2018北师大版数学九年级上册课件:中考重热点突破(二)

合集下载

九年级数学上册一元二次方程应用一元二次方程课件北师大版

九年级数学上册一元二次方程应用一元二次方程课件北师大版

答案
(x-1);
1 2
x(x-1);
1 2
x(x-1)=28;x2-x-56=0;x1=8,x2=-7;x=8;8
解析 设应邀请x支球队参赛,则每队共打(x-1)场比赛,比赛总场数用代
数式表示为 1 x(x-1).
2
根据题意,可列出方程 1 x(x-1)=28.
2
整理,得x2-x-56=0, 解得 x1=8,x2=-7. 合乎实际意义的解为 x=8. 答:应邀请 8支球队参赛.
销售单价/元
x
销售量y/件
销售玩具获得的利润W/元
(2)在(1)问的条件下,若商场获得了10 000元的销售利润,求该玩具的销 售单价应定为多少元.
分析 (1)由销售单价每涨1元,就会少售出10件玩具,得y=600-(x-40)×10= 1 000-10x,W=(1 000-10x)(x-30)=-10x2+1 300x-30 000; (2)令-10x2+1 300x -30 000=10 000,解这个方程即可求出x的值.
A.7 m
图2-6-1 B.8 m
C.9 m
D.10 m
答案 A 设原正方形空地的边长为x m,依题意得(x-3)·(x-2)=20,解得x1 =7,x2=-2(不合题意,舍去),∴原正方形空地的边长为7 m.故选A.
3.已知一个两位数,个位上的数字比十位上的数字少4,这个两位数十位和个
位交换位置后,新两位数与原两位数的积为1 612,那么这个两位数是 ( )
4.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛
一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过
程,并完成填空.

北师大版 数学九年级上册第二章《2.1 认识一元二次方程》课件

北师大版 数学九年级上册第二章《2.1 认识一元二次方程》课件

知识模块二 一元二次方程有关概念的应用
(一)自主探究
1.下列方程中,是一元二次方程的是( C )
A.x2+2y-1=0 C.2x2=2x-1
B.x+2y2=5
D.x2+ 1 -2=0 x
2.将方程(x+3)2=8x化成一般形式为__x_2-__2_x_+__9_=__0___, 其二次项系数为__1____,一次项系数是_-__2___,常数项是 __9____ .
练习
1.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取 值范围是_a_≠__1__ .
2.已知方程(m+2)x2+(m+1)x-m=0,当m满足_m__=__-__2 时,它是一元一次方程;当m满足_m_≠_-__2__ 时,它是一元二次 方程.
3.(易错题)已知关于x的方程(m-2)x|m|+3x-4=0是一元二
xm
3.你能通过观察下列方程得到它们的共同特点吗? (1)(100-2x)(50-2x)=3600 (2)(x+6)2+72=102
归纳结论:方程的等号两边都是整式,只含有一个未知数,且 未知数的最高次数是2的方程叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化 成如下形式: ax2+bx+c=0(a、b、c为常数,a≠0) 这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a 是二次项的系数;bx是一次项,b是一次项系数;c是常数项.
(二)合作探究
1.问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个 角分别切去一个面积相同的正方形,然后将四周突出的部分 折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底 面积是3600cm2,那么铁皮各角应切去多大的正方形?
答:由题意可列方程:(100-2x)(50-2x)=3600

北师大版九年级上册数学复 习知识点及例题

北师大版九年级上册数学复    习知识点及例题

性角 质
对 角 线
四个角都是 直角
互相平分且 相等
对角相等
四个角都是直角
互相垂直平分, 且每条对角线平 分一组对角
互相垂直平分且相等,每 条对角线平分一组对角
判定
·有三个角 是直角; ·是平行四 边形且有一 个角是直角; ·是平行四
·四边相等的四 边形; ·是平行四边形 且有一组邻边相 等; ·是平行四边形
·是矩形,且有一组邻 边相等; ·是菱形,且有一个角 是直角。
边形且两条 且两条对角线互 对角线相等. 相垂直。
对称性
既是轴对称图形,又是中心对称图形
一.矩形 矩形定义:有一角是直角的平行四边形叫做矩形.
【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质
性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等,具有平行四边形的所以性质。;
①有一组邻边相等的平行四边形 (菱形) ②有一个角是直角的平行四边形 (矩形) 正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的
菱形. 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫
做正方形. 正方形是中心对称图形,对称中心是对角线的交点,正方形
又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有 四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们 性质的综合,正方形的性质总结如下:
边:对边平行,四边相等; 角:四个角都是直角; 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角 形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等 的等腰直角三角形,这是正方形的特殊性质.

2.5一元二次方程的根与系数的关系 课件 北师大版数学九年级上册

2.5一元二次方程的根与系数的关系  课件 北师大版数学九年级上册

感悟新知
(4)x11 +x12=x1x+1x2x2; (5)xx21+xx12=x22x+1x2x21=(x1+x2x)12x-2 2 x1x2; (6) |x1 -x2 |= (x1-x2)2 = (x1+x2)2-4 x1x2 .
知1-讲
感悟新知
知1-练
例 1 【母题 教材P51习题T3】已知关于x 的一元二次方 程x2-6x+q=0 有一个根为2,求方程的另一个根 和q 的值.
b2-4ac ≥ 0 且x1·x2<0
x1+x2>0 x1+x2<0 x1+x2>0 x1+x2<0
两根同为正数 两根同为负数 两根异号,且正根的绝对值大 两根异号,且负根的绝对值大
感悟新知
知1-讲
2. 与两根有关的几个代数式的恒等变形 (1)x21+x22=x21+2 x1x2+x22-2 x1x2=(x1+x2)2-2 x1x2; (2)(x1-x2)2=(x1+x2)2-4 x1x2; (3)(x1+a)(x2+a)=x1x2+a(x1+x2)+a2;
感悟新知
∴-ba2-4·1a=1.∴b2=a2+4a. ∴t=10a-b2=-a2+6a=-(a-3)2+9. ∵-(a-3)2≤0, ∴t=-(a-3)2+9≤9,即 t 的最大值为 9.
知1-练
感悟新知
知2-讲
知识点 2 二次项系数为1 的一元二次方程的性质
1. 以x1,x2 为根的一元二次方程(未知数为x,二次项系
12,则以x1,x2 为根的一元二次方程是( )
A. x2-7x+12=0
B. x2+7x+12=0
C. x2+7x-12=0
D. x2-7x-12=0
感悟新知

九年级数学上册 第2单元复习课件 北师大版

九年级数学上册 第2单元复习课件 北师大版
第2章复习 ┃ 知识归类
┃知识归纳┃
1.一元二次方程
只含有一个未知数的整式方程,并且都可以化为 ax2+bx+c=0 (a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程.
[注意] 定义应注意四点:(1)含有一个未知数;(2)未知数的最高 次数为2;(3)二次项系数不为0;(4)整式方程.
接将方程左边分解因式.
第2章复习 ┃ 考点攻略
解:(1)原方程变形为(x-3)2-(x-3)=0,
(x-3)(x-3-1)=0, 即(x-3)(x-4)=0, x-3=0或x-4=0, ∴x1=3,x2=4.
第2章复习 ┃ 考点攻略
方法技巧 当一元二次方程的一边为 0,而另一边易于分解成两个一次因 式的乘积时,我们可以利用因式分解法解一元二次方程.用式子表 示:若 a· b=0,则 a=0 或 b=0,反之也成立.有时遇到解高次方 程时,也可以利用这种方式降次.如 x4-16=0,则(x2+4)(x+2)(x -2)=0,其左边是三个因式,其中有一个二次的因式,其余两个 是一次的因式. 分解因式法把一个一元二次方程化为两个一元一次 方程来解,体现了一种“降次”的思想.
③配方,方程两边同时加上 一次项系数一半的平方 ,并写成 (x+a)2=b的形式,若b≥0,直接开平方求出方程的根.
5.公式法
第2章复习 ┃ 知识归类 (1)一元二次方程ax2 +bx+c=0(b2 -4ac≥0)的求根公式:x=
-b± b2-4ac 2a _______________________________________.
(2)用程化成一般形式:ax2+bx+c=0(a≠0);
②确定a,b,c的值;
③求b2-4ac的值;
④当b2-4ac≥0时,则将a,b,c及b2-4ac的值代入求根公式求 出方程的根,若b2-4ac<0,则方程无实数根.

北师大版数学九年级上册 用公式法求解一元二次方程课件(共25张)

北师大版数学九年级上册 用公式法求解一元二次方程课件(共25张)

解:(1)∵关于x的一元二次方程x2-(2m+1)x+m (m+1)=0. ∴△=(2m+1)2-4m(m+1)=1>0, ∴方程总有两个不相等的实数根; (2)∵x=0是此方程的一个根, ∴把x=0代入方程中得到m(m+1)=0, ∴m=0或m=-1, ∵(2m-1)2+(3+m)(3-m)+7m-5=4m2-4m+1+9m2+7m-5=3m2+3m+5, 把m=0代入3m2+3m+5得:3m2+3m+5=5; 把m=-1代入3m2+3m+5得:3m2+3m+5=3×1-3+5=5.
0(a≠0)没有实数根.
练习
参考答案:
1.用公式法解下列方程.
1). 2x2-4x-1=0; 2). 5+2=3x2 ; 3). (x-2)(3x-5) =1;
2.一个直角三角形三边的长为三个连续偶数,求这个三 角形的三边长.
B
A
C
课堂练习
1.下列一元二次方程中,有两个不相等的 实数根的方程是( A )
x2=
1- 2
5
x2=1-
6 2
.
探究新知
知识模块一 探索一元二次方程的求根公式 (一)自主探究
1.你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
解: 移项,得 ax2 bx c,
方程两边都除以a x2 b x c ,
a
a
配方,得
x2
b a
x
b 2a
2
c a
b 2a
2
.

2.1一元二次方程北师大版九年级数学上册习题PPT课件2

2.1一元二次方程北师大版九年级数学上册习题PPT课件2
长a、率b分为别x,称依为题二意4次可项.列系方数【程和为一内( 次项蒙)系数古. 赤峰中考】某品牌手机三月份销售400万部,四月份、五月份销售
量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x, A.400(1+x2)=90整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
数学·九年级(上)·配北师
解:(1)∵关于 x 的方程(k+1)xk2+1+(k-3)·x-1=0 是一元一次方程,∴
k+1=0, k-3≠0,
或kk2++11+=k1-,3≠0,
解得 k=-1 或 k=0.∴当 k=-1 或 k=0 时,关
于 x 的方程(k+1)xk2+1+(k-3)x-1=0 是一元一次方程.
1T2变式】把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 分 C.析1:00观(1察 +等 x)3号=两61边6 ,是关于x的整式方程,满足条件(1).但x的二次项系数含有字母,应分类讨论.
2x)=3600.化为一般形式为x -75x+350=0. 9长知(2.)率识当据为 点k报取x3道,何,根依值为据题时推实意,进际可它福问列是州题方一绿列程元色一为二农元(次业二方发次程) 展方?,程并2写01出8~这2个02一0年元,二福次州方市程2将的完二成次绿项色系农数业、发一展次项项目系总数投、资常6数16项亿.元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增
A.400(1+x )=900 B.400(1+2x)=900 9.据报道,为推进福州绿色农业发展,22018~2020年,福州市将完成绿色农业发展项目总投资616亿元,已知福州2018年已完成项目投资100亿元.假设后两年该项目投资的平均增

北师大版九年级数学重难点梳理

北师大版九年级数学重难点梳理
锐角三角函数的应用
了解锐角三角函数在测量、物理等领域的应用, 能够运用三角函数解决实际问题,如计算角度、 距离等。
圆的性质与定理
圆的基本性质
理解圆的基本概念,如圆心、半径、直径等,掌握圆的基本性质,如圆的对称性、圆心角 与弧的关系等。
圆的定理
熟悉与圆相关的定理,如垂径定理、切线长定理、割线定理等,能够运用这些定理解决与 圆相关的问题。
圆的应用
了解圆在几何图形中的应用,如计算面积、周长等,能够运用圆的知识解决实际问题。同 时,也要掌握与圆相关的综合问题解决方法,如圆与三角形、四边形等的综合问题。
04
数论部分重难点
整除与带余除法
整除的概念及性质
01
理解整除的定义,掌握整除的基本性质,如传递性、可加性等

带余除法定理及应用
02
掌握带余除法的定义及定理,能够运用带余除法解决相关问题
式分解法
一元二次方程根与系数的关系 (韦达定理)
一元二次方程的应用
二次函数
二次函数的定义及一般形式
二次函数的图象与性质:开 口方向、对称轴、顶点坐标
、最值等
02
01 03
二次函数的平移与对称
二次函数与一元二次方程的 联系
04
05
二次函数的应用
代数式的运算
整式的加减乘除运算
代数式的化简求值:直接代入法、整体代入法、特殊值 法等
经典计数问题
包括抽屉原理、容斥原理、鸽巢原理等,这些问题在解决一些看 似复杂的问题时非常有用。
概率初步知识与事件概率计算
概率的基本概念
古典概型与几何概型
概率是描述随机事件发生可能性大小的数 值,其取值范围在0到1之间。
古典概型是指每个样本点等可能出现且样 本空间有限的情况,几何概型则是指样本 点无限且等可能出现的情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档