《乘法公式与因式分解》单元检测题3
人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列计算正确的是( )A .a 2·a 3= a 6B .(a 2)3= a 6C .(2a )3=2aD .a 10÷a 2= a 52.下列因式分解正确的是( ) A .()3333x y x y ++=+B .221142x x x ++=+⎛⎫ ⎪⎝⎭ C .()()22x y x y x y -+=+- D .()()22444x y x y x y -=-+ 3.将295变形正确的是( )A .22295905=+B .()()29510051005=+-C .2229510010005=-+D .22295909055=+⨯+ 4.如果29x mx -+(m 是常数)是完全平方式,那么m 的值为( )A .3B .6±C .9±D .65.下列运算正确的是( )A .a 3+a 3=a 6B .a 2•a 3=a 6C .(ab )2=ab 2D .(a 2)4=a 86.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是( ) A .20 B .22 C .26 D .247.下列各式中不能用平方差公式计算的是( )A .()y-x ()x+yB .()2x-y ()-y+2xC .()x-3y ()x+3yD .()4x-5y ()5y+4x 8.已知(x -3)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =3,n =9B .m =3,n =6C .m =-3,n =-9D .m =-3,n =99.如图,长方形ABCD 中812812AB AD <<<<,,放入两个边长都为4的正方形 AEFG ,正方形DJIH 及一个边长为8的正方形KCML ,1S 和2S 分别表示对应阴影部分的面积,若12=S S ,则长方形ABCD 的周长是( )A .36B .40C .44D .4810.如果x y +,x y -与22x y -,4,m n +和mm 分别对应6个字:鹿,鸣,数,我,爱,学,现将()()222244m x y n x y -+-因式分解,结果呈现的可能是哪句话( ) A .我爱鹿鸣 B .爱鹿鸣 C .鹿鸣数学 D .我爱数学二、填空题(共8小题,满分32分)11.如图为杨辉三角表,它可以帮助我们按规律写出()na b +(其中n 为正整数)展开式的系数,请仔细观察表中规律,将()4a b +的展开式补充完整. ()1a b a b +=+ ()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++()4434a b a a b +=++ 22344a b ab b ++12.若4,8x y a b ==,则232x y -可表示为 (用含a 、b 的代数式表示).13.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .14.计算:()2321x x x -⋅+-= . 15.如图所示的运算过程中,若开始输入的值为43,我们发现第1次输出的结果为48,第二次输出的结果为24,…,则第2020次输出的结果为 .16.当2x =时,31ax bx ++的值为6,那么当2x =-时,31ax bx ++的值是 .17.已知关于x 、y 的二次式22754524x xy ay x y ++---可分解为两个一次因式的乘积,则a 的值是 . 18.卫星绕地球运动的速度(第一宇宙速度)为37.910⨯米/秒,求卫星绕地球运行5×103秒后所经过的路程是 米(用科学记数法表示)三、解答题(共6小题,每题8分,满分48分)19.计算.(1)()()2x y a b ++;(2)()()a b a b +-;(3)()13a b a ⎛⎫-- ⎪⎝⎭; (4)()()3223x y x y --;(5)()()322x x +--.20.利用因式分解计算:(1)20032-1999×2001(2)562+442+56×88.21.先化简,再求值:()()()2212112x x x -++-,其中=1x -.22.(1)计算:(﹣2x 2y )3÷(﹣4xy 2);(2)已知,如图,D 是△ABC 的边AB 上一点,AB∥FC ,DF 交AC 于点E ,DE=EF .求证:AE=CE .23.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_______;(2)若10a b c ++=,25ab ac bc ++=则222a b c ++=_______;(3)在棱长为a 的正方体上割去一个棱长为()b b a <的小正方体(如图3),通过用不同的方法计算图中余下几何体的体积,完成填空:()()33____________a b a b -=-.(4)利用(3)得到的恒等式分解因式:3327x y -.24.请阅读游戏玩法并回答问题:(1)如图1,有一个边长为a 的大正方形纸板,在正中心剪下边长为b 的正方形.则阴影部分面积是______.(2)将图1沿虚线剪开后重新拼接成图2,得到一个平行四边形.则这个平行四边形的底是______,高是______,面积是______.(3)由图1到图2可以得到等式______.(4)利用上述得到的等式计算9991001⨯.参考答案:1.B2.B3.C4.B5.D6.D7.B8.A9.B10.A11.612.a b13.()()2232325a b a b a b ab ++=++14.32363x x x --+15.6.16.-417.6。
(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》检测卷(包含答案解析)(3)

一、选择题1.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .a 3-a=a(a+1)(a-1) C .a 2-2a+1=a(a-2)+1 D .x 2+2x-1=(x-1)22.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .123.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭4.如下列试题,嘉淇的得分是( ) 姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+- A .40分B .60分C .80分D .100分5.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-56.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==7.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+ C .()2484x x x +- D .()241x x -8.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9 C .-63 D .12 9.数151025N =⨯是( ) A .10位数B .11位数C .12位数D .13位数10.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+11.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <1008201512.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5二、填空题13.若294x kx ++是一个完全平方式,则k 的值为_____. 14.已知2m a =,5n a =,则2m n a -=___________. 15.若2a 与()23b +互为相反数,则2-=b a ______.16.已知有理数a ,b 满足0ab <,a b a b +=+,521a b b a ++=--,则()31222a b a b ⎛⎫++⋅- ⎪⎝⎭的值为______.17.若2x y a +=,2x y b -=,则22x y -的值为____________. 18.若6x y +=,3xy =-,则2222x y xy +=_____.19.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.20.因式分解:24a b b -=______.三、解答题21.(1)先化简,再求值:()()()22m n m n m n m ⎡⎤-++-÷⎣⎦,其中1m =,3n =-.(2)已知:1x y -=,2xy =,求32232x y x y xy -+的值.22.(1)23235ab a b ab (2)23233x xxx23.因式分解:(1)382a a - (2)()()24129x y x y +-+- 24.第一步:阅读材料,掌握知识.要把多项式am +an +bm +bn 分解因式,可以先把它的前两项分成一组,并提出公因式a ,再把它的后两项分成一组,提出公因式b ,从而得: am +an +bm +bn =a (m +n )+b (m +n ).这时,由于a (m +n )+b (m +n )中又有公因式(m +n ),于是可提出(m +n ),从而得到(m +n )(a +b ),因此有: am +an +bn +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b ).这种方法称为分组法. 第二步:理解知识,尝试填空.(1)ab -ac +bc -b 2=(ab -ac )+(bc -b 2)=a (b -c )-b (b -c )= . 第三步:应用知识,解决问题. (2)因式分解:x 2y -4y -2x 2+8. 第四步:提炼思想,拓展应用.(3)已知三角形的三边长分别是a 、b 、c ,且满足a 2+2b 2+c 2=2b (a +c ),试判断这个三角形的形状,并说明理由.25.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米. ①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入) 26.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________; (2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据因式分解的定义判断即可. 【详解】解:A 、等号左右两边不相等,故错误; B 、a 3-a=a(a+1)(a-1),故正确; C 、右边不是整式的积,故错误; D 、等号左右两边不相等,故错误. 故选:B . 【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.A解析:A 【分析】根据提公因式法及公式法分解即可. 【详解】①242(12)xy xyz xy z -=-,故该项正确; ②2363(12)x x x x --=-+,故该项错误; ③2221(1)a +a a +=+,故该项错误; ④224(2)(2)m n m n m n -=+-,故该项错误; ⑤22222()()x y x y x y -+=-+-,故该项正确; 正确的有:①与⑤共2道题,得40分, 故选:A . 【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.5.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.6.D解析:D 【分析】根据题意逐一计算即可判断. 【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意; 故选:D . 【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.7.D解析:D 【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答. 【详解】解:32484x x x -+ =2421)x x x -+( =()241x x -, 故选:D . 【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键.8.C解析:C 【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-; 故选C . 【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.9.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.10.C解析:C 【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算. 【详解】解:A. 2222a a a +=,故选项A 计算错误; B. 235a a a ⋅=,故选项B 计算错误; C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误; 故选:C 【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.11.D解析:D 【分析】根据平方差公式因式分解然后约分,便可归纳出来即可. 【详解】 解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6, 此选项不符合题意; B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意; C 、∵A 2=2131=24-, 且345674681012<<<<<,∴n ≥2时,恒有A n ≤34,此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯,当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意; 故选择:D . 【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.12.A解析:A 【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解 【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么: 第1次输出的结果是5 第2次输出的结果是16 第3次输出的结果是8 第4次输出的结果是4 第5次输出的结果是2 第6次输出的结果是1 第7次输出的结果是4 ……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等 故选:A 【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律二、填空题13.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±. 【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可. 【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯, ∴k=3±, 故应该填3±. 【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键.14.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可. 【详解】∵2m a =,5n a =,2m na-=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.15.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8 【分析】根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可. 【详解】由题意得:2a +2(3)b +=0∵2a ≥0,2(3)b +≥0, ∴a-2=0,b+3=0, ∴a=2,b=-3, ∴2b-a=-6-2=8, 故答案为:-8. 【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.16.0【分析】分情况讨论或根据绝对值的性质化简得到即可求出结果【详解】解:①时(矛盾)舍去;②时原式故答案是:0【点睛】本题考查代数式的求值解题的关键是掌握绝对值的化简利用整体代入的思想求值解析:0 【分析】分情况讨论,0a >,0b <或0a <,0b >,根据绝对值的性质化简,得到312022a b ++=,即可求出结果.【详解】解:①0a >,0b <时,()521a b b a b a b a ++=--=---=-⎡⎤⎣⎦,610a b ∴++=,0a b a b +=+≥,()61510a b a a b ∴++=+++>(矛盾),∴舍去;②0a <,0b >时,()521a b b a b a a b ++=--=--=-,4310a b ∴++=,312022a b ∴++=, ∴原式()00a b =-=.故答案是:0.【点睛】本题考查代数式的求值,解题的关键是掌握绝对值的化简,利用整体代入的思想求值. 17.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键 解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键. 18.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值. 19.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248a b ab π++【分析】 先求出圆形钢板的面积,再减去两个小半圆的面积即可.【详解】 解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a b πππ+-⨯-⨯, =()2248a b ab π++, 故答案为:()2248a b ab π++.【点睛】 本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.20.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键.三、解答题21.(1)m n -,4;(2)()2xy x y -,2【分析】(1)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的,化简后代入求值进行计算求值;(2)将原式进行因式分解,然后代入求值.【详解】解:(1)()()()22m n m n m n m ⎡⎤-++-÷⎣⎦=2222(2)2m n m mn n m -+-+÷=2(22)2m mn m -÷m n =-当1m =,3n =-时,原式1(3)4=--=(2)32232x y x y xy -+=22(2)xy x xy y -+()2xy x y =-,∵1x y -=,2xy =∴原式=2×12=2.【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =;(2)23233x xx x 23233x xx x 2222369x x x x2222129x x x23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.23.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.24.(1)(b-c )(a-b );(2)(y-2)(x+2)(x-2);(3)这个三角形为等边三角形,理由见解析.【分析】(1)提取b-c 即可;(2)先分组,用提取公因式法分解,再用平方差公式分解即可;(3)移项后分解因式,可得出a=b=c ,则可得出答案.【详解】解:(1)a (b-c )-b (b-c )=(b-c )(a-b ).故答案为:(b-c )(a-b );(2)x 2y-4y-2x 2+8=(x 2y-4y )-(2x 2-8)=y (x 2-4)-2(x 2-4)=(y-2)(x 2-4)=(y-2)(x+2)(x-2);(3)这个三角形为等边三角形.理由如下:∵a 2+2b 2+c 2=2b (a+c ),∴a 2+2b 2+c 2-2ba-2bc=0,∴a 2-2ab+b 2+b 2-2bc+c 2=0,∴(a-b )2+(b-c )2=0,∵(a-b )2≥0,(b-c )2≥0,∴a-b=0,b-c=0,∴a=b=c ,∴这个三角形是等边三角形.【点睛】本题考查分组因式分解,等边三角形的定义.能理解题意,掌握分组分解法是解题关键. 25.(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.26.(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,解得n=3,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.。
《整式的乘法与因式分解》单元检测卷(附答案)

m=-1或m=3.
故选C.
点睛:本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
二、填空题(每小题3分,共24分)
11.计算:-x2·x3=________; =________; ×22016=________.
A. B. C. D.
【答案】B
【解析】
设S=1+a+a2+a3+a4+…+a2016①,
在等式两边同乘以a得aS=a+a2+a3+a4+…+a2016+a2017②,
②-①得(a-1)S=a2017-1,
∴S= .
故选B
6.(-2)0等于( )
A. -2B. 0C. 1D. 2
【答案】C
【解析】
根据零指数的定义:a0=1(a≠0)可知:(-2)0=1.
(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).
20.(8分)化简:
(1)(a+b-c)(a+b+c);
(2)(2a+3b)(2a-3b)-(a-3b)2.
21.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.
22.因式分解:
(1)6xy2-9x2y-y3; (2)(p-4)(p+1)+3p.
【答案】(1).y(x-1)(2).4(x-3)2
【解析】
(1)xy-y=y(x-1);
(2)4x2-24x+36=4(x2-6x+9)= 4(x-3)2.
15.计算:2016×512-2016×492的结果是________.
【答案】403200
【解析】
人教版(五四制)2019-2020八年级数学第二十一章整式的乘法与因式分解单元综合能力提升检测题3(附答案)

∵4x2-mx+81=(2x)2-mx+92,
∴-mx=±2•2x•9,
解得m=±36.
故答案为:36或-36.
17.(18a2﹣8b2)
【解析】
【分析】
根据长方形的面积公式列出算式,再根据多项式乘多项式法则化简可得.
【详解】
该绿化带的面积为(6a+4b)×(3a-2b)
=18a2-12ab+12ab-8b2
=18a2-8b2(平方米).
【点睛】
本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及代数式的求值.
人教版(五四制)2019-2020八年级数学第二十一章整式的乘法与因式分解单元综合能力提升检测题3(附答案)
1.已知a=2 002x+2 003,b=2 002x+2 004,c=2 002x+2 005,则多项式a2+b2+c2-ab-bc-ca的值为( )
A.0 B.1 C.2 D.3
2.下列运算中正确的是()
18.
【解析】
【分析】
提取公因式2x后再利用平方差公式因式分解即可.
【详解】
.
故答案为: .
【点睛】
本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键.
19.104020(或其它组合
【解析】
【分析】
首先将多项式9y3﹣x2y进行因式分解,得到9y3﹣x2y =y(3y+x)(3y-x),然后把x=10,y=10代入,分别计算出3y+x及3y-x的值,从而得出密码.
【点睛】
本题主要考查因式分解,解题的关键是熟练掌握平方差公式和完全平方公式.
16.4
【解析】
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)

人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上册第十四章整式的乘法与因式分解单元测试(3)一、选择题(共14 小题,每小题 3 分,共42 分)1.若,,则等于()A. B. C. D.2.把多项式因式分解的结果是()A. B.C. D.3.以下二次三项式在实数范围内一定不能分解因式的是()A. B.C. D.4.代数式与的公因式是()A. B. C. D.5.计算的结果是()A. B. C. D.6.若为整数,则一定能被()整除.A. B. C. D.7.下列多项式中,能运用公式法进行因式分解的是()A. B.C. D.8.下列运算中,正确的是()A. B.C. D.9.分解因式的正确结果是()A. B.C. D.10.如果的展开式中只含有这一项,那么的值为()A. B. C. D.不能确定11.设,如果,,,那么、、的大小关系为()A. B. C. D.不能确定12.若,那么的值是()A. B. C. D.13.下多项式中,在实数范围内能分解因式的是()A. B.C. D..14.若,且,则A. B. C. D.卷II(非选择题)二、填空题(共6 小题,每小题 3 分,共18 分)15.已知,,则________.16.已知,,则①________ ②________.17.若多项式是完全平方展开式,则________.18.要使多项式不含关于的二次项,则与的关系是________.19.如图,是一个长为,宽为的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图的形状拼图.图中的图形阴影部分的边长为________;(用含、的代数式表示)请你用两种不同的方法分别求图中阴影部分的面积;方法一:________;方法二:________.观察图,请写出代数式、、之间的关系式:________.20.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则________.三、解答题(共8 小题,共90 分)21.(11分) 计算:;.22.(11分) 因式分解:(1)(2)(3)23.(11分)关于的多项式分解因式后有一个因式是,试求的值.24.(11分)一个单项式加上多项式后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写个)25.(11分)已知(、为整数)是及的公因式,求、的值.26.(11分)已知展开后的结果中不含、项.求的值.27.(11分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.28.(13分)如图所示,某规划部门计划将一块长为米,宽为米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.答案1.C2.D3.D4.A5.B6.A7.C8.D10.A11.A12.C13.D14.D15.16.17.18.相等19.20.21.解:;.22.解:(1);(2);(3).23.解:,.24.解:①加,则;②加,则;③加,则.25.解:∵二次三项式既是的一个因式,也是的一个因式,∴也必定是与差的一个因式,而,∴,∴,.26.解:因为展开后的结果中不含、项所以所以.27.解:28.解:(平方米),当,时,(平方米).人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a •=B .()239a a = C .5510x x x += D .78y y y •=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++ B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(123(2)853|--(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6 21.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章整式的乘法与因式分解单元测试题 一、选择题1.下列各式由左边到右边的变形为因式分解的是( ) A.a 2-b 2+1=(a+b)(a-b)+1 B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t 2.分解因式:x 3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
《整式的乘法与因式分解》单元检测题含答案

A. 9B. 27C. 54D. 81
[答案]B
[解析]
解:A2+2B2+2C2﹣2A B﹣2B C﹣6C+9=(A2﹣2A B+B2)+(B2﹣2B C+C2)+(C2﹣6C+9)=(A﹣B)2+(B﹣C)2+(C﹣3)2=0,∴(A﹣B)2=0,(B﹣C)2=0,(C﹣3)2=0,∴A=B,B=C,C=3,即A=B=C=3,∴A B C=27.故选B.
20.计算:﹣5A2(3A B2﹣6A3)
21.计算:(x﹣1)(x+3)﹣x(x﹣2)
22.化简:(2A+1)2﹣(2A+1)(﹣1+2A)
23.分解因式:25m2﹣n2
24.分解因式:6A2B﹣4A3B3﹣2A B
25 因式分解:x2﹣5x+4;
26.已知(A+B)2=7,(A-B)2=3.
(1)求A2+B2、A B的值;(2)求A4+B4的值.
B选项:(﹣A2)3=-A6,故是错误的;
C选项:A3和A4不能直接相加,故是错误的;
D选项:A2•(A3)4=A14,故是正解的;
故选D.
[点睛]主要考查了同底数幂乘法、积的乘方、幂的乘方和除法法则,正确记忆运算法则是解题关键.
4.在①-A5·(-A)2;②(-A6)÷(-A3);③(-A2)3·(A3)2;④[-(-A)2]5中计算结果为-A10的有( )
16.若多项式x2﹣(k+1)x+9 完全平方式,则k=______.
《整式的乘法与因式分解》单元检测带答案

故选D.
2.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分
可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()
A. m+3B. m+6
C 2m+3D. 2m+6
[答案]C
[解析]
[分析]
由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.
三、解答题(共5题;共30分)
19.先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x= ,y=2.
[答案]xy- ;-2
[解析]
试题分析:首先根据平方差公式和单项式与多项式的乘法法则将多项式展开,然后进行合并同类项,最后将x和y的值代入化简后的式子进行计算.
试题解析:原式= - - -xy+2xy=xy-
A. B. C. D.
[答案]B
[解析]
[分析]
由于边长为(2m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积剩余部分的面积可以求出,而矩形一边长为m,利用矩形的面积公式即可求出另一边长.
[详解]依题意得剩余部分为:
(2m+3)2−(m+3)2=4m2+12m+9−m2−6m−9=3m2+6m,
A.平行四边形B.矩形C.菱形D.正方形
[答案]A
[解析]
因为A2+B2+C2+D2=2A C+2B D,所以A2-2A C+C2+B2-2B D+D2=0,
《整式的乘法与因式分解》单元检测(含答案)

(1) 用含a、b的代数式表示绿化面积;
(2) 求出当a=3米,b=2米时的绿化面积.
24.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
【详解】∵a2n-1an+5=a16,
∴a2n-1+n+5=a16,即a3n+4=a16,
则3n+4=16,
解得n=4,
故选B.
【点睛】本题考查了同底数幂 乘法,属于基础题,解答本题的关键掌握同底数幂的运算法则.
4.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()
A.1﹣3abB.﹣3abC.1+3abD.﹣1﹣3ab
A. 60B. 50C. 25D. 15
二.填空题(共8小题)
11.计算:0.6a2b• a2b2﹣(﹣10a)•a3b3=_____.
12.如果(nx+1)(x2+x)的结果不含x2的项(n为常数),那么n=_____.
13.若2018m=6,2018n=4,则20182m﹣n=_____.
14.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩下的钢板的面积为_____.
【详解】解:a2﹣16=(a+4)(a﹣4).
【点睛】本题主要考查用平方差公式进行分解因式,牢记公式是解题的关键.
17.已知4×2a×2a+1=29,且2a+b=8,求ab=_____.
【答案】9
【解析】
【分析】
先由第一个等式求出a的值,再求出b的值,相乘即可求的答案.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单县实验中学初一数学
第十二章 《乘法公式与因式分解》测试(3)
班级 姓名
一、填空题
1.写出一个以2ab 为公因式的多项式是______________,因式分解得____________。
2.用提公式法因式分解后含有因式a+2b 的多项式为____________或____________。
3.多项式x 2
-4y 2
与x 2
+4xy+4y 2
含有的公因式是___________________。
4.若多项式y 2+my+1是一个二项式的平方,则m 的值为_______________。
5.x 2+4x+_______=(x+______)2;m 4-________=(m 2+5)(m 2-_______)。
6.已知正方形的面积是9x 2
+6xy+y 2
(x>0,y>0),则正方形的边长是_______________。
7.因式分解:
(1)xy xy y x -+22=___________,(2))()(y x b y x a +-+=________________ (3)1-25a 2
=___________,(4)4a 2
+4a+1=________. 8.___________________=-3ma(a 2-2a+4)。
9.__________=(2x+y )(2x -y),_____________=(3a+2b )2。
10.利用因式分解计算(1)2.186×1.237-1.237×1.186=____________, (2)7582—2582=______________。
二、选择题
1.要使等式(a+b)2+( )=(a -b)2成立,则括号内应填上( )。
A .2ab B .-2ab C .4ab D .-4ab 3.已知a 2+b 2+2a+4b=-5,则a 、b 的值为( )。
A .1和2
B .-1和2
C .1和-2
D .-1和-2 4.已知a 2-b 2=5,且a 、b 均为整数,则满足条件的数a 、b 有( )。
A .1对 B .2对 C .3对 D .4对 5.若x 2+
x x x
1,612
-=则的值为( )。
A .2 B .-2 C .2± D .以上都不对 6.下列由左到右的变形,属于因式分解的是( ) A .(x+2)(x -2)=x 2
-4 B .x 2
-4=(x+2)(x -2) C .x -2-4+3x=(x+2)(x -2)+3x D .x 2+4=(x+2)2
7.把多项式-3x 2+6xy -3x 因式分解结果正确的是( )。
A .-3x(x+2y -1) B .-3x(x -2y) C .-3x(x+6y -1) D .-3x(x -2y+1)
8.-(2x -y)(2x+y)是下列哪一个多项式的分解结果( )。
A .4x 2-y 2 B .4x 2+y 2 C .-4x 2-y 2 D .-4x 2+y 2
9.把m 2(a -2)+m(2-a)分解因式,结果正确的是( )
A .(a -2)(m 2-n)
B .m(a -2)(a+1)
C .m(a -2)(m -1)
D .m(2-a)(m+1) 10.下列各多项式中能用提取公因式因式分解的是( )。
A .x 2+2x+1
B .ab 2-3cd 2
C .a(x+y)+b(x -y)
D .mn 2-m 2n 11.下列各多项式中不能用公式a 2-b 2=(a+b)(a -b)因式分解的是( )。
A .-0.0036a 8-0.04b 6 B .x 2-16 C .-x 2+y 2z 2 D .-0.01n 2+9
4m 2
12.下列多项式能用公式a 2+2ab+b 2=(a+b)2因式分解的是( )。
A .a 2-ab+b 2 B .a 2+b 2 C .a 2+2ab -b 2 D .a 2-ab+4
1b 2 三、解答题
1.用提取公因式法因式分解:
(1)14abx -8ab 2x+2ax (2)-7ab -14abx+49aby
(3)15x 3y 2+5x 2y -20x 2y 3 (4)a(x -a)+b(a -x)-c(x -a)
2.用公式法因式分解:
(1)a 2p 2-b 2q 2 (2)(m+n)2-n 2
(3)4a 2+36a+81 (4)25a 4-40a 2b 2+16b 4
(5)3ax2-3ay4(6)-a-2a2-a3
3.把下列各多项式因式分解:
(1)x3z+4x2yz+4xy2z (2) (2x+y)2-(x+2y)2
(3) (x-y)2+12(x-y)+ 36 (4) 12x(3x-y)+y2
4.计算:
(1) (m+n)(m-n)(m2-n2) (2) (2x+y-3)2
(3) (x+3y)2(x-3y)2(4) (4m2-3n2)2
(5) 3(m+1)2-5(m+1)(m-1)+2(m-1)2(6) [(x+y)2+(x-y)2](x2-y2)
5.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值。
6.已知x+
x
1
=3,求x2+
2
1
x
,x4+
4
1
x
的值。
7.已知(x+y)2=26,(x-y)2=10,求x2+y2,xy的值。
8.如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为b(b<
2
a
)厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积。
10.阅读下列计算过程:
99×99+199=992+2×99+1=(99+1)2=100 2=10 4
(1).计算:
999×999+1999=____________=_______________=_____________=_____________;
9999×9999+19999=__________=_______________=______________=_______________。
(2).猜想9999999999×9999999999+19999999999等于多少?写出计算过程。