蔡甸区2016-2017期中考试八下数学试卷参考答案
2016-2017学年湖北省武汉市八年级(下)期中数学试卷含答案

2016-2017学年湖北省武汉市八年级(下)期中数学试卷含答案一、选择题(共10小题,每小题3分,共30分)1.使二次根式有意义的a的取值范围是()A.a≥0B.a≠5C.a≥5D.a≤52.下列二次根式中,是最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=24.直角三角形两边长分别为为3和5,则另一边长为()A.4B.C.或4D.不确定5.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.176.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC7.下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.直角都相等8.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm9.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,1)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(1,﹣2)10.已知菱形ABCD中,∠ADC=120°,N为DB延长线上一点,E为DA延长线上一点,且BN=DE,连CN、EN,点O为BD的中点,过O作OM⊥AB交EN于M,若OM=,AE=1,则AB的长度为()A.B.2C.D.+3二、填空题(共6小题,每小题3分,共18分)11.计算:=.12.如图,一根16厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=8厘米,且RP⊥PQ,则RQ=厘米.13.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为.14.对于两个实数a、b,定义运算@如下:a@b=,例如3@4=.那么15@x2=4,则x 等于.15.平行四边形ABCD中,AB=10,AD=8,若平行四边形ABCD的面积为48,则对角线BD的长为.16.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ的长为.三、解答题(共8小题,共72分)17.(8分)计算:(1)(4﹣3)(2)+618.(8分)已知a=+2,b=2﹣,求下列各式的值:(1)a2+2ab+b2;(2)a2﹣b2.19.(8分)已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.20.(8分)如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD 的面积.21.(8分)在菱形ABCD中,AC与BD交于点O,过点O的直线MN分别交AB、CD于M,N.(1)求证:AM+DN=AD;(2)∠AOM=∠OBC,AC=2,BD=2,求MN的长度.22.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以2cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.(1)当t=4.8秒时,四边形PQCD是怎样的四边形?说明理由;(2)当PQ=17时,求t的值.23.(10分)在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE =AD,∠DAE+∠BAC=180°.(1)如图1,当点E落在AC上时,求∠ADE的度数(用α表示);(2)如图2,以AB,AE为边作平行四边形ABFE,若点F恰好落在ED的延长线上,EF交AC于点H,求的值;(3)若∠ADE=45°,BC=14,BD=6,连接CE,则CE=.24.(12分)已知矩形ABCD中,AB=3,BC=4,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC边延长线上一点,若BD=BE,连接DE,M为DE的中点,连接AM、CM,求证:AM⊥CM;(3)如图3,在(2)的条件下,P、Q为AD边上两个动点,且PQ=,连接P、B、M、Q,则四边形PBMQ周长的最小值为.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.使二次根式有意义的a的取值范围是()A.a≥0B.a≠5C.a≥5D.a≤5【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,5﹣a≥0,解得a≤5.故选:D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=2,故不是最简二次根式,故此选项错误;B、,是最简二次根式,符合题意;C、=|a|,故不是最简二次根式,故此选项错误;D、=,故不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.3.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=2【分析】直接利用二次根式的性质分别化简计算即可.【解答】解:A、3﹣=2,故此选项错误;B、2+无法计算,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.【点评】此题主要考查了二次根式的hi额性质与化简,正确化简二次根式是解题关键.4.直角三角形两边长分别为为3和5,则另一边长为()A.4B.C.或4D.不确定【分析】由于此题没有明确斜边,应考虑两种情况:5是直角边或5是斜边,根据勾股定理进行计算.【解答】解:5是直角边时,则第三边==,5是斜边时,则第三边==4,故有两种情况或4.故选:C.【点评】此题关键是要考虑两种情况,熟练运用勾股定理.5.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.6.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【解答】解:A、∵∠A=∠B,∠C=∠D,∠A++∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB=AD,CB=CD不能推出四边形ABCD是平行四边形,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项正确;D、由AB∥CD,AD=BC也可以推出四边形ABCD是等腰梯形,故本选项错误;故选:C.【点评】本题考查了对平行四边形的判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7.下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.直角都相等【分析】先写出各命题的逆命题,然后根据全等三角形的判定、等腰三角形的判定定理和直角的定义分别对各逆命题进行判断.【解答】解:A、全等三角形的面积相等的逆命题为面积相等的三角形为全等三角形,所以A选项错误;B、相等的两个实数的平方也相等的逆命题为平方相等的两个实数相等或相反,所以B选项错误;C、等腰三角形的两个底角相等的逆命题为有两个角相等的三角形为等腰三角形,所以C选项正确;D、直角都相等的逆命题为相等的角为直角,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.8.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选:D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.9.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A →B→C→D→A的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,1)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据点A、B、C、D的坐标可得出AB、BC的长度以及四边形ABCD为矩形,进而可求出矩形ABCD的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置,此题得解.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,=2(AB+BC)=10.∴矩形ABCD的周长C矩形ABCD∵2017=201×10+7,AB+BC+CD=7,∴细线的另一端落在点D上,即(1,﹣2).故选:D.【点评】本题考查了规律型中点的坐标、矩形的判定以及矩形的周长,根据矩形的周长结合细线的长度找出细线终点所在的位置是解题的关键.10.已知菱形ABCD中,∠ADC=120°,N为DB延长线上一点,E为DA延长线上一点,且BN=DE,连CN、EN,点O为BD的中点,过O作OM⊥AB交EN于M,若OM=,AE=1,则AB的长度为()A.B.2C.D.+3【分析】解法1:连接CM,CO,CE,判定△EDC≌△NBC,即可得到∠DCE=∠BCN,EC=NC,进而得出△ECN为等边三角形,依据∠CMO=∠CED,∠CDE=∠COM=120°,可得△CDE∽△COM,再根据相似三角形的性质,即可得到AD,AB的长.解法2:延长BD至F,使得DF=BN=DE,连接EF,延长CD交EF于G,利用三角形中位线定理可得EF的长,依据等腰三角形的性质,即可得到EG的长,再根据∠DEG=30°,即可得到DE 的长,进而得出AD的长.【解答】解:如图,连接CM,CO,CE,∵菱形ABCD中,∠ADC=120°,N为DB延长线上一点,∴∠ADC=∠NBC=120°,CD=CB,而DE=BN,∴△EDC≌△NBC(SAS),∴∠DCE=∠BCN,EC=NC,又∵∠DCE+∠ECB=60°,∴∠BCN+∠ECB=60°,∴∠ECN=60°,∴△ECN为等边三角形,∴∠CNM=60°,∴∠CNM+∠COM=180°,∴M,N,O,C四点共圆,∴∠CNB=∠CMO,又∵∠CNB=∠CED,∴∠CMO=∠CED,又∵∠CDE=∠COM=120°,∴△CDE∽△COM,∴,即,解得DE=1+,又∵AE=1,∴AD==AB,解法2:如图,延长BD至F,使得DF=BN=DE,连接EF,延长CD交EF于G,则∠EDG=180°﹣120°=60°,∠FDG=∠CDB=60°,∴DG平分∠EDF,∴DG⊥EF,∵OM⊥AB,EF⊥CD,AB∥CD,∴OM∥EF,又∵O是BD的中点,DF=BN,∴O是FN的中点,∴M是EN的中点,∴FE=2OM=3+,∴GE=,又∵∠DEG=30°,∴Rt△DEG中,DE==+1,∴AD=DE﹣AE=,∴AB=,故选:C.【点评】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,三角形中位线定理以及菱形的性质的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.二、填空题(共6小题,每小题3分,共18分)11.计算:=.【分析】根据二次根式的除法法则计算可得.【解答】解:原式===,故答案为:.【点评】本题主要考查二次根式的乘除法,解题的关键是熟练掌握二次根式的乘除运算法则.12.如图,一根16厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=8厘米,且RP⊥PQ,则RQ=10厘米.【分析】根据题意可知△PRQ为直角三角形,利用勾股定理即可解答.【解答】解:设RQ=x,则RP=16﹣x,∵RP⊥PQ∴△PRQ为直角三角形因为PQ=8厘米,RQ=x,RP=16﹣x,由勾股定理得PQ2+RP2=RQ2即82+(16﹣x)2=x2解得x=10,即RQ=10厘米.故答案为:10.【点评】本题考查的是勾股定理在实际中的应用,需要同学们结合实际掌握勾股定理.13.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为AC⊥BD.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF 为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.14.对于两个实数a、b,定义运算@如下:a@b=,例如3@4=.那么15@x2=4,则x 等于±4.【分析】直接利用已知将原式变形进而得出答案.【解答】解:∵15@x2=4,∴=4,则=4,解得:x=±4.故答案为:±4.【点评】此题主要考查了实数运算,正确理解题意是解题关键.15.平行四边形ABCD中,AB=10,AD=8,若平行四边形ABCD的面积为48,则对角线BD的长为2.【分析】连接AC、BD交于点O,作AH⊥BC与H.首先证明点H与点C重合,再利用勾股定理求出OB即可.【解答】解:连接AC、BD交于点O,作AH⊥BC与H.∵四边形ABCD是平行四边形,∴BC=AD=8OA=OC,OB=OD,∵S=48,平行四边形ABCD∴BC•AH=48,∴AH=6,∴BH==8∴BC=BH,∴点H与点C重合,∴OC=OA=3,OB==,∴BD=2OB=2.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ的长为2+7.【分析】首先证明△ABC≌△GFC(SAS),利用全等三角形的性质可得:∠CGF=∠BAC=30°,在直角△ABC中,根据三角函数即可求得AC,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR的长,在直角△QRP中运用三角函数即可得到RP、进而可求出PQ的长.【解答】解:延长BA交QR于点M,连接AR,AP.在△ABC和△GFC中,∴△ABC≌△GFC(SAS),∴∠CGF=∠BAC=30°,∴∠HGQ=60°,∵∠HAC=∠BAD=90°,∴∠BAC+∠DAH=180°,又∵AD∥QR,∴∠RHA+∠DAH=180°,∴∠RHA=∠BAC=30°,∴∠QHG=60°,∴∠Q=∠QHG=∠QGH=60°,∴△QHG是等边三角形.AC=BC•tan60°=,则QH=HA=HG=AC=,在直角△HMA中,HM=AH•sin60°=×=,AM=HA•cos60°=,在直角△AMR中,MR=AD=AB=2.∴QR=++2=+,∴QP=2QR=2+7.故答案为:2+7.【点评】本题考查了勾股定理和含30度角的直角三角形以及全等三角形的判定和性质,题目的综合性较强,难度较大,正确运用三角函数以及勾股定理是解决本题的关键.三、解答题(共8小题,共72分)17.(8分)计算:(1)(4﹣3)(2)+6【分析】(1)利用二次根式的除法法则运算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式=2﹣;(2)原式=2+3=5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)已知a=+2,b=2﹣,求下列各式的值:(1)a2+2ab+b2;(2)a2﹣b2.【分析】根据a,b的值求出a+b和a﹣b的值,(1)根据完全平方公式和(2)根据平方差公式对要求的式子进行变形,然后代值计算即可得出答案.【解答】解:∵a=+2,b=2﹣,∴a+b=4,a﹣b=2,(1)a2+2ab+b2=(a+b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=4×2=8.【点评】此题考查了二次根式的化简求值,用到的知识点是平方差公式和完全平方公式,根据a,b 的值求出a+b和a﹣b的值是解题的关键.19.(8分)已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.【分析】连接BD,交AC于点O,欲证明证明四边形ABCD是平行四边形,只需证得AO=CO,DO=BO .【解答】证明:如图,连接BD ,交AC 于点O .∵四边形DEBF 是平行四边形,∴OD =OB ,OE =OF .又∵AE =CF ,∴AE +OE =CF +OF ,即OA =OC ,∴四边形ABCD 是平行四边形【点评】本题考查了平行四边的判定与性质,解题的关键是学会添加常用辅助线,熟练掌握平行四边形的判定方法,属于中考常考题型.20.(8分)如图,四边形ABCD 中,AB =10,BC =13,CD =12,AD =5,AD ⊥CD ,求四边形ABCD 的面积.【分析】连接AC ,过点C 作CE ⊥AB 于点E ,在Rt △ACD 中根据勾股定理求出AC 的长,由等腰三角形的性质得出AE =BE =AB ,在Rt △CAE 中根据勾股定理求出CE 的长,再由S 四边形ABCD =S △DAC +S △ABC 即可得出结论.【解答】解:连接AC ,过点C 作CE ⊥AB 于点E .∵AD ⊥CD ,∴∠D =90°.在Rt △ACD 中,AD =5,CD =12,AC ===13.∵BC =13,∴AC =BC .∵CE ⊥AB ,AB =10,∴AE =BE =AB =×10=5.在Rt △CAE 中,CE ===12.∴S 四边形ABCD =S △DAC +S △ABC =×5×12+×10×12=30+60=90.【点评】本题考查的是勾股定理及三角形的面积公式,等腰三角形的判定和性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.(8分)在菱形ABCD 中,AC 与BD 交于点O ,过点O 的直线MN 分别交AB 、CD 于M ,N . (1)求证:AM +DN =AD ;(2)∠AOM =∠OBC ,AC =2,BD =2,求MN 的长度.【分析】(1)证明△AOM ≌△CON ,可得结论;(2)证明△AOM ∽△ABO ,列比例式:,可得OM 的长,由(1)中的全等可得:MN =2OM ,代入可得MN 的长.【解答】(1)证明:∵四边形ABCD 是菱形,∴AO =OC ,AB ∥CD ,AD =CD ,∴∠MAC =∠NCA ,∵∠AOM =∠CON ,∴△AOM ≌△CON ,∴AM=CN,∴DC=DN+CN=DN+AM,∴AD=AM+DN;(2)解:∵四边形ABCD是菱形,∴∠ABO=∠OBC,AC⊥BD∵AC=2,BD=2,∴AO=,OB=,由勾股定理得:AB==3,∵∠AOM=∠OBC,∴∠ABO=∠AOM,∵∠BAO=∠MAO,∴△AOM∽△ABO,∴,∴,∴OM=,∴MN=2OM=2.【点评】本题主要考查了相似三角形的判定与性质,菱形的性质,勾股定理以及全等三角形的判定与性质的综合应用,解决问题的关键是熟练掌握菱形的性质,利用相似三角形的对应边成比例得到线段的长.22.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以2cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.(1)当t=4.8秒时,四边形PQCD是怎样的四边形?说明理由;(2)当PQ=17时,求t的值.【分析】(1)分别根据时间和速度得PD和CQ的长,根据平行四边形的判定可得结论;(2)先计算t的时间:0≤t≤,分两种情况:图1和图2,根据勾股定理可计算t的值.【解答】解:(1)四边形PQCD为平行四边形,理由是:根据题意得:PA=2t,CQ=3t,则PD=AD﹣PA=24﹣2t.当t=4.8时,PD=24﹣2×4.8=14.4,CQ=3t=3×4.8=14.4,∴PD=CQ,∵AD∥BC,即PQ∥CD,∴四边形PQCD为平行四边形;(2)有两种情况:①如图1,过A作AE∥PQ,交BC于E,∵AP∥EQ,∴四边形AEQP是平行四边形,∴AP=EQ=2t,∴BE=26﹣5t,Rt△ABE中,AB2+BE2=AE2,82+BE2=172,∴BE=15,即26﹣5t=15,解得:t=②如图2,过B作BE∥PQ,交AD于E,同理得AE=15,即2t﹣(26﹣3t)=15,t=,∵P运动的总时间为24÷2=12,Q运动的总时间为:26÷3=>,∴0≤t≤,综上,当PQ=17时,t的值为秒或秒.【点评】此题考查了直角梯形的性质、平行四边形的判定、勾股定理及动点运动问题,本题难度适中,注意掌握数形结合思想与方程思想的应用.23.(10分)在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE =AD,∠DAE+∠BAC=180°.(1)如图1,当点E落在AC上时,求∠ADE的度数(用α表示);(2)如图2,以AB,AE为边作平行四边形ABFE,若点F恰好落在ED的延长线上,EF交AC于点H,求的值;(3)若∠ADE=45°,BC=14,BD=6,连接CE,则CE=6.【分析】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质知BD=CD,从而知DH是三角形的中位线,即DH=HC=AB,结合HE+DF=EF﹣DH=AB﹣AB=AB可得答案;(3)由∠ADE=45°知∠B=∠C=∠ADE=∠AED=45°、∠BAC=∠DAE=90°,从而得∠BAD =∠CAE,再证△BAD≌△CAE即可得.【解答】解:(1)∵AB=AC,∠ABC=α,∴∠B=∠C=α,则∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=180°﹣∠BAC=180°﹣(180°﹣2α)=2a,∵AD=AE,∴∠ADE==90°﹣α;(2)∵四边形ABFE是平行四边形,∴EF∥AB、EF=AB,∴∠HDC=∠B=∠C=α,∴HC=HD,∵∠ADE=90°﹣α,∴∠ADC=∠ADE+∠HDC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,由DH∥AB知DH是△CAB的中位线,∴DH=AB,∴HC=AB,则HE+DF=EF﹣DH=AB﹣AB=AB,∴HC=HE+DF,∴=1;(3)当∠ADE=45°,即90°﹣α=45°时,α=45°,∴∠B=∠C=∠ADE=∠AED=45°,∴∠BAC=∠DAE=90°,即∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴CE=BD=6,故答案为:6.【点评】本题主要考查四边形的综合问题,解题的关键是掌握等腰三角形的性质、平行四边形的性质、全等三角形的判定与性质等知识点.24.(12分)已知矩形ABCD中,AB=3,BC=4,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC边延长线上一点,若BD=BE,连接DE,M为DE的中点,连接AM、CM,求证:AM⊥CM;(3)如图3,在(2)的条件下,P、Q为AD边上两个动点,且PQ=,连接P、B、M、Q,则四边形PBMQ周长的最小值为=.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【解答】解:(1)∵四边形ABCD是矩形,∴∠C=90°,CD=AB=3,AD=BC=4,∴DE=AD=4,在Rt△CDE中,CE==,∴BE=BC﹣CE=4﹣;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD =90°,∵点M 是Rt △CDE 的斜边的中点,∴DM =CM ,∴∠CDM =∠DCM ,∴∠ADM =∠BCM在△ADM 和△BCM 中,,∴△ADM ≌△BCM .∴∠AMD =∠BMC ,∴∠AMC =∠AMB +∠BMC =∠AMB +∠AMD =∠BMD =90°,∴AM ⊥CM ;(3)如图,过点Q 作QG ∥BP 交BC 于G ,作点G 关于AD 的对称点G ',连接QG ',当点G ',Q ,M 在同一条线上时,QM +BP 最小,而PQ 和BM 是定值,∴此时,四边形PBMQ 周长最小,∵QG ∥PB ,PQ ∥BG ,∴四边形BPQG 是平行四边形,∴QG =BP ,BG =PQ =,∴CG =如图2,在Rt △BCD 中,CD =3,BC =4,∴BD =5,∴BE =5,∴BG =BE ﹣BG =,CE =BE ﹣BC =1,∴HM =+=2,HG =CD =,在Rt △MHG '中,HG '=3+=,HM =4,∴MG'==,在Rt△CDE中,DE==,∴ME=,在Rt△BME中,BM==,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=++=,故答案为:.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定和性质,等腰三角形的性质,对称性,确定出BP+QM的最小值是解本题的关键.。
2016年湖北省八年级(下)期中数学试卷解析

2016-2017学年湖北省八年级(下)期中数学试卷一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.92.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>13.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、14.下列各式中,属于最简二次根式的是()A.B.C.D.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 46.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 39.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)13.如图,已知OA=OB,那么数轴上点A所表示的数是.14.已知y=+﹣3,则2xy的值为.15.直角三角形的两边长为5和7,则第三边长为.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.18.先化简,再求值:.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG求BE2+DG2的值.2016-2017学年湖北省八年级(下)期中数学试卷参考答案与试题解析一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.9考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选:B.点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.2.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、1考点:勾股定理的逆定理.分析:分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.解答:解:A、因为(32)2+(42)2≠(52)2,所以不能构成直角三角形,此选项错误;B、因为()2+()2≠()2,所以不能构成直角三角形,此选项错误;C、因为()2+22≠()2,所以不能构成直角三角形,此选项错误;D、因为()2+()2=12,能构成直角三角形,此选项正确.故选D.点评:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.4.下列各式中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数含开的尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含开的尽的因数,故D错误;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半求解即可.解答:解:∵△ABC的周长=3+4+5=12cm,∴连接各边中点的三角形周长=×12=6cm.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出中点三角形的周长等于原三角形的周长的一半是解题的关键.7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°考点:矩形的性质.专题:几何图形问题.分析:根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.点评:本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 3考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=3.故选D.点评:本题考查了菱形的性质和等边三角形的判定,难度一般,解答本题的关键是掌握菱形四边相等的性质.9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,难度不大.10.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n考点:正方形的性质;全等三角形的判定与性质.专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分的面积和为:1×4,n个这样的正方形重叠部分的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分的面积和的计算方法,难点是求得一个阴影部分的面积.二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并.解答:解:原式=3﹣=.故答案为:.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)考点:菱形的判定.专题:开放型.分析:可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.解答:解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定定理.13.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.14.已知y=+﹣3,则2xy的值为﹣15.考点:二次根式有意义的条件.分析:根据非负数的性质列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,2x﹣5≥0且5﹣2x≥0,解得x≥且x≤,所以,x=,y=﹣3,所以,2xy=2××(﹣3)=﹣15.故答案为:﹣15.点评:本题考查的知识点为:二次根式的被开方数是非负数.15.直角三角形的两边长为5和7,则第三边长为2或.考点:勾股定理.专题:分类讨论.分析:分7为斜边与7为直角边两种情况考虑,分别利用勾股定理即可求出第三边.解答:解:若7为斜边,根据勾股定理得:第三边为=2;若7为直角边,根据勾股定理得:第三边为=,故答案为:2或点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.考点:二次根式的加减法.分析:先把二次根式为最简二次根式,再计算即可.解答:解:原式=2+﹣﹣=.点评:本题考查了二次根式的加减运算,把二次根式化为最简二次根式是解题的关键.18.先化简,再求值:.考点:二次根式的化简求值;分式的化简求值.分析:此题要对代数式先通分,最简公分母是xy(x+y),再相减,能够熟练运用因式分解的方法进行约分.代值的时候,熟练合并同类二次根式.解答:解:原式=﹣===.当时,=.点评:此题综合考查了二次根式的混合运算和二次根式的加减运算.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.考点:作图—基本作图;线段垂直平分线的性质.分析:(1)垂直平分线的作法为:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;(2)首先利用勾股定理求得斜边的长,从而求得BH的长,然后利用△BHD∽△BCA求得BD的长即可.解答:解:(1)如图:(2)∵∠C=90°,AC=6,BC=8,∴AB==10,∵HD垂直平分AB,∴AH=BH=5,∵△BHD∽△BCA,∴,即:,解得:BD=.点评:本题考查了尺规作图的知识,要牢记:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.考点:作图—应用与设计作图.专题:作图题.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.考点:分母有理化.专题:阅读型.分析:(1)根据分式的性质,分子分母都乘以分母两个数的和,可得答案;(2)根据分式的性质,分子分母都乘以分母两个数的和,可得实数的运算,根据实数的运算,可得答案.解答:解:(1)原式===+;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.点评:本题考查了分母有理化,利用分式的性质:分子分母都乘以分母分母两个数的和或差得出平方差是解题关键.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)考点:勾股定理的应用.分析:连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° AC=15,再根据∠D=90°利用勾股定理求得AD的长后即可求面积;解答:解:连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° AC=15千米,又∵∠D=90°,∴AD==12(千米)∴面积=S△ABC+S△ADC=112.5+18(平方千米).点评:本题考查了解直角三角形的应用,与实际问题相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解.23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是菱形(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的性质.分析:(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形;(3)先证出∠AMB=45°,同理得出∠DMC=45°,证出∠BMC=90°,即可得出结论.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MEBF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形;(3)解:当=2时,四边形MENF是正方形;证明如下:当=2时,AB=AM,∴△ABM是等腰直角三角形,∴∠AMB=45°,同理:∠DMC=45°,∴∠BMC=90°,∴四边形MENF是正方形.点评:本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、正方形的判定;熟练掌握矩形的性质以及菱形、正方形的判定方法,证明三角形全等是解决问题的关键.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:BG⊥DE;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG 求BE2+DG2的值.考点:四边形综合题.分析:(1)根据已知,利用SAS判定△BCG≌△DCE,全等三角形的对应角相等,所以∠CBG=∠CDE,∠BGC=∠DEC,因为∠CBG+∠BGC=90°,所以∠BHE=90°,得出结论;(2)四边形ABCD是正方形推出△BCG≌△DCE.全等三角形的对应角相等,所以∠CBG=∠CDE,等量代换得出∠DOH=90°,推出BG⊥DE;(3)利用勾股定理得出BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,进而得出答案即可.解答:(1)解:延长BG与DE交于点H,∵四边形ABCD、四边形CEFG都是正方形,∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∠BGC=∠DEC,∵∠CBG+∠BGC=90°,∴∠CBG+∠DEC=90°,∴∠BHE=90°,∴BG⊥DE,故答案为:BG⊥DE.(2)仍成立.证明:∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,∴∠CDE+∠DHO=90°,∴∠DOH=90°,∴BG⊥DE.(3)∵BG⊥DE,∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,又∵AB=6,CE=3,∴BD=6,GE=3,∴BD2+GE=+=90,∴BE2+DG2=90.点评:此题主要考查了全等三角形的判定与性质和勾股定理的应用,熟练利用全等三角形的性质是解此题关键.。
2016-2017学年度下学期初二数学试卷

2016-2017学年下学期中段水平测试八年级数学试卷(所有答案做在答题卡上)一、选择题(每题3分,共30分)1.下列二次根式中,属于最简二次根式的是( ) A .21B .3.0C .8D .10 2.使式子5-x 有意义,则x 的取值范围是( ) A .x >5 B .x ≠ 5C .x ≥5D .x ≤53.下列几组数中,能作为直角三角形三边长度的是( )A. 2,3,4B. 4,5,6错误!未找到引用源。
C. 6,8,11D. 5,12,134.下列运算正确的是( ) A .()442= B .()442-=-C .94)9()4(-⨯-=-⨯-D .257=-5.如图,直角三角形的三边长分为m 、n 、t ,下列各式正确的是( ) A. 222m n t =+B .222m n t =-C . 222n m t =+ D .222t m n =-6.一个直角三角形的两边长分别为8cm 、10cm ,则第三条边长为( )A .6cmB .12cmC .412 cmD .6cm 或412cm 7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1cmB .2cmC .3cmD .4cm8.两条对角线互相垂直平分且相等的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形9.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4, 则该菱形的面积是( )A .16 3B .16C .8 3D .8 10.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠, 点D 落在点D′处,则重叠部分△AFC 的面积为( ) A .10 B .9C .8D .6二、填空题(每题4分,共24分)11.计算:12= .12.如图,△ABC 中,D 、E 分别是AB 、AC 边的中点,且DE=7cm , 则BC= cm . 13.计算:218-= . 14.如果22(7)0a b -+-=,则a b +的值为 .15.菱形的两条对角线长分别为6和8,则这个菱形的周长为 . 16.如图,在矩形ABCD 中,AD=4,AB=3,MN ∥BC 分别交 AB 、CD 于点M 、N ,在MN 上任取两点P 、Q , 那么图中阴影部分的面积是 .三、解答题(每题6分,共18分)17.计算:(278)(32)--+18.如图,在ABCD 中,E ,F 分别在AD ,BC 边上,且AE =CF.求证: 四边形BFDE 是平行四边形.OO19.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,AC 边上的中线BD 求:BD 的长四、解答题(每题7分,共21分)20. 已知32x =+ ,32y =-.求:(1)222y xy x ++ (2)22y x -21. 某中学八年级学生想知道学校操场上旗杆的高度,已知旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,求旗杆的长度.22.如图,在菱形ABCD 中,AC , BD 相交于点O ,E 为AB 的中点,DE ⊥AB. (1)求∠ABC 的度数; (2)若AC=43,求DE 的长.五、解答题(每题9分,共27分)23.如图,在平行四边形ABCD 中,E 为BC 的中点, 连接AE 并延长交DC 的延长线于点F. (1)求证:AB =CF ;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.24.如图,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB. (1)求证:△BCP ≌△DCP ; (2)求∠DPE 的度数;(3)把正方形ABCD 改为菱形,其他条件不变,如图(2),若∠ABC=58°,求∠DPE 的度数.25.如图,在Rt △ABC 中,∠B =90°,AC =60 cm ,∠A =60°,点D 从点C 出发沿CA 方向以4 cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF. (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由; (3)当t 为何值时,∠FDE 为直角?请说明理由.ABCDEO。
2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。
20162017学年度第二学期期中测验八年级数学试卷

7.如图,□ABCD的顶点坐标分别为A(1,4),B(1,1),C(5,2)则点D的坐标为()
A.(5,5) B.(5,6) C.(6,6) D.(5,4)
8.如图,A(0,1),B(3,2),点P为x轴上任意一点,则PA+PB的最小值为( )
A.3 B. C. D.
9.如图,在正方形网格中用没有刻度的直尺作一组对边长度为 的平行四边形。在1×3的正方形网格中最多作2个,在1×4的正方形网格中最多作6个,在1×5的正方形网格中最多作12个…,在1×8的正方形网格中最多作( )个。
A.28 B.42 C.21 D.56
10.如图,正方形ABCD中,点O为对角线交点,直线EF过O点分别交AB、CD于E、F两点(BE>EA),若过点O作直线与正方形的一组对边分别交于GH两点,满足GH=EF,则这样的直线GH(不同于EF)的条数共有()
22.(本题10分)如图1,点D、E、F、G分别为线段AB、OB、OC、AC的中点。
(1)求证:四边形DEFG为平行四边形;
(2)如图2,若点M为EF的中点,BE︰CF︰DG=2:3: ,
求证:∠MOF=∠EFO
23.(本题10分)已知点A为正方形BCDE内一动点,满足∠DAC=135°,且b= + +5.
同理,AB=AD,∴AD=BC,…………………………………………………………………(5分)
(1)求a、b的值;
(2)如图1,若线段AB=b,AC=a,求线段AD的长;
(3)如图2,设线段AB=m,AC=n,AE=h,请探究并直接写出三个量 , , 之间满足的数量关系。
24.(本题12分)在正方形ABCD中,点E为边BC(不含B点)上的一动点,AE⊥EF,且AE=EF,FG⊥BC的延长线于点G。
初二下册数学期中试卷及答案解析

初二下册数学期中试卷及答案解析2017初二下册数学期中试卷及答案解析各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,以下是店铺为大家搜索整理的2017初二下册数学期中试卷及答案解析,希望能给大家带来帮助!一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里。
每小题3分,共36分1.计算的结果是( )A.﹣3B.3C.﹣9D.92.要使二次根式有意义,则x的取值范围是( )A.x>0B.x≤2C.x≥2D.x≥﹣23.在三边长分别为下列长度的三角形中,不是直角三角形的是( )A.5,13,12B.2,3,C.1,,D.4,7,54.在(﹣2)0、、0、﹣、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是( )A.2B.3C.4D.55.设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3④a是18的算术平方根.其中,正确说法有( )个。
A.4B.3C.2D.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是( )A.13B.26C.47D.947.以下描述中,能确定具体位置的是( )A.万达电影院2排B.距薛城高铁站2千米C.北偏东30℃D.东经106℃,北纬31℃8.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2mB.2.5mC.2.25mD.3m9.对于一次函数y=﹣2x+4,下列结论正确的是( )A.函数值随自变量的增大而增大B.函数的图象经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)10.已知点M(3,2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y轴的距离为4,那么点N的坐标是( )A.(4,﹣2)或(﹣5,2)B.(4,﹣2)或(﹣4,﹣2)C.(4,2)或(﹣4,2) D.(4,2)或(﹣1,2)11.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是( )A.点AB.点BC.点CD.点D12.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+3二、填空题,每小题4分,共24分13.若a<14.计算:( + )2﹣ =__________.15.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是__________.16.若直角三角形的两边长为a、b,且+|b﹣8|=0,则该直角三角形的斜边长为__________.17.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为__________cm.(结果保留π)18.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=__________.三、解答题(共7道题,共60分)19.计算:(1)( )× ﹣2 ;(2)(3 ﹣4 )÷ .20.先化简,再求值:(a+2)(a﹣2)+4(a+1)﹣4a,其中a= ﹣1.21.如图,一架长2.5米的梯子,斜靠在竖直的墙上,这时梯子底端离墙0.7米,为了安装壁灯,梯子顶端离地面2米,请你计算一下,此时梯子底端应再向远离墙的方向拉多远?22.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(﹣2,﹣1)表示C点的位置,用(1,0)表示B点的位置,那么:(1)画出直角坐标系;(2)画出与△ABC关于y轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.23.已知一次函数y=kx﹣3,当 x=2时,y=3.(1)求一次函数的表达式;(2)若点(a,2)在该函数的图象上,求a的值;(3)将该函数的图象向上平移7个单位,求平移后的图象与坐标轴的交点坐标.24.勾股定理神秘而每秒,它的证法多样,其巧妙各有不同,其中的”面积法“给小聪明以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)∴ b2+ ab= c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的'证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结__________∵S多边形ACBED=__________又∵S多边形ACBED=__________∴__________∴a2+b2=c2.25.在”美丽薛城,清洁乡村”活动中,东小庄村村长提出了两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,根据图象回答:①若使用时间为7个月,哪种方案更省钱?②若该村拿出6000元的费用,哪种方案使用的时间更长?2015-2016学年山东省枣庄市薛城区八年级(上)期中数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里。
2016-2017学年度八年级下学期数学期中考试参考答案

2016∼2017学年度八年级下学期数学期中考试参考答案1 .C 2.D 3.A 4.C 5.C 6.C 7.A 8.B 9. B 10.C11.±4 12. 33 13. 39 14. 32 15. (0,34) 16. 6517.(1)解:原式=222423+−=2. …………………………………(4分)(2)解:原式=22732⨯ =9=3. …………………………………(8分) 18.(1) 解:原式=63348−++=345+. …………………………………(4分)(2)解:原式=26x ⨯-x 625⨯=x x 153−= -12x .…………………………(8分) 19. 解:设AB =x 米,则BC =BD =(x +2)米 ……………………………………………(2分) ∵ AC =6 米,∠BAC =900∴ AB 2+AC 2 =BC 2…………………………………………(4分)∴ 62 +x 2 = (x+2)2……………………… ……………………………………………………(6分) ∴ x =8 ∴AB = 8米 ………………………………………………………………(7分) 答:水的深度AB 为8米………………………………………………………………………(8分)20.∵AE ∥BF ∴∠CAE =∠ACB ,又∵AC 平分∠BAD ,∴∠CAE =∠BAC ,…………………(2分) ∴∠ACB =∠BAC ,∴AB =BC ,……………………………………………………………………(4分) 同理,AB =AD ,∴AD =BC ,………………………………………………………………………(5分) 又AD ∥BC ,∴AD ∥ BC ,∴四边形ABCD 是平行四边形.……………………………………(7分) ∵AB =BC ,∴□ABCD 是菱形.…………………………………………………………………(8分) (另法:利用四边相等或对角线互相垂直的平行四边形为菱形都行,酌情给分.)21 .⑴∵AB =25,BC =5,AC =5…………(3分)∴△ABC 的周长为5+35.…………(4分) ⑵∵AB 2+BC 2=AC 2∴∠ABC =90°.………………………………………………………………(6分)(3) 2. ………………………………………………………………………………………… (8分)22.解:⑴连接BC ,∵点D 、G 分别为线段AB 、AC 的中点,∴DG ∥ 21BC ,……(2分) 同理,EF ∥ 21BC ,……(3分)∴DG ∥ EF ,∴四边形DEFG 是平行四边形.……(5分) 方法二:连接AO,证明DE ∥ GF 也可.⑵设BE=2x ,CF =3x ,DG =13x,∵E 、F 分别为线段OB 、OC 的中点,∴OE=2x ,OF =3x,……(6分) 又∵□DEFG ,∴EF =13x,……(7分)∵OE 2+OF 2=EF 2∴∠EOF =90°, …………………………………… (8分)又∵点M 为EF 的中点,∴MO =MF ,∴∠MOF =∠EFO .……(10分)23.解:⑴∵a -3≥0,3-a ≥0,……………………………………(2分)∴a =3, b =5. ……………………………………(3分)⑵过点C 作CF ⊥CA ,使CF =CA ,连接AF 、DF ,可证 △DFC ≌△BAC , ………(5分) ∴DF =AB =5,CF =CA =3,又∵∠FCA =∠90º,∴AF =32,∠F AC =45º ………(6分) 又∵∠DAC =135º,∴∠DAF =∠90º,∴AD=22)23(5−=7. …………………(7分)(3)2m 2=3n 2+h 2. ……………………………………(10分)提示:过点A 作GH ∥BE 交DE 、CB 于点G 、H ,可得:AD 2+m 2=n 2+h 2 ① ,由(2)可得:m 2=2n 2+AD 2 ② ,综合①②得:2m 2=3n 2+h 2..24.证明: ⑴∵正方形ABCD ,∴∠B =90º,∴∠BAE +∠AEB =90º又∵AE ⊥EF ,∴∠AEF =90º,∴∠FEG +∠AEB =90º,∴∠BAE =∠FEG ,…………………(1分) 又∵FG ⊥BC ,∴∠G=∠B =90º,∴在△BAE 和△GEF 中,⎪⎩⎪⎨⎧=EF AE GB FEG BAE =∠∠=∠∠∴△BAE ≌△GEF (AAS ) ∴BE =FG .. ……………………………………………………… (3分) ⑵四边形EGFH 是矩形.证明如下:连接FC,由(1)△BAE ≌△GEF (AAS ) ∴AB =EG ,又∵AB =BC ,∴BC =EG ,∴BE+CE=CG+CE,∴BE=GF=CG , ………………………(4分)∴∠DBC =∠FCG=45º,∴DB ∥CF ,又∵HF ∥BC,∴□HBCF , ………………………(5分)∴HB ∥ CF ,又∵∠DBC =∠FCG=45º,BE=CG ,∴△BHE ≌△CFG(SAS)……………………(6分) ∴∠HEB =∠G=90º, ∵HF ∥BC ∴∠EHF =∠HEG =90º∴∠EHF =∠HEG=90º=∠G=90º,∴矩形EGFH.……………………………………………………………………………………(8分) 方法二:设HF 与CD 的交点为M 点,可得到等腰Rt △DHM 和正方形MFGC ,证HF =GE ,也可. 方法三:延长FH 交AB 的于点N 点,可得矩形NBGF ,∴NB =GF =BE =NH ,可证正方形NBHE ,再证明其余三角为90º,从而证明矩形EGFH 也可.(3)由∠ABQ =30º,BP 平分∠QBC ,可得∠QBP =∠CBP =30º,连接CP ,可证△CPB ≌△CPD (SSS ),得∠BCP =45º, ………………………(9分) 可证△CPB ≌△QPB (SAS ),得PQ =PC , ……………………………(10分) 作PH ⊥BC 于H,可设CH=PH=x,则PB=2x,BH=3x, ∴CH =1, ∴PQ =PC =2. ……………………………………………………………(12分)。
2016-2017年第二学期八年级数学期中试卷及答案

2016-2017学年度第二学期期中考试 八年级数学试卷一、选择题.(本大题共个10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题意) 1、下图中是中心对称图形的是( ) 2、已知a <b ,则下列不等式一定成立的是( )A.a+3>b+3B.2a >2bC.-a <-bD.a-b <03、如图,用不等式表示数轴所示的解集,正确的是 ( )A.x <-1 或x ≥3 B .x ≤-1或x >3 C.-1≤x <3 D.-1<x ≤34、已知三角形三边长分别为3,1-2a ,8,则a 的取值范围是 ( )A.5<a <11B. 4<a <10C. -5<a <-2D. -2<a <-55、不等式组4x x m>⎧⎨>⎩的解集是4x >,那么m 的取值范围是 ( )A.m ≥4B.m ≤4C. 3≤x <4D. 3<x ≤46、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,-101236题图过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE的长为( )A . 5B . 6C .7D .87、如图,已知一次函数y =kx+b ,观察图象回答问题: 当kx+b>0,x 的取值范围是 ( )A. x >2.5 B .x <2.5 C. x >-5 D. x <-5 8、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2米,其侧面如图所示(单位:米),则小明至少要买( )平方米的地毯。
A .10B .11C .12D .139、如图,在△ABC 中,∠ACB=90°,∠A=30°,AB 的垂直平分线分别交AB和AC于点D ,E,AE=2,CE=( )A . 1B .2C . 3D .510、如图,△ABC 绕A 逆时针旋转使得C 点落在BC 边上的F 处,则对于结论 ①AC=AF ; ②∠FAB=∠EAB; ③EF=BC ; ④∠EAB=∠FAC,8题图 9题图10题7题图其中正确结论的个数是()A.4个B.3个C.2个D. 1个二、填空题.(本大题共4个小题,每小题4分,共24分,把答案写在题中的横线上)11.不等式2x-3≥x的解集是12、全等三角形的对应角相等的逆命题是命题。