气凝胶-遮光剂复合材料辐射特性Radiative characteristics of opacifier-loaded silica aerogel composites

合集下载

二氧化硅气凝胶 降低热辐射

二氧化硅气凝胶 降低热辐射

二氧化硅气凝胶降低热辐射
二氧化硅气凝胶是一种轻质多孔材料,具有出色的隔热性能,因此常用于降低热辐射、隔热和绝热应用中。

以下是有关二氧化硅气凝胶如何降低热辐射的方式:
1.低热导率:二氧化硅气凝胶具有非常低的热导率,这意味着它
不容易传导热量。

当它用于隔热应用时,可以有效地减少热量
的传递,从而减少了热辐射的传播。

2.高表面积:二氧化硅气凝胶具有高度多孔的结构,因此具有大
量的表面积。

这使得它能够吸收和分散热量,从而减少热辐射
的效应。

3.透明性:二氧化硅气凝胶可以制成透明或半透明的材料,因此
可以在透明材料中使用,如窗户、太阳能面板或温室。

它可以
降低来自太阳辐射的热量传递,同时仍然允许可见光透过。

4.绝热材料:二氧化硅气凝胶通常用作绝热材料,用于隔离高温
和低温环境。

在这种应用中,它能够有效地减少热辐射传播,
使内部温度更加稳定。

总之,二氧化硅气凝胶通过其低热导率、高表面积和透明性等特性,可以有效地降低热辐射的传播,使其成为在隔热、绝热和热辐射控制领域中的有用材料。

这在建筑、太阳能应用、热处理工业和太空科学等领域中都有广泛的应用。

新型气凝胶隔热材料的研究与应用

新型气凝胶隔热材料的研究与应用

新型气凝胶隔热材料的研究与应用近年来,新型材料技术成为了科技领域的热点之一。

其中一种备受关注的新型材料——气凝胶,由于其优越的性能和广泛的应用前景,受到了越来越多科学家的青睐。

这篇文章着重介绍了新型气凝胶隔热材料的研究与应用。

一、气凝胶的定义及性能气凝胶是一种具有高孔隙度、低密度、低热导率和优异化学稳定性的材料。

其最大的特点在于极大的比表面积和孔结构。

在气凝胶中,由于极小的孔径和极大的孔容,使得空气分子只能通过非常漫长的扭曲通道移动。

这种孔道结构可以显著地降低热传导,使气凝胶成为一种理想的隔热材料。

气凝胶具有超低的热导率,这种热传导性能使其成为许多工业领域隔热和保温的理想材料。

同时,它还具有较高的吸音效果、优良的弹性和良好的化学稳定性等特点,极大扩展了它的应用范围。

二、气凝胶的制备气凝胶制备具有很高的技术含量和难度,主要分为凝胶制备与干燥两大部分。

凝胶制备是通过溶胶凝胶法、超临界流体干燥法、SOL-GEL法等高温高压或者低温低压的化学反应来制备出胶体溶液。

在干燥过程中,通过定向冷凝,未干燥的水分子被拉走,形成有规则的孔道结构,最终制备出气凝胶。

三、气凝胶隔热材料的应用气凝胶隔热材料具有优良的隔热性能和广泛的应用前景,被广泛应用于以下几个领域:1、建筑领域。

气凝胶隔热材料可以作为建筑的外保温材料、墙体隔热材料、屋顶保温材料、地板隔热材料等。

其具有优异的隔热性能和较低的热容量,可以大大降低建筑物的热损失,降低空调运行费用。

2、航空航天领域。

气凝胶隔热材料可以被用来制作宇宙飞船和卫星隔热层、航空发动机隔热材料等。

在极端的高温条件下,它可以保证飞行器不会因为温度异差而损坏。

3、电子电器领域。

气凝胶隔热材料可以被用来制作电池隔热材料、LED灯具隔热材料等,保护电子电器的正常运行。

4、环保领域。

气凝胶隔热材料可以用于制作吸附材料,对煤矿和油气开采工作中可能产生的气体进行吸附处理。

因为气凝胶隔热材料本身可以吸附烟尘和其他有害物质,可以有效减少污染。

气凝胶物理化学性能参数

气凝胶物理化学性能参数

气凝胶性能参数百科:最早由美国科学工作者Kistler在1931年制得(硅气凝胶)。

气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500 g/cm3范围内可调。

(空气的密度为0.00129 g/cm3)。

气凝胶内含大量的空气,典型的孔洞线度在l—l00纳米范围,孔洞率在80%以上,是一种具有纳米结构的多孔材料。

是目前已知的最轻的固体材料,也是迄今为止保温性能最好的材料。

1、低密度:气凝胶中一般80%以上是空气,是世界上密度最小的固体,密度为3.55kg/m3,为空气的2.75倍,干燥松木(500千kg/m3)的1/140。

最轻的硅气凝胶仅有0.16mg/cm3,仅是空气密度的1/6。

2、绝热:可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化,最高能承受1400摄氏度的高温,绝热能力比最好的玻璃纤维还要强39倍。

固态热导率比相应的玻璃态材料低2—3个数量级。

纳米微孔洞抑制了气体分子对热传导的贡献,硅气凝胶的折射率接近l,而且对红外和可见光的湮灭系数之比达100以上,能有效地透过太阳光,并阻止环境温度的红外热辐射。

通过掺杂的手段,可进一步降低硅气凝胶的辐射热传导,常温常压下掺碳气凝胶的热导率可低达0.013w/m·K,是目前热导率最低的固态材料,可望替代聚氨脂泡沫(0.022~0.033w/m·K,705于经理提供的数据为0.029w/m·K,芳纶蜂窝0.086w/m·K,夹层芳纶蜂窝0.084w/m·K)。

掺入二氧化钛可使硅气凝胶成为新型高温隔热材料,800K时的热导率仅为0.03w/m·K,作为军品配套新材料将得到进一步发展。

其他方面:1、低声速特性:是一种理想的声学延迟或高温隔音材料,声阻抗可变范围较大(103—107 kg/m2·s),是一种较理想的超声探测器的声阻耦合材料。

气凝胶简介ppt课件

气凝胶简介ppt课件
14
气凝胶的热学特性及其应用
Ⅰ.气凝胶材质透明,光线可自由透射 Ⅱ.低折射率,对入射光几乎没有反射损失,太阳光透过率高达87% Ⅲ.纳米孔状材料,内部存在大量微小孔洞,孔隙率在80%~99.8%。 布满了无限多的孔壁,而这些孔壁都是辐射的反射面和折射面,极大 地阻滞了辐射的热量散失。
太阳能利用:因此气凝胶特别适合于用作太阳能集热器及其它集热装 置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统 将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。
• 热传导:由于近于无穷多纳米孔的存在,热流在固体
中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构 成了近于“无穷长路径”效应,使得固体热传导的能力下 降到接近最低极限
9
气凝胶在太空任务的应用
美“火星探路者”探测器 (保护机器人电子仪器设备)
“火星漫步者”,抵挡入夜-100℃超低温
俄罗斯“和平号”空间
气凝胶可以作为飞机上使用的隔热消音材料 。据报道,航天飞机及宇宙飞船在重返大气 层时要经历数千摄氏度的白炽高温,保护其 安全重回地球的绝热材料正是SiO2气凝胶。 美国NASA在“火星流浪者”的设计中,使用 了SiO2气凝胶作为保温层,用来抵挡火星夜晚 的超低温。
20
工业设备及管道的保温
锅炉、炼解炉、 干燥机和窑的 保温
28
安装示意图
29
气凝胶复合材料
应用在暖气管道上的效果图
30
一层6mm厚的气凝胶复合材料 可使热水管的温度从86度降到30度
31
包裹在汽车的发动机上
应用在高速列车上
包裹在储油罐上
铺在地板上
32
33
房屋隔热效果对比
34
冷藏集装箱、保温集装箱

气凝胶产品介绍

气凝胶产品介绍

热学领域
气凝胶产品属于高效防火隔热材料,主要功能是节能、保温、防火,可 应用于以下领域: 建筑节能领域:外墙保温专用气凝胶板材、气凝胶玻璃、钢结构防火。 工业及民用领域:替代传统的保温材料对管道、炉窑及其他热工设备、 热水器、冷藏设备等进行保温,隔热效果更好。 特殊应用领域:用于海军核潜艇,、飞机、大型海洋舰艇、船舶、客车 的保温。在航天工业和军工导弹等方面都有广阔的应用前景。
光学领域
纯净的SiO2气凝胶是透明无色的,它的折射率(1.006~1.06)非常接 近于空气的折射率,这意味着SiO2气凝胶对入射光几乎没有反射损失, 能有效地透过太阳光。 SiO2气凝胶可以被用来制作绝热降噪玻璃。利用不同密度的SiO2气凝 胶膜对不同波长的光制备光耦合材料,可以得到高级的光增透膜。 SiO2气凝胶的折射率和密度满足n-1≈2.1×10-4r/(kg/m3),当通过控制制 备条件获得不同密度的SiO2气凝胶时,它的折射率可在1.008-1.4 范围内 变化,因此SiO2气凝胶可作为切仑科夫探测器中的介质材料,用来探测 高能粒子的质量和能2018 年进行 气凝胶正用来为人类首次登陆 火星时所穿的太空服研制一种 保温隔热衬里 Aspen Aerogel公司的一位资深 科学家马克· 克拉耶夫斯基认为 ,一层18毫米的气凝胶将足以 保护宇航员抵御零下130度的低 温。他说:“它是我们所见过 的最棒的绝热材料。”
可见,极低的折射率、热导率、介电常数、高比表面积、对气体的选 择透过等,它的力学、声学、热学、光学、电学性质都明显地不同于普通 固态材料,是一种具有许多奇异性质和广泛应用的轻质纳米多孔性材料。
气凝胶产品可应用领域
★热学领域
声学领域
光学领域
过滤与催化领域 吸附领域 捕获高速粒子 电学领域 分形特性

气凝胶的性质与应用

气凝胶的性质与应用

气凝胶的性质与应用由于气凝胶特有的纳米多孔、三维网络结构,气凝胶具有许多独特的性能,尤其表现在高孔隙率、低密度、低热导率等方面。

下面从气凝胶性能角度介绍其应用,其中重点介绍气凝胶在热学、电学领域的应用。

一.气凝胶的热学性质及应用气凝胶是一种轻质纳米多孔材料,其纤细的纳米多孔网络结构使其能够有效限制固态热传导和气态热传导;并且由于材料内部大部分气孔尺寸小于50nm,可以消除大部分热对流从而使对流传热大幅度降低。

室温常压下粉末气凝胶热导率低于0.02W/mK;块状气凝胶的热导率低于0.014W/mK,比静止的空气(0.022W/mK)绝热性能好,与当前使用的泡沫保温材料如聚氨酯(0.03W/mK) 也低得多,气凝胶的固态热导率比相应的玻璃态材料低2-3个数量级,可见气凝胶具有优异的绝热性能,是纳米孔超级绝热材料(在预定的使用条件下, 其导热系数低于“无对流空气”导热系数的绝热材料)的纳米孔载体。

目前,人们用粉末、块状或颗粒状气凝胶替代由弗里昂发制的聚氨酯泡沫作为绝热材料。

美国NASA Ames研究中心Susan White等开发的陶瓷纤维-硅气凝胶复合绝热瓦,即以原来航天飞机使用的用陶瓷纤维制成的半硬质隔热瓦为基础,将气凝胶先驱体注入装有陶瓷纤维板的模具,按照预定的复合尺寸浇入合适的深度。

在充满气凝胶的部分,陶瓷纤维作为支撑骨架,而具有纳米孔结构的气凝胶充满骨架之间的微米级孔隙。

美国的“火星探路者”的运载火箭以及俄罗斯的“和平”号空间站采用了硅气凝胶作为隔热保护材料。

二.气凝胶的光学性质及应用许多气凝胶能够制成透明或半透明材料,如硅气凝胶。

气凝胶的折射率接近于1,对入射光几乎没有反射损失,能有效透过太阳光,并阻止环境的热红外辐射。

国外之所以把硅气凝胶称为“冻烟”,是因为硅气凝胶对透射光的红化现象及折射光呈现蓝色。

人们利用气凝胶介质此特性,最早用于切仑可夫探测器,与高压气体相比,其操作更简单且安全。

超低密度的气凝胶已经被用作轻质反射器背衬材料。

气凝胶项目介绍

气凝胶项目介绍

气凝胶隔热材料的优势-续
纳米多孔SiO2气凝胶还具有极高的孔隙 率、极低的密度、极低的声传播速度、 极低的介电常数、极高的比表面积、透 明等优异性能,在热学、光学、声学、 微电子、石油化工、航空航天、节能建 筑等领域具有十分广阔的应用前景。
气凝胶实例
气凝胶复合材料 柔软 绝热
气凝胶的结构特点
气凝胶复合材料在地下管道上的应用
气凝胶复合材料可很容易地包裹在汽车的发动机上
气凝胶复合材料包裹在轮船的发动机和排气管上
气凝胶复合材料应用在高速列车上
气凝胶复合材料包裹在储油罐上
民用领域的应用
具有高度透光率并能有效阻止高温热辐 射的SiO2气凝胶可以用作太阳能集热器 及其它集热装置的保温隔热材料,大大 提高其实用性。用热导率极低的掺杂 SiO2气凝胶取代聚氨酯泡沫作为冰箱的 隔热材料. 还可以用作楼房建筑的保温, 隔音等,
国外研究现状
目前国际上关于气凝胶材料的研究工作 主要集中在德国的维尔茨堡大学、BASF 公司、美国的劳伦兹·利物莫尔国家实验 室、桑迪亚国家实验室,法国的蒙彼利 埃材料研究中心,日本高能物理国家实 验室,美国阿斯潘公司,美国宇航局等。
国内研究现状
国内同 济大学侧重于气凝胶基础研究, 所制备的气凝胶隔热材料力学强度较小, 成形性较差,只有少量的实际应用。北 京科技大学利用硅酸钙石二次粒子与气 凝胶复合制备 隔热复合材料,仍处于实 验室阶段,无工程应用。纳诺高科为代 表的国内从事气凝胶隔热材料研究、生 产的企业起步较晚,技术力量薄弱,并 且无应用实例。
热阻系数 R (m2k/W) 0.44 0.48 0.52 0.52 0.65~0.70 0.63~0.88 0.63 0.97 1.10 0.76 0.97~1.20 1.76

国外气凝胶材料研究进展

国外气凝胶材料研究进展

Advanced Materials Industry38国外气凝胶材料研究进展■ 文/江 洪 王春晓 中国科学院武汉文献情报中心气凝胶是世界上密度最小的固体,密度仅为3.55k g /m 3,也被称为“固态的烟”,具有膨胀作用、离浆作用等,还具有高比表面积、绝热等特征。

气凝胶材料在20世纪30年代由美国塞缪尔·基斯勒(Samuel Kistler)教授采用超临界干燥方法制备而成。

气凝胶自身的结构和性能使其具有重要的应用价值,广泛应用于服饰、建筑、环保等众多领域。

本文对国外气凝胶材料的制备工艺和应用进展进行介绍。

1 不同气凝胶材料的制备1.1 纤维素气凝胶纤维素是自然界中一种可再生的绿色生物质材料,其广泛存在于植物和部分海洋生物中。

纤维素气凝胶是以纤维素作为原材料制备而成,这种材料具有生物降解等环保特性。

纤维素气凝胶种类丰富,如细菌纤维素气凝胶、纳米纤维素气凝胶,其制备工艺通常都包含冷冻干燥等流程。

法国国家科学研究中心G a v i l l o n等人[1]将纤维素材料溶解于氢氧化钠溶液中,制备了一种新型高度多孔纯纤维素气凝胶材料,其内部比表面积在200~300m 2/g左右,密度在0.06~0.3g/cm 3之间。

科罗拉多大学Blaise等[2]人利用啤酒酿造工业的废弃物作为培养基,将使用醋酸杆菌制备出的细菌纤维素,再通过超临界干燥法等方法制备出一种细菌纤维素气凝胶材料,具有低热导率的特征,并提出未来使用食物垃圾作为培养基来提高生产力。

德国航空航天中心Schestakow等人[3]首先使用微晶纤维素作为原材料制备一种气凝胶,然后通过使用普通溶剂如水、乙醇、异丙醇或丙酮等溶剂将气凝胶进行再生,制备出了一种浓度为1%~5%(质量分数)的纤维素气凝胶,通过扫描电镜对这些气凝胶的收缩、比表面积、密度以及微观结新材料产业 NO.02 202139构和力学性能进行了表征,结果表明用丙酮再生的纤维素气凝胶的比表面积比用水再生的纤维素气凝胶高出60%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Radiative characteristics of opaci fier-loaded silica aerogel compositesXiao-Dong Wang a ,b ,⁎,Duo Sun a ,b ,Yuan-Yuan Duan c ,⁎⁎,Zi-Jun Hu daState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China bBeijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy,North China Electric Power University,Beijing 102206,China cKey Laboratory for Thermal Science and Power Engineering of MOE,Department of Thermal Engineering,Tsinghua University,Beijing 100084,China dNational Key Laboratory of Advanced Functional Composite Materials,Aerospace Research Institute of Materials and Processing Technology,Beijing 100076,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 28September 2012Received in revised form 27April 2013Available online xxxxKeywords:Opaci fier;Silica aerogel;Complex refractive index;Extinction coef ficient;Radiative thermal conductivityRadiative characteristics of opaci fier-loaded silica aerogel composites such as speci fic spectral extinction coef ficient and Rossland mean extinction coef ficient were usually calculated by the Fourier infrared spectral experiment and the Beer law.For the composites,it needs lots of experiments to find the proper opaci fier categories,contents,and sizes,hence,the optimal design becomes dif ficult.Based on this reason,this work pro-poses a theoretical method with four sub-models to evaluate the radiative characteristics of opaci fier-loaded sil-ica aerogel composites.First,the Fourier infrared spectral experiment and the modi fied Kramers –Krönig (K –K)relation are used to calculate the basic optical constants of the opaci fier (complex refractive index).Second,the extinction ef ficiency of a single opaci fier particle is calculated based on its complex refractive index.Third,the spectral and Rossland extinction coef ficients of opaci fier particle assemble are calculated by using extinction ef ficiency and mass fraction of opaci fier.Finally,the spectral and Rossland extinction coef ficients and radiative heat conductivity of the composite are obtained.The radiative characteristics of six kinds of opaci fiers with various particle diameters are investigated by using the present models.The results show that optimal opaci fier and its diameter are strongly temperature-dependent.The optimal diameter of opaci fier reduces with increased temperature,and SiC is the best choice due to its high-temperature stability.A gradient design of composite is proposed based on the temperature-dependent optimal opaci fier and its diameter,which signi ficantly reduces radiative heat transfer compared to the traditional design.©2013Elsevier B.V.All rights reserved.1.IntroductionSilica aerogels are open-cell,transparent,and nanoscale porous thermal insulation materials,which have high porosity (85%–99%),small average pore diameters (2–50nm),large speci fic surface area (500–1300m 2g −1),low density (30–150kg m −3)and lower thermal conductivity (0.01–0.02W m −1K −1)than air in room temperature,so they are also called super thermal insulation materials [1–7].With these advantages,silica aerogels are regarded as promising thermal insulation materials for aerospace,chemical engineering,metallurgy,energy saving and other applications [8–15].Pure silica aerogels are almost transparent for radiation wavelengths of 3–8μm,when they are used at high temperature conditions,the radiative heat transfer is signi fi-cantly enhanced,which limits their utilization as promising insulation materials.In order to improve the performance of silica aerogels at high temperatures,some mineral powders,such as SiC,TiO 2,ZrO 2,coal ash,Al 2O 3,carbon black,K 2Ti 6O 13,BN,Fe 3O 4,B 4C and ZrSiO 4(referredas to opaci fiers)are loaded into the aerogels to form opaci fier-loaded sil-ica aerogel composites [16–25].Generally,the extinction coef ficient is used to represent the radiative performance of materials,a high extinction coef ficient can signi ficantly reduce radiative heat transfer through materials.The extinction coef fi-cient of opaci fier is closely related to its usage temperature,as well as its category,shape,and size,hence,selecting a proper opaci fier is very important to reduce the radiative heat transfer of opaci fier-loaded aerogel composites.The extinction coef ficient of composites can be calculated by Beer law based on the infrared spectral experiment data [20–30].Kuhn et al.[20]tested the speci fic spectral extinction coef fi-cient of opaci fier-loaded (carbon black,SiC,TiO 2,Fe 3O 4and B 4C)silica aerogel composites with different particle sizes within wavelength range of 2.5–8.0μm.Wang et al.[21]tested the Rossland mean extinc-tion coef ficient of TiO 2-loaded silica aerogel composites with different TiO 2mass fractions.Feng et al.[25]tested the speci fic spectral extinc-tion coef ficient of opaci fier-loaded silica aerogel composites with differ-ent particle sizes and opaci fier mass fractions,where opaci fiers were selected as BN,SiC,K 2Ti 6O 13and ZrSiO 4and the wavelength was varied from 2.5μm to 7.0μm.These experiments measured the extinction coef ficient of the opaci fier-loaded aerogel composite only with the speci fic opaci fier category,size,and mass (or volume)fraction,so that once the component or structure of the composite changes,new testJournal of Non-Crystalline Solids 375(2013)31–39⁎Corresponding author.Tel./fax:+861062321277.⁎⁎Corresponding author.Tel./fax:+861062796318.E-mail addresses:wangxd99@ (X.-D.Wang),yyduan@ (Y.-Y.Duan).0022-3093/$–see front matter ©2013Elsevier B.V.All rights reserved./10.1016/j.jnoncrysol.2013.04.058Contents lists available at SciVerse ScienceDirectJournal of Non-Crystalline Solidsj o u r n a l h o m e p a ge :w w w.e l se v i e r.c o m/l o c a t e /j n o n c r y so lis needed.Thus,in order to predict the extinction coefficient of opacifier-loaded aerogel composites with various opacifier catego-ries,sizes,and mass fractions more effectively,a theoretical method is necessary indeed[25,30].However,due to the lack of complex re-fractive index data of opacifiers,such theoretical model has not been established yet.The complex refractive index m=n−iκis also referred to as optical constant.The real part,n,accounts for the radiation refraction and determines the phase velocity in the medium.The imaginary part,κ,accounts for the absorption and determines the radiation attenuation through the medium[31].For transparent materials,the absorption effect can be ignored withκ=0[32–36],however,for opacifiers and opacifier-loaded aerogel composites,both n andκare larger than zero.Several methods to calculate the complex refractive index have been proposed by previous researches[4,29,32,34].Lu et al.[4]calcu-lated the imaginary part of complex refractive index of pure aerogel directly through its effective extinction coefficient.Zeng et al.[32] calculated the complex refractive index by measuring the reflectance and transmittance of silica aerogel,due to low measurement accuracy of reflectance caused by the surface roughness of aerogel sample,the complex refractive index cannot be calculated accurately.Zeng et al.[32]proposed that complex refractive index can also be solved through the dielectric function,but the dielectric function is also not easy to get for opacifiers.Ruan et al.[29]and Liu et al.[34]calculated the complex refractive index based on Mie theory and K–K relation,in which only the transmittance of materials needs to be measured,but the theoretical calculation is too complicated and hard to obtain the exact solution of the complex refractive index.The above investigations mainly focused on the aerogels,however,to our best knowledge,theoretical predictions for the complex refractive index of opacifiers have not been reported in the open literatures.The purpose of this paper is to develop a theoretical model to predict radiative characteristics of opacifier-loaded aerogel composites. Firstly,a new and simple approach is developed to predict complex refractive index of opacifiers.Then the complex refractive index is used to calculate the extinction efficiency of a single opacifier particle based on Mie theory.Finally,a predictive model is proposed to calculate the specific extinction coefficient,and the radiative thermal conductiv-ity of opacifier-loaded silica aerogel composite based on the extinction efficiency and mass fraction of the opacifier.Based on the developed model,radiative characteristics of the six kinds of opacifiers are investi-gated systematically,and the optimal opacifier size and category in the composite are obtained under different temperatures.Furthermore,to reduce the radiative heat transfer further,a novel material design of opacifier-loaded aerogel composite is proposed,in which the optimal opacifier and its size are varied according to the internal temperature gradient of the composite.2.Modelplex refractive index of opacifiersOpacifier particles have both scattering effect and absorption effect to light,therefore,they are regarded as absorbing medium,hence, both the real part and the imaginary part of the complex refractive index should be calculated for opacifier particles.The transmittance of opacifier particles,τ,can be measured by Fourier infrared spectral experiment[29,32,34].In the experiment, opacifier particles with the specific size and mass fraction are uni-formly mixed with KBr particles.The mixture is dried in the oven and then is pressed about10s under pressure of50–100MPa by the pressure machine to form a thin circle disk(sample A).Another disk (sample B)with the same radius and thickness is also pressed using pure KBr particles.Two disks are put in the Fourier infrared spectrometer, respectively,to measure their transmittances.Since the volume fraction of opacifier particles in the sample A is very low,the transmittance of opacifier particles can be obtained by subtracting the transmittance of sample B from the transmittance of sample A.Based on the Beer law,the transmittance and specific extinction coefficient of opacifier meet the following relation[3,20,22,25,30]:τλðÞ¼e−eÃλðÞρhð1Þwhereλis the wavelength,e⁎is the specific extinction coefficient of opacifier,ρis the density of the sample A,and h is the sample thick-ness.It is noted thatτand e⁎are the transmittance and specific extinction coefficient,respectively of opacifier particles with specific volume fraction and size,so they are not the universal parameters. However,Zeng et al.proposed that for an absorbing homogeneous medium,such as opacifier in the opacifier-loaded aerogel composite, the imaginary part of complex refractive index can be derived from e⁎as follows[32]:eÃλðÞ¼4πκλðÞλρopað2Þwhereρopa is the density of opacifibining Eqs.(1)and(2),we have,κλðÞ¼λρopa ln1τλðÞ4πρh:ð3ÞThe real part and the imaginary part of complex refractive index meet the classic K–K relation[25,29,32,34]:nλðÞ¼1þ2λ2πP∫∞κλ0ðÞλ0λ−λ0ÀÁdλ0:ð4ÞRuan et al.[29]and Dombrovsky et al.[37]used a more accurate modified K–K relation originally proposed by Ahrenkiel[38]:nλðÞ¼nλ1ðÞþ2λ21−λ2πP∫∞λ0kλ0ðÞÀÁ10ÀÁdλ0ð5Þwhereλ1=0.4358μm,is the wavelength at the triple blue mercury line,the refractive coefficient n(λ1)was measured using a Hilger Watts Abbe refractometer[37],and P is the Cauchy principal value of the integral.There is a Cauchy integral over all the wavelengths in Eq.(5),how-ever,we can only get afinite wavelength range[λmin,λmax]through the experiment,so that thefinite experimental data must be extrapolated into both long wavelength[λmax,+∞]and short wavelength[0,λmin] regions.Ruan et al.[29]used the following extrapolation method:λ≤λmin;κλðÞ¼C Lλ3λ≤λmax;κλðÞ¼C H=λð6Þwhere C L and C H are expressed by:C L¼κλminðÞλ3minC H¼κλmaxðÞ=λmax:ð7ÞAfter the extrapolation,the K–K relation can be expressed by[29]: nλðÞ¼nλ1ðÞþ2λ21−λ2π∫λminλmaxλ0kλ0ðÞλ−λ0ÀÁλ1−λ0ÀÁdλ0þN HþN Lð8Þ32X.-D.Wang et al./Journal of Non-Crystalline Solids375(2013)31–39where N H and N L are the Cauchy integrals in the longer and shorter ex-trapolated wavelength ranges,finally,they can be expressed by [29]:N L ¼C L λL þC L λ21þλ2 ln λ−λLλþλL 1þC L λ41⋅1⋅lnλ−λL λþλL −C L λ41λ2−λ21⋅12λ1⋅lnλ1−λL λ1þλL ð9ÞN H ¼C H λ2−λ21ÀÁ12λln λH þλλH −λ−12λ1ln λH þλ1λH −λ1 &':ð10ÞUsing the iterative method,the real part can be calculated by theimaginary part of complex refractive index.2.2.Extinction ef ficiency of a single opaci fier particleThe radiative characteristic of opaci fier-loaded aerogel composite is determined by the extinction coef ficient of aerogel,the extinction coef ficient of opaci fier,the volume fraction of opaci fier,and the tem-perature.This subsection will determine the extinction ef ficiency of a single opaci fier particle,which is a basis to determine the extinction coef ficient of opaci fier.The opaci fier particle is assumed to be a sphere with a diameter of D .Since opaci fier is uniformly distributed in the composite with a very small volume fraction,and its diameter has the same magnitude with the incident light wavelength,Mie theory can be used to describe the radiative behavior of a single opaci fier particle [34,35,39,40].The ex-tinction ef ficiency,Q ext ,scattering ef ficiency,Q sca ,and absorption ef fi-ciency,Q abs ,of a single opaci fier particle can be expressed by:Q ext¼2x Re X ∞j ¼12j þ1ðÞa j þb j 2435ð11ÞQ sca ¼2x 2X ∞j ¼12j þ1ðÞa j 2þb j 2 ð12ÞQ abs ¼Q ext −Q scað13Þwhere Re denotes the real part of a complex quantity,x =πD /λis the size parameter at the wavelength λ,and a j and b j are the Mie scattering coef ficients expressed by:a j ¼ψ′j mx ðÞψj x ðÞ−m ψj mx ðÞψ′j x ðÞψ′j mx ðÞξj x ðÞ−m ψj mx ðÞξ′j x ðÞð14Þb j ¼ψ′j mx ðÞψj x ðÞ−m ψj mx ðÞψ′j x ðÞψ′j mx ðÞξj x ðÞ−m ψj mx ðÞξ′j x ðÞð15Þwhere ξj =ψj −i χj ,ψj (x )and χj (x )are the Ricatti –Bessel functions,which meet the following recurrence relations:ψj þ1x ðÞ¼2j þ1x ψj x ðÞ−ψj −1x ðÞð16Þχj þ1x ðÞ¼2j þ1xχj x ðÞ−χj −1x ðÞð17Þandψ−1x ðÞ¼cos x ð18Þψ0x ðÞ¼sin x ð19Þχ−1x ðÞ¼−sin x ð20Þχ0x ðÞ¼cos x :ð21Þ2.3.Extinction coef ficients of opaci fier particles in compositeIt is noted that opaci fier particles are uniformly distributed in mono-lithic aerogel with a very small volume fraction,independent scatteringcondition is met,according to Mie theory and Beer law,the transmit-tance of opaci fier particles in the composite can be related to the extinc-tion ef ficiency of single opaci fier particle,or [34]:τ¼e−1πD 2Q ext NL ð22Þwhere N is the number density of opaci fier particles in the composite,and L is the composite thickness.The mass fraction of opaci fier in the composite,ω,can be expressed as:ω¼12πD 3N ρopaa V a 16N ρopað23Þwhere ρa is the aerogel density,and V a is the aerogel volume.From Eq.(23),the number density of opaci fier particles is:N ¼6ρa ω1−ωðÞπD opa:ð24ÞThe spectral extinction coef ficient of opaci fier particles in the com-posite,βopa (λ),is connected to their transmittance,τ,according to Beer law [29,39]:τ¼I I 0¼e −βopa λðÞL ð25Þwhere I and I 0are the transmitting and incident intensity of light.By combining Eqs.(22),(24),and (25),the spectral extinction co-ef ficient of opaci fier particles in the composite can be expressed as:βopa λðÞ¼3ρa ωQ ext21−ωðÞD ρopa:ð26ÞThe speci fic spectral extinction coef ficient of opaci fier particles in the composite is de fined as a ratio of extinction coef ficient of opaci fier particles to the composite density.The composite density ρa −opa can be calculated by:ρa −opa ¼ρa1−ω:ð27ÞThus,the speci fic spectral extinction coef ficient of opaci fier particlesin the composite,e opc⁎(λ),can be expressed by:e ÃλðÞ¼βopa λðÞρa −opa ¼3ωQ ext2D ρopa:ð28ÞThe temperature-dependent Rossland extinction coef ficient ofopaci fier particles in the composite,βopa (T ),is integrated over the full wavelength range based on the spectral extinction coef ficient,βopa (λ),[26,42]:βopa T ðÞ¼∫∞1βopa λðÞ⋅∂Eb λbd λ"#−1ð29Þwhere E b λis the spectral blackbody emissive power calculated by Planck's law,E b is the integration of E b λover the wavelengths,or E b λT ðÞ¼C 1λ−5exp C 2=λT ðÞ−1ð30Þwhere C 1=3.743×108W μm 4m −2,C 2=1.439×104μm K.33X.-D.Wang et al./Journal of Non-Crystalline Solids 375(2013)31–392.4.Radiative characteristics of compositeIt is especially noted thatβopa(λ)andβopa(T)are the radiative characteristics of the ensemble of opacifier particles.Thus,with an independent scattering assumption due to a very small volume frac-tion of opacifier in the composite,the spectral and Rossland extinc-tion coefficient of the composite,βa−opa(λ)andβa−opa(T),can be calculated as follows,respectively:βa−opaλðÞ¼βopaλðÞþβaλðÞ1−f vðÞð31Þβa−opa TðÞ¼βopa TðÞþβa TðÞ1−f vðÞð32Þwhere,βa(T)is the Rossland extinction coefficient of aerogel,and f v is the volume fraction of opacifier particles in the composite,which is related to the mass fraction of opacifier as follows,f v¼ρa wρo:ð33ÞThus,the specific spectral extinction coefficient,eÃa−opa λðÞ,and the spe-cific temperature-dependent Rossland extinction coefficient,eÃa−opaTðÞare:eÃa−opa λðÞ¼βa−opaλðÞρa−opað34ÞeÃa−opa TðÞ¼βa−opa TðÞρa−opa:ð35ÞSince the opacifier-loaded aerogel composite slab is far thicker (several centimeters)than light wavelengths(2–100μm),the Rossland diffusion approximation can be used for the radiative heatflux [1–3,25,29,41,42],hence,the radiative thermal conductivity of the composite,k r,a−opa,can be calculated as:k r;a−opa¼16n2a−opaσ03βa−opa TðÞT3ð36Þwhere n a−opa is the effective refractive index of the composite,and σ0=5.67×10−8W m−2K−4is the Stefan–Boltzmann constant.The effective refractive index of the composite is calculated based on the volume-averaged refractive indexes of opacifier and aerogel: n a−opa¼f v n opaþ1−f vðÞn að37Þwhere n opa and n a are the refractive indexes of the opacifier and aerogel,respectively,n a is taken as1.04here[32].3.Transmittance of opacifiersSix kinds of opacifiers(SiC,TiO2,ZrO2,coal ash,carbon black,and Al2O3)are loaded within the pure silica aerogel to prepare the opacifier-loaded aerogel composites.The density,mass fraction and volume fraction of the opacifiers are listed in Table1.The transmittance of SiC,TiO2,and ZrO2opacifiers is measured by the Fourier infrared spectrometer(Nicolet6700,Thermo Fisher Company,The United States).The original experimental data are wave-number-dependent absorbance curves as shown in Fig.1. The corresponding transmittance can be calculated by the following relation,τλðÞ¼10−A1λðÞ:ð38ÞThe transmittances of coal ash and Al2O3come from Liu and Dai's experiments[34]as shown in Fig.2.However,the transmittance of carbon black is not found in the open literature,hence,its complex refractive index reported by Zeng et al.[43]is used directly.4.Resultsplex refractive indexIn order to validate the approach to calculate the complex refractive index,complex refractive indexes for three different materials obtained by previous researches are compared with those predicted by the present model.Fig.2shows the variation of transmittance with wave-length for silica aerogel[32],coal ash[34],and cloud of aerosol particles [29],which were tested by using the Fourier infrared spectrometer.The complex refractive indexes for the three materials calculated by our model described in Section2.1are shown in Figs.3and4.Zeng et al.Table1Properties of opacifiers.Opacifier category Densityρ/kg m−3Mass fraction w Volume fraction f vSiC310025% 1.28%ZrO2589025%0.68%TiO2426025%0.93%Carbon black145025% 2.69%Al2O3397025% 1.00%Coal ash224525% 1.75%0500100015002000250030003500400020406080100k / cm-1ASiC D=2.5 mmTiO2D=1-3 mmZrO2D=1-3 mmFig.1.Variation of absorbance with wave number of light for SiC,TiO2and ZrO2 opacifiers.024681012141618202224260.00.10.20.30.40.50.60.70.80.91.0silica aerogel [32]coal ash [34]cloud of aerosol particles [29]Al2O3[34]/ μmτλFig.2.Spectral transmittivity of different materials.34X.-D.Wang et al./Journal of Non-Crystalline Solids375(2013)31–39[32],Liu et al.[34],and Ruan et al.[29]also calculated the complex refractive indexes of these materials by using different approaches.In Zeng et al.'s work [32],the re flectance and transmittance of silica aerogel were used to calculate κ,with consideration of lower test accu-racy of aerogel re flectance,n was calculated by the classical K –K relation.In Ruan et al.'s [29]and Liu et al.'s [34]works the complex refractive index was calculated based on the Mie theory and K –K relation,but the theoretical calculation is too complicated.Figs.3and 4compare n and κof silica aerogel,coal ash,and cloud of aerosol particles predicted by the present model with those by the previous approaches.Fig.3shows that κof silica aerogel and cloud of aerosol particles predicted by the present model are almost the same with Zeng et al.'s and Ruan et al.'s results across the whole wavelength range,κof coal ash predicted by the present model agrees well with Liu et al.'s results within the wavelength range of 1–7μm.Though there exists difference between the two approaches when the wavelength is larger than 7μm,the two curves change in the same tendency.As shown in Fig.4,the curves of n predicted by the present and previous approaches agree well when the wavelength is shorter than 12μm.The curves predicted by our model deviate from those predicted by the previous approaches by a small degree for wavelength larger than 12μparisons indicate that our model can predict the complex refractive index of materials very well,and it is a more simple approach excluding complex calculations.24681012141618202224260.000.010.020.030.040.050.060.070.080.09present work Zeng [32]a)246810121416182022240.00.10.20.30.40.50.60.70.80.91.0 present work Liu [34]b)24681012141618202224260.000.040.080.120.160.200.240.28present work Ruan [29]c)κκκ/ μmλ/ μmλ/ μmλFig.3.The imaginary part of complex refractive index predicted by the present model and previous approaches:(a)silica aerogel;(b)coal ash;and (c)cloud of aerosol particles.03691215182124270.960.981.001.021.041.061.08npresent work Zeng [32]a)036912151821241.11.21.31.41.51.61.71.81.92.02.1nb)present work Liu [34]03691215182124271.4251.4501.4751.5001.5251.5501.5751.6001.6251.6501.675c)npresent work Ruan [29]/ μmλ/ μmλ/ μmλFig.4.The real part of complex refractive index predicted by the present model and previous approaches:(a)silica aerogel;(b)coal ash;and (c)cloud of aerosol particles.35X.-D.Wang et al./Journal of Non-Crystalline Solids 375(2013)31–394.2.Speci fic extinction coef ficients of compositesAccording to Eqs.(31)–(35),to evaluate the extinction coef ficient of the opaci fier-loaded aerogel composite,the extinction coef ficient of silica aerogel must be known.The spectral extinction coef ficient of silica aerogel has been extensively tested in the previous researches [3,16,43]as shown in Fig.5.The results show that the spectral extinc-tion coef ficient tested by Wei et al.[3],Lu et al.[16],and Zeng et al.[43]has a large difference in the wavelength range of 2–8μm.More-over,their results also indicate that the silica aerogel has a poor extinc-tion performance in this wave band,hence,opaci fiers should be added into the aerogel to improve its extinction performance.In our calcula-tions,the spectral extinction coef ficient of aerogel tested by Wei et al.[3]is selected.Fig.6(a)compares the speci fic spectral extinction coef ficient of TiO 2-loaded aerogel composites predicted by the present model with experimental data [20].In our calculation,the diameter of TiO 2in the composite is taken to be 3.5μm,and the mass fraction of TiO 2is 10%,20%and 30%,respectively.The present model shows that the speci fic spectral extinction coef ficient increases as the mass fraction of TiO 2increases,which agrees with Kunh et al.'s experiment [20].The speci fic spectral extinction coef ficient of TiO 2-loaded aerogel composite predicted by the present model is slightly higher than ex-perimental results,the reason may be attributed to that it is hard to guarantee the uniform diameter and distribution of TiO 2in the com-posite during the experiment.The speci fic Rossland extinction coef ficient of TiO 2-loaded aerogel composites,predicted by the present model,is shown in Fig.6(b).The diameter of TiO 2opaci fier is 3.5μm with mass fractions of 10%,20%,and 30%,respectively.Wang et al's experimental data [21]are used to validate the present model.Wang et al.had presented that their data had an uncertainty of 15%[21].With consideration of this uncer-tainty,it can be regarded that the present predictions agree with Wang et al.'s results well.3691215182124102103104105a -1Lu et al. [16] Zeng et al. [43] Wei et al. [3]/ μmλ(λ) / m βFig.5.The extinction coef ficient of pure silica aerogel [3,16,43].2.0 2.53.0 3.54.0 4.55.0 5.56.0 6.57.07.58.08.520406080100120140160180200e *a -o p a a)Kuhn et al [20]10% TiO 2 20% TiO 230% TiO 2Present model10% TiO 220% TiO 230% TiO 2200400600800100012001400102030405060708090100b)T / KWang et al. [21]10% TiO 220% TiO 2 30% TiO 2present model10% TiO 220% TiO 230% TiO 2/ μmλ(λ)/ m 2 k g -1e *a -o p a (T )/ m 2 k g -1Fig.6.Speci fic extinction coef ficient of TiO 2-loaded aerogel composites:(a)speci fic spectral extinction coef ficient;and (b)speci fic Rossland extinction coef ficient.2004006008001000120014003000600090001200015000180002100024000270003000033000 SiC ZrO 2 TiO 2coal ash carbon black Al 2O 3T / Ka -o p a (T ) / m -1=25% D =4 mmωβFig.7.The Rossland extinction coef ficients of composites with various opaci fiers.2004006008001000120014000.000.020.040.060.080.10SiC ZrO 2 TiO 2coal ash carbon black Al 2O 3=25% D =4 μmT / Kk r ,a -o p a / W m -1 K -1ωFig.8.The radiative thermal conductivities of composites with various opaci fiers.36X.-D.Wang et al./Journal of Non-Crystalline Solids 375(2013)31–39。

相关文档
最新文档