化学能与电能

合集下载

2.2.3 化学能与电能 知识点归纳

2.2.3 化学能与电能 知识点归纳

必修二第二章第二节化学能与电能一次能源和二次能源点拨:电能是当今社会应用最广泛的二次能源。

化学能转化为电能1.化学能间接转化为电能——火力发电(1)过程:(2)关键:燃烧(氧化还原反应)是使化学能转换为电能的关键。

2.化学能直接转化为电能——原电池(1)实验探究(2)原电池①定义:将化学能转变为__电能__的装置。

点拨:原电池反应的本质是一个自发的放热的氧化还原反应。

原电池原理的应用问题探究:1.NaOH+HCl===NaCl+H2O,能利用这个反应设计成原电池吗?为什么?2.锌与稀硫酸反应制H2时向溶液中加少量CuSO4后,为什么反应速率加快?原电池原理的应用探究提示:1.不能。

因为该反应不是氧化还原反应。

2.锌置换出的铜附着在锌上,铜、锌、稀硫酸构成原电池。

知识归纳总结:1.加快氧化还原反应的速率:(1)原理:原电池中,氧化反应和还原反应分别在两极进行,使溶液中离子运动时相互的干扰减小,使反应速率增大。

(2)实例:实验室用Zn和稀硫酸反应制取氢气时,可滴入几滴硫酸铜溶液,形成原电池,加快反应速率。

2.比较金属活泼性强弱:(1)原理:一般原电池中,活泼金属作负极,发生氧化反应,不活泼金属作正极,发生还原反应。

(2)实例:有两种金属A和B,用导线连接后插入稀硫酸中,观察到A 极溶解,B极上有气泡产生。

由原电池原理可知,金属活动性A>B。

3.设计原电池:(1)依据:已知一个氧化还原反应,首先分析找出氧化剂、还原剂,一般还原剂为负极材料(或在负极上被氧化),氧化剂(电解质溶液中的阳离子)在正极上被还原。

(2)选择合适的材料。

①电极材料:电极材料必须导电。

负极材料一般选择较活泼的金属材料,或者在该氧化还原反应中,本身失去电子的材料。

②电解质溶液:电解质溶液一般能与负极反应。

(3)实例以Fe+CuSO4===FeSO4+Cu为例原电池的工作原理问题探究:1.在铜锌原电池中,电子是怎样移动的?电子能否通过电解质溶液?如果不能,电流是如何形成的?2.若将稀硫酸换作硫酸铜溶液,能否产生电流?电极反应有何不同?原电池的工作原理探究提示:1.由于金属锌比金属铜活泼,锌失去电子,电子通过导线2+流向铜片。

化学能与电能

化学能与电能

化学能与电能(1)概念:把化学能直接转化为电能的装置叫做原电池。

(2)原电池的工作原理:通过氧化还原反应(有电子的转移)把化学能转变为电能。

(3)构成原电池的条件:(1)电极为导体且活泼性不同;(2)两个电极接触(导线连接或直接接触);(3)两个相互连接的电极插入电解质溶液构成闭合回路。

(4)电极名称及发生的反应:负极:较活泼的金属作负极,负极发生氧化反应,电极反应式:较活泼金属-ne-=金属阳离子负极现象:负极溶解,负极质量减少。

正极:较不活泼的金属或石墨作正极,正极发生还原反应,电极反应式:溶液中阳离子+ne-=单质正极的现象:一般有气体放出或正极质量增加。

(5)原电池正负极的判断方法:①依据原电池两极的材料:较活泼的金属作负极(K、Ca、Na太活泼,不能作电极);较不活泼金属或可导电非金属(石墨)、氧化物(MnO2)等作正极。

②根据电流方向或电子流向:(外电路)的电流由正极流向负极;电子则由负极经外电路流向原电池的正极。

③根据内电路离子的迁移方向:阳离子流向原电池正极,阴离子流向原电池负极。

④根据原电池中的反应类型:负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。

正极:得电子,发生还原反应,现象是常伴随金属的析出或H2的放出。

(6)原电池电极反应的书写方法:(i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。

因此书写电极反应的方法归纳如下:①写出总反应方程式。

②把总反应根据电子得失情况,分成氧化反应、还原反应。

③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。

(ii)原电池的总反应式一般把正极和负极反应式相加而得。

(7)原电池的应用:①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。

②比较金属活动性强弱。

③设计原电池。

④金属的腐蚀。

2、化学电源基本类型:①干电池:活泼金属作负极,被腐蚀或消耗。

2.2 化学能与电能 (共40张PPT)

2.2 化学能与电能 (共40张PPT)

总反应: Zn + Cu2+ = Zn 2+ + Cu
电极反应方程式的书写方法
负极:较活泼金属(a)
电极反应:a-ne-=an+ (氧化反应)
正极:较不活泼金属或非金属(b)
电极反应: Cm+ + me- = C(还原反应)
化学能 间接:
燃烧
蒸汽 发动机 机械能 电能 热能
直接:
装置
原电池 概 念 构 成 条 件
NO3-
K+ NO3-
e e e e e
Cu2+
Cu2+
Cu2+ Cu2+ Cu2+ Cu2+
Cu2+ Cu2+
2+ Cu2+ e e Cu e e Cu2+ e e Cu2+ Cu2+ e Cu2+ e e e Cu2+ Cu2+ ee Cu2+ e
Cu2+ Cu2+
Zn
Zn
H2SO4 A
H2SO4
C
H2SO4
A
4.如何书写电极反应方程式
负极(锌片): Zn -2e - = Zn 2+ 正极(石墨): 2H++2e - = H2 ↑ 总反应: Zn + 2H+ = Zn 2+ + H2 ↑ 负极(锌片): Zn -2e - = Zn 2+ 正极(铜片): Cu2+ + 2e - = Cu
一 . 一次能源和二次能源
一次能源: 从自然界中直接取得的能源.如:煤,石 油,天然气等. 二次能源: 经一次能源加工转移得到的能源.

化学能与电能的转化

化学能与电能的转化

化学能与电能的转化能量是物质存在的一种形式,可以在不同形式之间进行转化。

其中,化学能和电能是常见的两种能量形式。

化学能是指物质中所蕴含的储存能量,而电能则是指电荷在电场中所具有的能量。

化学能与电能之间的转化在我们日常生活中有着广泛的应用和重要的意义。

一、化学能转化为电能化学能转化为电能主要依赖于电化学反应。

电化学反应是一种将化学反应与电现象耦合起来的反应过程,通过控制电子的流动,将储存在化学物质中的能量转化为电能。

1. 电池的工作原理电池是一种能够将化学能转化为电能的装置。

常见的电池有原电池、干电池、锂电池等。

以干电池为例,通过化学反应将储存在干电池中的化学能转化为电能。

干电池中存在阴极、阳极和电解质三个部分。

化学反应导致电解质中出现电荷的不平衡,从而形成一个电场,使得电子在阴极和阳极之间流动,产生电流,最终将储存在化学物质中的能量转化为电能。

2. 燃料电池的应用燃料电池是一种将化学能直接转化为电能的装置,其工作原理类似于电池。

燃料电池通过将燃料(如氢气、甲烷等)与氧气在电解质中进行氧化还原反应,产生电流,将化学能转化为电能。

燃料电池具有高效、环保的特点,被广泛应用于汽车、航空航天等领域。

二、电能转化为化学能电能转化为化学能的过程主要通过电解反应实现。

电解反应是一种利用电能来促使化学物质发生氧化还原反应的过程,将电能转化为储存在化学物质中的能量。

1. 电解水电解水是将电能转化为化学能的经典例子。

在电解水中,通过外加电压使得水分子发生氧化还原反应,产生氢气和氧气。

在这个过程中,电能被转化为化学键的能量,从而储存在氢气和氧气分子中。

2. 光合作用光合作用是一种将光能转化为化学能的重要过程。

植物通过叶绿素等色素吸收太阳光的能量,将其转化为化学能,并储存在葡萄糖等有机物中。

这个过程中,光能被转化为化学键的能量,从而形成储存能量丰富的化学物质。

三、化学能和电能的应用与意义化学能和电能的转化在现代社会中有着广泛的应用,并具有重要的意义。

《化学能与电能》优秀的教学设计(精选6篇)

《化学能与电能》优秀的教学设计(精选6篇)

《化学能与电能》优秀的教学设计(精选6篇)《化学能与电能》优秀的教学设计1一.教材分析原电池原理是中学化学重要基本理论之一,从能量转换角度看,本节课程内容是对前一节课中“一种形式的能量可以转化为另一种形式的能量……能量也是守恒的;化学能是能量的一种形式,可以转化为其他形式的能量,如热能和电能等”论述的丰富和完善。

从反应物之间电子转移的角度看,原电池概念的形成是氧化还原反应本质的拓展和应用;从思维角度看,“将化学能直接转化为电能”的思想,是对火力发电的原理“化学能→热能→机械能→电能”思维方式的反思和突破。

二.教学目标1.知识与技能目标:(1)知道原电池是一种化学能转化为电能的装置,知道原电池的本质是氧化还原反应。

(2)掌握原电池的组成条件,会判断正负极,会判断电流、电子、溶液中离子流动的方向。

会书写铜锌原电池的电极反应式。

(3)能用日常生活中的材料制作简易水果电池。

(4)能举例说明化学能与电能的转化关系及其应用。

初步认识传统干电池、二次电池及常见的新型电池。

2.过程与方法目标:(1)通过分析火力发电的原理及利弊,建立“将化学能直接转化为电能”的新思路,通过对氧化还原反应的本质的分析,提出实现新思路的各种推测和猜想等,培养创新思维能力。

(2)通过实验2-4(改进)的层层推进,培养学生在实验中观察现象、分析现象解决问题的能力,从而自己归纳、概括形成“原电池”的概念,并根据已有电学知识生成跟原电池相关的概念(正负极、离子移动方向判断等)。

(3)通过科学探究,让学生根据实验2-4的已有知识设计实验,并初步学会控制实验条件的方法。

(4)通过思考与交流,让学生学会联系实验和已有知识,学会用比较归纳的方法认识事物的本质特征。

(5)利用氧化还原反应的知识分析常见化学电源,学会用基本理论指导实际应用。

3.情感态度与价值观目标(1)通过科学探究和实践活动——水果电池的制作,体验科学探索的乐趣。

(2)通过化学电源的发展和新型化学电源开发利用的介绍,让学生体会化学的实用性和创造性,通过认识化学电源可能会引起的环境问题,初步形成较为客观、正确的能源观。

化学能与电能

化学能与电能

化学能与电能能量是指物体或系统能够完成某种工作的能力。

在物质世界中,能量有很多形式,包括化学能、电能等。

本文将从这两种能量出发,探讨它们的联系、特点以及应用领域。

首先,化学能是一种常见的能量形式,它与物质的化学结构和组成有关。

化学能通常存储在化学键中,当化学反应发生时,化学键会断裂或形成,从而释放或吸收能量。

比如,燃烧是一种常见的化学反应,燃烧过程中化合物的化学键断裂,并与氧气反应,形成新的化合物。

这个过程释放出的能量就是化学能。

化学能具有以下特点:首先,化学能的转化是发生在分子和原子层次的。

化学反应涉及原子和分子的重新组合和转换,因此化学能转化的过程常常比较复杂。

其次,化学能与产生它的物质的性质有关。

不同物质的化学能量是不同的,这是因为它们的结构和组成不同。

再次,化学能是可逆的。

在化学反应中,能量可以从一个物质转移到另一个物质,然后再返回原来的物质。

化学能在生活和工业中有着广泛的应用。

例如,我们经常使用的电池就是利用化学能产生电能的。

电池中的化学能主要来自于化学反应,当反应进行时,化学能转换为电能。

此外,化学能也广泛应用于燃料的利用。

煤、石油、天然气等燃料都含有丰富的化学能,当它们被燃烧时,化学能被释放出来,转化为热能或电能,从而用于供暖、发电等方面。

其次,电能是一种由电荷运动形成的能量形式。

当电荷在导体中流动时,就会产生电流,从而产生电能。

电流可以通过导线传递,使电能转化为其他形式的能量,比如光能、热能等。

电能具有以下特点:首先,电能是一种集中式能量。

电能可以通过输电线路远距离传输,使得能量的分配和利用更加灵活。

其次,电能易于控制。

通过调节电流的大小和方向,我们可以灵活地操控电能,实现不同的功能。

最后,电能损失较小。

在输电过程中,电能损失很少,这使得电能非常高效。

电能在现代社会中有着广泛的应用。

例如,我们使用的电灯、电冰箱、电视等家用电器,都是利用电能供电的。

此外,电能还广泛应用于交通运输、通信、医疗等领域。

高一化学人教版必修二第二章第2节《化学能与电能》知识点总结

高一化学人教版必修二第二章第2节《化学能与电能》知识点总结

第2节 化学能与电能一、能源的分类1.化学能间接转化为电能(在能量的转化过程中存在能量的损失)—比如火力发电 ①转化过程火力发电是通过化石燃料的燃烧,使化学能转化为热能,加热水使之汽化为蒸汽以推动蒸汽轮机,然后带动发电机发电.燃煤发电是从煤中的化学能开始的一系列能量转化过程.化学能−−→−燃烧热能−−→−蒸汽机械能−−→−发电机电能 ①转化原理燃烧(氧化还原反应)是使化学能转化为电能的关键.因此燃烧一定发生氧化还原反应,氧化还原反应必定有电子的转移,电子的转移引起化学键的重新组合,同时伴随着体系能量的变化. 拓展点1:火力发电的优缺点优点:①我国煤炭资源丰富①投资少,技术成熟,安全性能高缺点:①排出大量的能导致温室效应的气体CO 2以及导致酸雨的含硫氧化物,比如SO 2①消耗大量的不可再生的化石燃料资源①能量转化率低①产生大量的废渣、废水.2.化学能直接转化为电能(在能量的转化过程中不存在能量的损失)—原电池(将氧化还原反应所释放的化学能直接转化为电能)(1)原电池的工作原理实验现象产生的原因分析2+会逐渐溶解,而由Zn失去的电子则由Zn片通过导线流向Cu片,因此Zn片上会带有大量的正电荷,Cu片上会带有大量的负电荷,而电解质溶液中含有阳离子(H+、Zn2+)以及阴离子(OH-、SO42-),由于正负电荷相互吸引,所以电解质溶液中的阳离子会移向Cu片去中和Cu片上带负电荷的电子,阴离子则移向Zn片去中和Zn片上的正电荷,但是由于溶液中的H+得电子能力比Zn2+强,所以H+就移向Cu片去获得Cu片上由Zn片失去的电子而被还原为H原子,H 原子再结合成H分子即H2从Cu片上逸出,因此Cu片上有无色气泡产生.通过电流表指针发生偏转并且指针偏向于Cu片这一边,可以得出该装置产生了电流(而电流的形成是因为电子发生了定向移动),并且电流移动的方向与电子移动的方向相反,所以电流是从Cu片流出,Zn片流进,即Cu片作为正极;Zn片作为负极.原电池工作原理的总结归纳:①原电池中电流的流向:正极→负极①原电池中电子的流向:负极→导线→正极(注意:在该过程中,电子是永远都不会进入到电解质溶液中,因为电子只在金属内部运动并且电解质溶液中的自由移动的阴阳离子也不能在导线中通过)①原电池中电解质溶液中阴、阳离子的移动方向:阳离子→正极阴离子→负极①原电池工作原理的本质:发生自发的氧化还原反应即将氧化还原反应的电子转移变成电子的定向移动,将化学能转化为电能的形式释放.(所谓自发就是指该氧化还原反应不需要借助外在的力量即本身就能够自己发生)①原电池中的负极发生氧化反应,通常是电极材料或还原性气体失去电子被氧化,电子从负极流出;原电池的正极发生还原反应,通常是溶液中的阳离子或O2等氧化剂得到电子被还原,电子流入正极.(2)原电池的构成条件(两极一液一回路,反应要自发)①两极:正极和负极是两种活泼性不同的电极材料,包括由两种活泼性不同的金属材料构成的电极或者是由一种金属与一种非金属导体(如石墨)构成的电极,一般活泼性较强的金属作为负极.①一液(电解质溶液):包括酸、碱、盐溶液.①一回路(构成闭合的电路):即两电极由导线相连或直接接触以及两电极必须插入到同一种电解质溶液中或者分别插入到一般与电极材料相同的阳离子的两种盐溶液中,两盐溶液之间用盐桥相连形成闭合回路.比如以下装置:①氧化还原反应要自发:指电解质溶液至少要与作为负极的金属电极材料发生自发的氧化反应.(3)电极反应式①定义:原电池中的正极和负极所发生的反应①电极反应式的书写方法:补充:复杂电极反应式的书写如CH4碱性燃料电池负极反应式的书写:CH4+2O2+2OH-===CO2-3+3H2O……总反应式2O2+4H2O+8e-===8OH-……正极反应式CH4+10OH--8e-===7H2O+CO2-3……负极反应式注意:①电极反应式的书写必须遵守离子方程式的书写要求,比如难溶物、弱电解质、气体等均应写成化学式形式.①注意电解质溶液对正、负极反应产物的影响.如果负极反应生成的阳离子能与电解质溶液中的阴离子反应,则电解质溶液中的阴离子应写入电极反应式中,例如Fe与Cu在NaOH溶液中形成原电池,负极反应式为:Fe+2e-+2OH-=Fe(OH)2.三、原电池的应用(1)比较金属的活动性强弱①原理:一般原电池中活动性较强的金属作负极,活动性较弱的金属作正极.①应用:比如A、B两种金属用导线连接或直接接触后插入到稀H2SO4电解质溶液中,若A极溶解,B极有气泡产生,由此可判断A是负极,B是正极,活动性:A>B.(2)加快氧化还原反应的速率①原理:在原电池中,氧化反应与还原反应分别在两极进行,溶液中的粒子运动时相互间的干扰小,从而使化学反应速率加快.①应用:比如实验室中用Zn和稀H2SO4制取H2时,通常滴入几滴CuSO4溶液,能够加快产生H2的速率.原因在于Zn 与置换出的Cu构成了原电池,加快了反应的进行.(3)防止金属被腐蚀(比如要保护一个铁闸,可用导线将其与一Zn块相连,使Zn作原电池的负极,铁闸作正极)补充:金属腐蚀①定义:指金属或合金与周围接触到的气体或液体发生化学反应,使金属失去电子变为阳离子而消耗的过程.②金属腐蚀的分类:化学腐蚀和电化学腐蚀在金属腐蚀中,我们把直接发生氧化还原反应且不构成原电池的腐蚀称为化学腐蚀;而由不纯的金属与电解质溶液接触时形成的原电池反应而引起的腐蚀称为电化学腐蚀,电化学腐蚀又分为吸氧腐蚀和析氢腐蚀:在潮湿的空气中,钢铁表面吸附一层薄薄的水膜,里面溶解了少量的O2、CO2等气体,含有少量的H+和OH-从而形成电解质溶液.A.当电解质溶液呈中性、弱碱性或弱酸性时,它跟钢铁里的Fe和少量的C形成了无数个微小的原电池,Fe作负极,C 作正极,因此钢铁发生吸氧腐蚀.电极反应式为:负极(Fe):2Fe-4e-=2Fe2+ 正极(C):O2+2H2O+4e-=4OH-总反应式为:2Fe+O2+2H2O=Fe(OH)2B.当电解质溶液的酸性较强时,钢铁则发生析氢腐蚀.电极反应式为:负极(Fe):Fe-2e-=Fe2+ 正极(C):2H++2e-=H2↑总反应式为:Fe+2H+=Fe2+ +H2↑(4)制作各种化学电源(比如制作干电池、铅蓄电池、新型高能电池等)(5)设计制作原电池①设计电路原电池的设计要满足构成原电池的四个条件:(a)由两种活动性不同的金属或由一种金属与其他导电的材料(非金属或某些氧化物)作为电极材料;(b)两个电极必须浸在电解质溶液中;(c)两个电极之间要用导线连接形成闭合回路;(d)有自发进行的氧化还原反应.②电极材料的选择电池的电极必须导电.电池中的负极必须能够与电解质溶液反应,容易失去电子,因此负极一般是活泼的金属材料.正极和负极之间只有产生电势差,电子才能定向移动,所以正极和负极一般不用同一种材料.③电解质溶液的选择电解质是使负极材料放电的物质.因此电解质溶液一般要能够与负极发生反应,或电解质溶液中溶解的其他物质与负极发生反应(如空气中的O2).但是如果两个半反应分别在两个容器中进行(中间连接盐桥),则左、右两个容器中的电解质溶液一般选择与电极材料相同的阳离子的盐溶液.比如Cu-Zn-硫酸盐原电池中,负极金属Zn浸泡在含有Zn2+的电解质溶液中.④设计示例拓展点2:原电池的正、负极的判断方法(1)根据组成原电池两电极的材料判断:一般是活泼性较强的金属作为负极,活泼性较弱的金属或能导电的非金属作为正极.(2)根据电流方向或电子流动的方向判断:电流方向(在外电路)是由正极流向负极,电子的流动方向是由负极流向正极.(3)根据原电池中电解质溶液内阴、阳离子的定向移动方向判断:在原电池的电解质溶液中,阳离子移向正极,阴离子移向负极.(4)根据原电池两电极发生的反应类型判断:原电池的负极总是失电子发生氧化反应,其正极总是得电子发生还原反应.(5)根据电极质量的变化判断:原电池工作后,X极质量增加,说明溶液中的阳离子在X极(正极)放电,X极活动性弱;反之,X极质量减少,说明X极金属溶解,X极为负极,活动性强.(6)根据电池中的现象判断:若某电极上有气泡冒出,则是因为析出了H2,说明该电极为正极,活动性弱.上述判断方法可简记为:特别提醒:①在判断原电池正、负极时,不能只根据金属活泼性的相对强弱判断,有时还要考虑电解质溶液,比如Mg、Al和NaOH溶液构成的原电池中,由于Mg不与NaOH溶液反应,虽然金属性Mg>Al,但是在该条件下却是Al作负极.因此要根据具体情况来判断正、负极.又比如说Fe、Cu在稀H2SO4溶液中,Fe作负极,Cu作正极;而Fe、Cu在浓HNO3溶液中,Fe作正极,Cu作负极.①原电池的负极材料可以参加反应,表现为电极溶解,但有的原电池(比如燃料电池)负极材料不参加反应;原电池的正极材料通常不参加反应.四、发展中的化学电源1.化学电源的分类2PbSOSO4放电充电锌银蓄电池的负极是锌,正极是Ag电极反应:O+H O+2e- =2Ag+2OH2Ag+Zn(OH)2Zn+Ag2O+H2O放电充电五、燃料电池燃料电池是一种能连续地将燃料和氧化剂的化学能直接转换成电能的化学电池.燃料电池的最大优点在于能量转化率高,可以持续使用,无噪音,不污染环境.燃料电池的电极本身不参与氧化还原反应,只是一个催化转化元件.它工作时,燃料和氧化剂连续地由外部供给,在电极上不断地进行反应,生成物不断地被排出,于是电池就连续不断地提供电能.(1)氢氧燃料电池2H+O=2H O1)燃料电池正极反应式的书写因为燃料电池正极反应物一般是O2,即正极都是氧化剂—O2得到电子的还原反应,故正极反应的基础都是O2+4e-=2O2-,O2-的存在形式与燃料电池的电解质的状态以及电解质溶液的酸碱性有着密切的联系.①电解质为酸性电解质溶液(如稀硫酸)在酸性环境中,O2-离子不能单独存在,可供O2-离子结合的微粒有H+离子和H2O,O2-离子优先结合H+离子生成H2O.这样在酸性电解质溶液中,正极反应式为O2+4H++4e-=2H2O.①电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液)在中性或碱性环境中,O 2-离子也不能单独存在,O 2-离子只能结合H 2O 生成OH -离子,故在中性或碱性电解质溶液中,正极反应式为O 2+2H 2O +4e -=4OH -.①电解质为熔融的碳酸盐(如Li 2CO 3和Na 2CO 3熔融盐混和物)在熔融的碳酸盐环境中,O 2-离子也不能单独存在,O 2-离子可结合CO 2生成CO 32-离子,则其正极反应式为O 2+2CO 2 +4e -=2CO 32-.①电解质为固体电解质(如固体氧化锆—氧化钇)该固体电解质在高温下可允许O 2-在其间通过,故其正极反应为O 2+4e -=2O 2-.2)燃料电池负极反应式的书写燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可燃性物质.不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难.一般燃料电池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式.比如以H 2、C 3H 8为燃料的碱性电池为例说明如下: H 2-2e - =2H +或H 2-2e -+2OH -=2H 2O;C 3H 8−−→−--e 203CO 2−−→−-OH 63CO 32-(3个C 整体从-8价升高到+12价,失去20e -),则有:C 3H 8-20e -+aOH -=3CO 32-+bH 2O,由电荷守恒知a=26;由H 原子守恒知b=17,所以电极反应式为C 3H 8-20e -+26OH -=3CO 32-+17H 2O(3)燃料电池与一次电池、二次电池的主要区别①氧化剂与燃料在工作时不断地由外部供给.①生成物不断地被排出.(4)废弃电池的处理废弃电池中含有重金属和酸碱等有害物质,随意丢弃,对生态环境和人体健康有很大的危害.若把它当作一种资源,加以回收利用,既可以减少对环境的污染,又可以节约资源.因此,应当重视废弃电池的回收.。

化学能与电能

化学能与电能

化学能与电能化学能与电能能源是人类生存和发展的重要物质基础,其中包括化学能与电能两种类型的能源。

本文将从这两种能源的本质、特点、应用和发展等方面进行探讨。

一、化学能化学能是指物质在化学反应过程中由于原子和分子之间的键能改变而产生的能量。

化学能的本质就是原子分子的相互组合和内部电子的位置。

在化学反应中,化学键断裂和形成的过程中,化学能会被释放或吸收。

由于其能源密度高,方便携带、使用和储存的特点,化学能广泛应用于军事、工业、交通和生活等方面。

常见的化学能储存方式有化石能源和化学电池两种。

化石能源,比如煤、石油和天然气,是在动植物残骸经过漫长时间和高压、高温条件下形成的化学物质。

化石能源的利用是人类社会发展历程中的重要里程碑,也是现代工业构成的重要基础。

而化学电池,则是运用化学反应中放出的电能来储存和传送化学能的装置,比如干电池、蓄电池和燃料电池等。

二、电能电能是指电流在带电体内流动时所表现出的能量,或是人类在自然界中利用电子运动所获得的能量。

电能的本质是由带电粒子在电场和磁场作用下的运动状态所导致的电磁作用。

电能可以通过输电线路传输,也可以通过电池等电源储存,具有易于控制和高效利用的特点,广泛应用于电力系统、通信、计算机、家庭电器等方面。

常见的电能存储方式有储能电容、储能电阻和储能电感等。

储能电容是利用带电体在带电状态下的电势能来储存电能的装置,常用于电动车的动力储备中。

储能电阻则是用小电阻器接通高电压电源,使它快速放电产生大功率电流,常用于激光器等高能物理实验中。

而储能电感则是利用电感器在物理反应过程中产生的电势差来储存电能,常用于电路中的滤波和稳压。

三、化学能和电能的应用与发展化学能和电能在社会生产和生活中的应用已经愈加广泛。

化学能广泛应用于现代工业和军事领域,比如化工、军火、炼油、制药等;电能则是现代信息和通信技术、计算机、家用电器、医疗设备等的关键能源。

同时,随着社会的发展和对环境保护的重视,清洁能源的发展也日趋重要,这也促进了化学能和电能的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜片上有气泡, 锌片溶解,电流表 指针偏转
2、原电池 (1)定义
原电池:把化学能转化成电能的装置
(2)原电池工作原理
Zn-Cu-H2SO4原电池的工作原理: 电极反应式: 负极(Zn): Zn -2e- = Zn2+ (氧化反应) 正极(Cu):2H++2e- = H2 ↑(还原反应)
(铜片在这里起传导电子的作用)
2、若将氧化反应与还原反应分开在 不同区域进行,那么,怎样假设桥梁使电 子从还原剂区域转移到氧化剂区域,同时 形成电流?
3、怎样知道所架设的桥梁中有电子 流过?
实验2-4:用锌片、铜片、稀硫酸、 烧杯、电流表、导线等按要求完成实 验。
现象
铜片插入稀硫酸 铜片上无气泡
锌片插入稀硫酸 锌片上有气泡
锌片和铜片上端 连接在一起插入 稀硫酸
+ 2OH-
(6)原电池原理的应用 ①加快反应速率
例如,实验室制H2时,可加入少量 C②uS判O断4以金加属快活反动应性速的率强。弱
在一个原电池中作负极的金属比作正极的 金属活泼
金属溶解的一极比冒出气体或金属附着的 一极的金属活泼性要强
③制作化学电源
二、发展中的化学电源
1、干电池
酸 性 锌 锰 电 池
负极:Zn - 2e-= Zn2+ 正极:2MnO2+2NH4++2e=Mn2O3+2NH3+H2O
通过刚才的实验我们可以体会到,化学 能在原电池装置中可以直接转化为电能,那 么,符合什么条件的装置才能构成原电池呢?
实验探究:构成原电池的条件
实验探究形成原电池的条件
形成条件一: 活泼性不同的两个电极 负极:较活泼的金属 正极:较不活泼的金属、石墨、金属氧化物等
实验探究:形成原电池的条件
形成条件二:
练习:
下列各装置能否形成原电池反应?
Cu
Cu
Zn
Cu
Zn Cu
Cu
Ag
X H2SO4
√H2SO4
酒X精
√AgNO3
Cu
Zn
Cu
Zn
Cu Zn
X
CuSO4 ZnSO4
√ CuSO4 ZnSO4
√ H2SO4
你能为她开一个药方吗?
(5)如何书写电极反应方程式
Cu
Ag 负极:Cu-2e-=Cu2+
引起
旧键断裂和新键形成、体系能量变化
质疑
氧化剂与还原剂直接接触进行反应时, 化学能转化为热能,再进过一系列能量转 换环节才能转化为电能。这样能源利用率 低。可不可以使氧化还原反应释放的能量 放的能量不 通过热能而直接转变为电能,所要解决 的第一问题是什么?
(2)火力发电的缺点:
①产生烟尘和废气,造成空气污染; ②SO2形成酸雨; ③CO2加剧温室效应; ④煤炭储量有限,是非再生能源; ⑤经多次转换,能量损耗大,燃料的利用率低。
(3)火力发电的化学深层本质分析
火力发电
过程
将化学能经一系列能量转化为电能
关键
燃烧
本质
氧化还原反应
本质
氧化剂与还原剂之间发生电子的转移
并写出电极反应式
负极:2Al +8OH- -6e- =2AlO2-+4H2O 正极:6H2O+6e- =6OH-+3H2↑
NaOH溶液
练习: 利用Cu+2FeCl3 =CuCl2 +2FeCl2设计
一个原电池,画出示意图,写出电极反应。
A
负极:Cu-2e-=Cu2+ 正极:2 Fe3++2e- = 2Fe2+ FeCl3溶液
第二节 化学能与电能
广东省罗定市泗纶中学 徐守键;
科学视野
按利用能源的形态(直接利用或加 工)分类:一次能源和二次能源。
一次能源:煤炭、石油、天然气、水力、 风能、 柴草、太阳辐射、地热、核燃 等 二等 次料能源:电能、蒸汽、汽油、煤气、 液化气、 氢能、沼气、火药、水煤气 等
一次能源经加工、转换得到的能源称为二次能源
电极材料均浸入电解质溶液中
实验探究:构成原电池的条件
形成条件三: 必须形成闭合回路
实验探究:构成原电池的条件
u
2H+ +Zn = H2↑ + Zn2+
形成条件四:一个自发进行的氧化还原反应
(4)构成原电池的条件
( 1 )有两种活动性不同的金属或一种 是非金属单质或金属氧化物作电极。
(2)电极材料均插入电解质溶液中。 (3)两极相连形成闭合电路。 (4)能自发进行的氧化还原反应。
正极:2Ag++ 2e- = 2Ag
AgNO3溶液
负极: Zn -2e- = Zn 2+ 正极: Cu2+ + 2e - = Cu CuSO4溶液 总反应: Zn + Cu2+ = Zn 2+ + Cu
负极:2Fe-4e- =2Fe2+ 正极:O2+2H2O+4e- =4OH-
NaCl溶液
请判断右边原电池的正、负极?
二次能源
火电站
导入新课
前一节我们探讨的主要是化学能 转化为热能问题,那么物质的化学能 能否转化为电能,若能转化,又是如 何转化?
一、化学能转化为电能 1、火力发电
利用煤、石油、天然 气等自然界蕴藏极为 丰富的化石燃料来发
电称为火力发电。
2001我国发电总量构成图
(1)火力发电工作原理示意图 化学能 燃烧 热能 蒸汽 机械能 发电机 电能
电极总反应:
2e-
Zn + 2H+ = Zn2+ + H2↑
Zn+H2SO4=ZnSO4+H2↑
学与问
电子与电流流向: 外电路:电子由负极流向正极,
电流由正极流向负极。 内电路:阴离子移向负极,阳离子移向正极,
电流由负极流向正极。
(3)原电池中电极的名称
负极 :电子流出的一极—发生氧化反应 正极 :电子流入的一极—发生还原反应
碱 性
Zn +2MnO2+2H2O=2MnO(OH) +Zn(OH)2
锌 锰 电
负极:Zn +2OH- -2e-= Zn(OH)2 正极:

2MnO2+2H2O+2e-=MnO(OH)+ 2OH-
2、充电电池(又称二次电池) (1)铅蓄电池
负极:Pb + SO42- - 2e-=PbSO4 正极:PbO2 + 4H+ + SO42- + 2e-=PbSO4 + 2H2O
(2)镍—镉可充电电池
镍—镉电池的负极为金属镉(Cd),正极为 NiO(OH),电解液为KOH溶液。
放电
总反应式:Cd+2NiO(OH)+2H2O
2Ni(OH)2+Cd(OH)2
充电
负极: Cd+ 2OH- - 2e- = Cd(OH)2
正极:2NiO(OH)+2H2O+2e-= 2Ni(OH)2
相关文档
最新文档