 故点E(1, −3),综上,点 E 的坐标为:(−1,2)或(1, −4 + √6)或(1, −4 − √6)或(1, −3).【解析】(1)将点 A 、B 的坐标代入抛物线表达式,即可求解;(2) △ PAB 面积S = 1 × PH × (x B − x A ) = 1 (x − 1 − x 2 − 4x + 1) × (0 + 3) = − 3 x 2 −9x ,即可求解;2(3)分 BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平 移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 26.【答案】证明:(1) ∵ AB = AC ,∠BAC = 90°, ∴ ∠ABC = ∠ACB = 45°,∵把 AD 绕点 A 逆时针旋转90°,得到 AE , ∴ AD = AE ,∠DAE = 90° = ∠BAC , ∴ ∠BAD = ∠CAE ,DE = √2AD , 又∵ AB = AC ,∴△ BAD≌△ CAE(SAS),∴ ∠ABD = ∠ACE = 45°,∴ ∠BCE = ∠BCA + ∠ACE = 90°, ∵点 F 是 DE 的中点,∴ CF = 1 DE = √2 AD ;22(2)AG = √2 BC ,6理由如下:如图 2,过点 G 作GH ⊥ BC 于 H ,∵ BD = 2CD ,∴设CD = a ,则BD = 2a ,BC = 3a , ∵ ∠BAC = 90°,AB = AC ,∴ AB = AC = BC = 3√2 a ,√22由(1)可知:△ BAD≌△ CAE , ∴ BD = CE = 2a , ∵ CF = DF ,∴ ∠FDC = ∠FCD ,∴ tan∠FDC = tan∠FCD ,∴ CE = GH = 2,CDCH∴ GH = 2CH ,∵ GH ⊥ BC ,∠ABC = 45°, ∴ ∠ABC = ∠BGH = 45°, ∴ BH = GH ,∴ BG = √2BH∵ BH + CH = BC = 3a ,∴ CH = a ,BH = GH = 2a , ∴ BG = 2√2a ,∴ AG = BG − AB = √2 a = √2 CD = √2 BC ;226(3)如图3 − 1△,将 BPC 绕点 B 顺时针旋转60°△得到 BNM ,连接 PN ,∴ BP = BN ,PC = NM ,∠PBN = 60°, ∴△ BPN 是等边三角形, ∴ BP = PN ,∴ PA + PB + PC = AP + PN + MN ,∴当点 A ,点 P ,点 N ,点 M 共线时,PA + PB + PC 值最小, 此时,如图3 − 2,连接 MC ,得到BNM,∵将△BPC绕点B顺时针旋转60°△∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+1m,2∴BD=√3PD=3+√3m,2由(1)可知:CE=BD=3+√3m.2【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√2a,2由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√2a=√2CD=√2BC;226得到BNM,连接PN,可得当点A,点P,点N,(3)△将BPC绕点B顺时针旋转60°△点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答.2.作答前认真阅读答题卡上的注意事项.3.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( B )A .-3B .2C .0D .-42.下列图形中是轴对称图形的是( C )A B C D3.计算26x x ÷正确的结果是( C )A .3B .3xC .4xD .8x 4.下列调查中,最适合采用全面调查(普查)方式的是( D )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5.估计110+的值应在( B )A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.若13x =-,4y =,则代数式33-+y x 的值为( B )A .-6B .0C .2D .6 7.要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B .3=x C .3<x D .3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A .3:2B .3:5C .9:4D .4:99.如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A .4-2πB .4-23πC .8-2π D .8-23π 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( C )A.73B.81C.91D.109 11题图11.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为400,若DE=3米,CE=2米,CE 平行于江面AB,迎水坡BC的坡度75.0:1=i,坡长BC=10米,则此时AB的长约为( A ) (参考数据:sin400≈0.64,cos400≈0.77,tan400≈0.84) A.5.1米B.6.3米C.7.1米D.9.2米12.若数a使关于x的分式方程4112=-+-xax的解为正数,且使关于y的不等式组()⎪⎩⎪⎨⎧≤->-+21232ayyy的解集为2-<y,则符合条件的所有整数a的和为( A ) A.10 B.12 C.14 D.16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为1.1×104.14.计算:|-3|+(-1)2= 4 .15.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=640,则∠ACB= 32 度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11 小时.18题图17.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A 地时,甲与A地相距的路程是180 米.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F 是AB的中点,则△EMN的周长是.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上.19.如图,AB//CD,点E是CD上一点,∠AEC=420,EF平分∠AED交AB于点F.求∠AFE的度数.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 126 度,并补全条形统计图; 45(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.解:(2)假设4篇荣获特等奖的作文分别为A 、B 、C 、D ,其中A 代表七年级获奖的特等奖作文.列表法:61122P == 四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1)()()22y x y x x +--; (2)2122232++-÷⎪⎭⎫ ⎝⎛-++a a a a a22.如图,在平面直角坐标系中,一次函数)0(≠+=m n mx 的图像与反比例函数()0≠=k xk y 的图像交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,OB=22,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC ,求四边形MBOC 的面积. 解:(1)由题意可得,BM=OM ,OB=22,∴BM=OM=2,∴点B 的坐标为(﹣2,﹣2),∵反比例函数的解析式为(0)k y k x =≠,∴22k -=-,∴4k =,∴反比例函数的解析式为4y x=, ∵点A 的纵坐标是4,∴44x =,得1x =,∴点A 的坐标为(1,4), ∵一次函数(0)y mx n m =+≠的图象过点A(1,4)、点B(﹣2,﹣2),∴422m n m n +=⎧⎨-+=-⎩,得22m n =⎧⎨=⎩,即一次函数的解析式为22y x =+; (2)∵22y x =+与y 轴交与点C ,∴点C 的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC 的面积为:1111222242222RtCOM Rt BOM S S OM OC OM MB +=⨯⨯+⨯⨯=⨯⨯+⨯⨯=.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.解:(1)设该果农今年收获樱桃x千克,根据题意得400-x≤7x,解得x≥50.(2)100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y)+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0,解得:y1=0,y2=0.125,∴m1=0(舍去),m2=12.5,∴m=12.5.24.在△ABC中,∠ABM=450,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图一,若AB=32,BC=5,求AC的长;(2)如图二,点D是线段AM上一点,MD=MC,点E 是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点.求证:∠BDF=∠CEF.五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y ≤9,x ,y 都是正整数),规定:()()t F s F k =,当()()18=+t F s F 时,求k 的最大值. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(176+716+671)÷111=14.26.如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 时CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)当0y =时,即232330x x --=. 解这个方程,得11x =-,23x =.∴点A (-1,0),B (3,0). 当4x =时,232353443n =⨯-⨯-=, ∴点E (4,533).……(2分) ∴直线AE 的解析式为3333y x =+.……(3分) (2)令0x =,得3y =-.∴点C (0,3-). 又∵点E (4,533), ∴直线CE 的解析式为233y x =-.过点P 作PF ∥y 轴,交CE 于点F ,如图1.设点P 的坐标为(t ,23233t t --),则F(t ,233t -), ∴PF=22233233433(3)33333t t t t t ----=-+, ∴221134323834()223333PCE E C S x x PH t t t t =-⨯=⨯⨯-+=-+△. 又∵抛物线开口向下,04t <<,∴当2t =时,PCE S △取得最大值.此时,点P 为(2,3-).……(5分)如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴K(32,﹣32).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣332). ∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM+MN+NK=MH+MN+GN .当点O 、N 、M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH ,∴GH=22333()()22+=3, ∴KM+MN+NK 的最小值为3.……(8分)(3)点Q 的坐标为(3,32213-),(3,32213-),(3,23,(3,35-). (写对一个点的坐标得1分)……(12分)如图3所示:∵y ′经过点D ,y ′的顶点为点F ,∴F(3,33-). ∵点G 为CE 的中点,∴FG=22532211()33+=, ∴①当FG=FQ 时,点Q(343221-+), Q ′(343221--②当GF=GQ 时,点F 与点Q ″关于3y =对称,∴点Q ″(3,3③当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:224331()3a a =+-解得:35a =-.∴点Q 1的坐标为(3,35-).综上所述,点Q的坐标为(3),(3,(3,,(3,。

相关文档
最新文档