备战高考数学二轮复习难点27立体几何中的空间角与距离教学案理

合集下载

备战2023年新高考数学二轮专题复习课件立体几何

备战2023年新高考数学二轮专题复习课件立体几何

第三讲立体几何——大题备考【命题规律】立体几何大题一般为两问:第一问通常是线、面关系的证明;第二问通常跟角有关,一般是求线面角或二面角,有时与距离、几何体的体积有关.微专题1线面角保分题[2022·辽宁沈阳二模]如图,在四棱锥P-ABCD中,底面ABCD是正方形,P A⊥平面ABCD,P A=2AB=4,点M是P A的中点.(1)求证:BD⊥CM;(2)求直线PC与平面MCD所成角的正弦值.提分题例1 [2022·全国乙卷]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.听课笔记:【技法领悟】利用空间向量求线面角的答题模板巩固训练1[2022·山东泰安一模]如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD=2,P A⊥平面ABCD,E为PD中点.(1)若P A=1,求证:AE⊥平面PCD;(2)当直线PC与平面ACE所成角最大时,求三棱锥E-ABC的体积.微专题2二面角保分题[2022·山东临沂二模]如图,AB是圆柱底面圆O的直径,AA1、CC1为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且AB=AA1=2BC=2CD,E、F分别为A1D、C1C的中点.(1)证明:EF∥平面ABCD;(2)求平面OEF与平面BCC1夹角的余弦值.提分题例2 [2022·湖南岳阳三模]如图,在四棱锥P-ABCD中,底面ABCD是菱形,F是PD 的中点.(1)证明:PB∥平面AFC;(2)若直线P A⊥平面ABCD,AC=AP=2,且P A与平面AFC所成的角正弦值为√21,求7锐二面角F-AC-D的余弦值.听课笔记:AD,现例3 [2022·山东日照二模]如图,等腰梯形ABCD中,AD∥BC,AB=BC=CD=12以AC为折痕把△ABC折起,使点B到达点P的位置,且P A⊥CD.(1)证明:平面APC⊥平面ADC;(2)若M为PD上一点,且三棱锥D-ACM的体积是三棱锥P-ACM体积的2倍,求二面角P-AC-M的余弦值.听课笔记:【技法领悟】利用空间向量求二面角的答题模板巩固训练21.[2022·广东韶关二模]如图,在四棱锥P-ABCD中,底面ABCD为矩形,点S是边AB 的中点.AB=2,AD=4,P A=PD=2√2.(1)若O是侧棱PC的中点,求证:SO∥平面P AD;(2)若二面角P-AD-B的大小为2π,求直线PD与平面PBC所成角的正弦值.32.[2022·河北保定一模]如图,在等腰梯形ABCD中,AD∥BC,AD=AB=CD=1,∠BCD =60°,现将DAC沿AC折起至P AC,使得PB=√2.(1)证明:AB⊥PC;(2)求二面角A-PC-B的余弦值.微专题3探索性问题提分题例4 [2022·山东聊城三模]已知四边形ABCD为平行四边形,E为CD的中点,AB=4,△ADE为等边三角形,将三角形ADE沿AE折起,使点D到达点P的位置,且平面APE⊥平面ABCE.(1)求证:AP⊥BE;(2)试判断在线段PB上是否存在点F,使得平面AEF与平面AEP的夹角为45°.若存在,试确定点F的位置;若不存在,请说明理由.听课笔记:【技法领悟】1.通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明;否则假设不成立.2.探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.巩固训练3[2022·湖南岳阳一模]如图,在三棱锥S-ABC中,SA=SB=SC,BC⊥AC.(1)证明:平面SAB⊥平面ABC;(2)若BC=SC,SC⊥SA,试问在线段SC上是否存在点D,使直线BD与平面SAB所成的角为60°,若存在,请求出D点的位置;若不存在,请说明理由.第三讲立体几何微专题1线面角保分题解析:(1)证明:如图,连接AC,∵四边形ABCD是正方形,∴AC⊥BD.又P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD , ∵P A ,AC ⊂平面P AC ,P A∩AC =A , ∴BD ⊥平面P AC , 又CM ⊂平面P AC , ∴BD ⊥CM .(2)易知AB ,AD ,AP 两两垂直,以点A 为原点,建立如图所示的空间直角坐标系A - xyz . ∵P A =2AB =4,∴A (0,0,0),P (0,0,4),M (0,0,2),C (2,2,0),D (0,2,0), ∴MC⃗⃗⃗⃗⃗⃗ =(2,2,-2),MD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),PC ⃗⃗⃗⃗ =(2,2,-4). 设平面MCD 的法向量为n =(x ,y ,z ),则{n ·MC⃗⃗⃗⃗⃗⃗ =2x +2y −2z =0n ·MD ⃗⃗⃗⃗⃗⃗ =2y −2z =0,令y =1,得n =(0,1,1).设直线PC 与平面MCD 所成角为θ,由图可知0<θ<π2,则sinθ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·PC ⃗⃗⃗⃗⃗||n ||PC ⃗⃗⃗⃗⃗|=√12+12×√22+22+(−4)2=√36.即直线PC 与平面MCD 所成角的正弦值为√36.提分题[例1] 解析:(1)证明:∵AD =CD ,∠ADB = ∠BDC ,BD =BD , ∴△ABD ≌△CBD ,∴AB =CB .∵E 为AC 的中点,∴DE ⊥AC ,BE ⊥AC . ∵DE∩BE =E ,DE ,BE ⊂平面BED , ∴AC ⊥平面BED .∵AC ⊂平面ACD ,∴平面BED ⊥平面ACD .(2)如图,连接EF .由(1)知AC ⊥平面BED . 又∵EF ⊂平面BED , ∴EF ⊥AC . ∴S △AFC =12AC ·EF .当EF ⊥BD 时,EF 的长最小,此时△AFC 的面积最小. 由(1)知AB =CB =2. 又∵∠ACB =60°,∴△ABC 是边长为2的正三角形,∴BE =√3. ∵AD ⊥CD ,∴DE =1,∴DE 2+BE 2=BD 2,∴DE ⊥BE .以点E 为坐标原点,直线EA ,EB ,ED 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1),∴AB ⃗⃗⃗⃗⃗ =(-1,√3,0),AD ⃗⃗⃗⃗⃗ =(-1,0,1),DB ⃗⃗⃗⃗⃗ =(0,√3,-1),ED⃗⃗⃗⃗⃗ =(0,0,1),EC ⃗⃗⃗⃗ =(-1,0,0).设DF ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗ (0≤λ≤1), 则EF ⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗ =(0,0,1)+λ(0,√3,-1)=(0,√3λ,1-λ). ∵EF ⊥DB , ∴EF⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗ =(0,√3λ,1-λ)·(0,√3,-1)=4λ-1=0, ∴λ=14,∴EF ⃗⃗⃗⃗ =(0,√34,34),∴CF ⃗⃗⃗⃗ =EF ⃗⃗⃗⃗ −EC ⃗⃗⃗⃗ =(0,√34,34)-(-1,0,0)=(1,√34,34).设平面ABD 的法向量为n =(x ,y ,z ), 则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD⃗⃗⃗⃗⃗ =0,即{−x +√3y =0,−x +z =0.取y =1,则x =√3,z =√3,∴n =(√3,1,√3).设当△AFC 的面积最小时,CF 与平面ABD 所成的角为θ,则sin θ=|cos 〈n ,CF ⃗⃗⃗⃗ 〉|=|n·CF ⃗⃗⃗⃗⃗||n ||CF ⃗⃗⃗⃗⃗ |=|√3×1+1×√34+√3×34|√3+1+3× √1+316+916=4√37. 故当△AFC 的面积最小时,CF 与平面ABD 所成的角的正弦值为4√37. [巩固训练1]解析:(1)证明:∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵四边形ABCD 为矩形,∴AD ⊥CD ,又AD∩P A =A ,AD 、P A ⊂平面P AD ,∴CD ⊥平面P AD , ∵AE ⊂平面P AD ,∴AE ⊥CD ,在△P AD 中,P A =AD ,E 为PD 的中点,∴AE ⊥PD , 而PD∩CD =D ,PD 、CD ⊂平面PCD , ∴AE ⊥平面PCD .(2)以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AP =a (a >0),则C (2,1,0),P (0,0,a ),E (0,12,a2),∴AC ⃗⃗⃗⃗⃗ =(2,1,0),AE ⃗⃗⃗⃗⃗ =(0,12,a 2),PC ⃗⃗⃗⃗ =(2,1,-a ), 设平面ACE 的一个法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =2x +y =0n ·AE⃗⃗⃗⃗⃗ =12y +a 2z =0,取y =-a ,可得n =(a2,-a ,-1).设直线PC 与平面ACE 所成角为θ,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·FC⃗⃗⃗⃗⃗ ||n ||FC⃗⃗⃗⃗⃗ |=√54a 2+1·√5+a 2=√29+20a2+5a ≤27,当且仅当a =√2时等号成立.即当AP =√2时,直线PC 与平面ACE 所成角最大, 此时三棱锥E - ABC 的体积V =13×12×2×1×√22=√26.微专题2 二面角保分题解析:(1)证明:取AD 的中点M ,连接EM 、MC ,∵E 为A 1D 的中点,F 为CC 1的中点,∴EM ∥AA 1,EM =12AA 1,又CF ∥AA 1,CF =12AA 1, ∴EM ∥CF ,EM =CF ,∴四边形EMCF 为平行四边形,∴EF ∥CM , 又EF ⊄平面ABCD ,CM ⊂平面ABCD , ∴EF ∥平面ABCD .(2)设AB =AA 1=2BC =2CD =4,∵AC ⊥BC ,∴AC =2√3.由题意知CA 、CB 、CC 1两两垂直,故以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系.则A 1(2√3,0,4)、O (√3,1,0)、F (0,0,2)、C (0,0,0)、D (√3,-1,0), ∴A 1D 的中点E 的坐标为(3√32,-12,2), ∴OF⃗⃗⃗⃗⃗ =(-√3,-1,2),EF ⃗⃗⃗⃗ =(-3√32,12,0),设平面OEF 的一个法向量为n =(x ,y ,z ),则{n ·OF ⃗⃗⃗⃗⃗ =0n ·EF ⃗⃗⃗⃗ =0,即{−√3x −y +2z =0−3√32x +12y =0,即{√3x +y −2z =03√3x −y =0, 令x =√3,得n =(√3,9,6),∵AC ⊥BC ,AC ⊥CC 1,BC ∩CC 1=C , ∴AC ⊥平面BCC 1,∴平面BCC 1的一个法向量为CA ⃗⃗⃗⃗⃗ =(2√3,0,0),cos 〈n ,CA ⃗⃗⃗⃗⃗ 〉=n·CA ⃗⃗⃗⃗⃗|n |·|CA ⃗⃗⃗⃗⃗|=√3+81+36·2√3=√1020, ∴平面OEF 与平面BCC 1夹角的余弦值为√1020. 提分题[例2] 解析:(1)证明:连接BD 交AC 于O , 易证O 为BD 中点,又F 是PD 的中点, 所以OF ∥PB ,又OF ⊂平面AFC ,且PB 不在平面AFC 内, 故PB ∥平面AFC .(2)取PC 中点为Q ,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OQ 为z 轴建立空间直角坐标系,设OB =m ,则A (0,-1,0),B (m ,0,0),C (0,1,0),P (0,-1,2),D (-m ,0,0)⇒F (-m2,-12,1),AP ⃗⃗⃗⃗⃗ =(0,0,2),OF ⃗⃗⃗⃗⃗ =(-m 2,-12,1),OC⃗⃗⃗⃗⃗ =(0,1,0), 设平面AFC 的法向量为n =(x ,y ,z ),由{n ⊥OF ⃗⃗⃗⃗⃗ n ⊥OC ⃗⃗⃗⃗⃗ ⇒{−m2x −12y +z =0y =0,令x =2,有n =(2,0,m ),由P A 与平面AFC 所成的角正弦值为√217⇒√217=|AP ⃗⃗⃗⃗⃗ ·n||AP⃗⃗⃗⃗⃗ |·|n|=2√4+m 2⇒m =√3, 平面ACD 的法向量为m =(0,0,1),则锐二面角F - AC - D 的余弦值为 |m·n ||m |·|n |=√3√7=√217.[例3] 解析:(1)证明:在梯形ABCD 中取AD 中点N ,连接CN , 则由BC 平行且等于AN 知ABCN 为平行四边形,所以CN =AB , 由CN =12AD 知C 点在以AD 为直径的圆上,所以AC ⊥CD .又AP ⊥CD ,AP∩AC =A, AP ,AC ⊂平面P AC , ∴CD ⊥平面P AC , 又CD ⊂平面ADC , ∴平面APC ⊥平面ADC .(2)取AC 中点O ,连接PO ,由AP =PC ,可知PO ⊥AC ,再由平面P AC ⊥平面ACD ,AC 为两面交线,所以PO ⊥平面ACD ,以O 为原点,OA 为x 轴,过O 且与OA 垂直的直线为y 轴,OP 为z 轴建立空间直角坐标系,令AB =2,则A (√3,0,0),C (-√3,0,0),P (0,0,1),D (-√3,2,0), 由V P - ACM ∶V D - ACM =1∶2,得PM⃗⃗⃗⃗⃗⃗ =13PD ⃗⃗⃗⃗⃗ , 所以OM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +13PD ⃗⃗⃗⃗⃗ =(-√33,23,23), 设平面ACM 的法向量为n =(x ,y ,z ), 则由{n ·OM ⃗⃗⃗⃗⃗⃗ =0n ·OA ⃗⃗⃗⃗⃗ =0得{−√33x +23y +23z =0√3x =0,取z =-1得x =0,y =1,所以n =(0,1,-1),而平面P AC 的法向量m =(0,1,0),所以cos 〈n ,m 〉=m·n |m ||n |=√22. 又因为二面角P - AC - M 为锐二面角,所以其余弦值为√22.[巩固训练2]1.解析:(1)证明:取线段PD 的中点H ,连接SO 、OH 、HA ,如图,在△PCD 中,O 、H 分别是PC 、PD 的中点,所以OH ∥CD 且OH =12CD ,所以OH ∥AS 且OH =AS ,所以四边形ASOH 是平行四边形,所以SO ∥AH ,又AH ⊂平面P AD ,SO ⊄平面P AD ,所以SO ∥平面P AD .(2)取线段AD 、BC 的中点E 、F ,连结PE 、EF .由点E 是线段AD 的中点,P A =PD 可得PE ⊥AD ,又EF ⊥AD ,所以∠PEF 是二面角P - AD - B 的平面角,即∠PEF =23π,以E 为原点,EA⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗ 方向分别为x 轴、y 轴正方向,建立如图所示坐标系,在△P AD 中,AD =4,P A =PD =2√2知:PE =2,所以P (0,-1,√3),D (-2,0,0),B (2,2,0),C (-2,2,0),所以PD⃗⃗⃗⃗⃗ =(-2,1,-√3),PB ⃗⃗⃗⃗⃗ =(2,3,-√3),PC ⃗⃗⃗⃗ =(-2,3,-√3), 设平面PBC 的法向量n =(x ,y ,z ),则{n ·PB ⃗⃗⃗⃗⃗=0n ·PC⃗⃗⃗⃗ =0,即{2x +3y −√3z =0−2x +3y −√3z =0,可取n =(0,1,√3),设直线PD 与平面PBC 所成角为θ, 则sin θ=|cos 〈PD⃗⃗⃗⃗⃗ ,n 〉|=2·2√2=√24,所以直线PD 与平面PBC 所成角的正弦值为√24.2.解析:(1)证明:在等腰梯形ABCD 中,过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F ,因为在等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =1,∠BCD =60°,所以BE =CF =12CD =12,AE =DF =√12−(12)2=√32, 所以AC =BD =√(32)2+(√32)2=√3, BC =2,所以BD 2+CD 2=BC 2,所以BD ⊥CD ,同理AB ⊥AC , 又因为AP =AB =1,PB =√2, ∴AP 2+AB 2=PB 2,∴AB ⊥AP又AC∩AP =A ,AC ,AP ⊂平面ACP , 所以AB ⊥平面ACP , 因为PC ⊂平面ACP , 所以AB ⊥PC .(2)取AC 的中点为M ,BC 的中点为N ,则MN ∥AB , 因为AB ⊥平面ACP ,所以MN ⊥平面ACP ,因为AC ,PM ⊂平面ACP ,所以MN ⊥AC ,MN ⊥PM , 因为P A =PC ,AC 的中点为M ,所以PM ⊥AC , 所以MN ,MC ,MP 两两垂直,所以以M 为原点,以MN 所在直线为x 轴,以MC 所在直线为y 轴,以MP 所在直线为z 轴建立空间直角坐标系,则A (0,-√32,0),B (1,-√32,0),C (0,√32,0),P (0,0,12),PC ⃗⃗⃗⃗ =(0,√32,-12),PB ⃗⃗⃗⃗⃗ =(1,-√32,-12), 平面APC 的一个法向量为m =AB⃗⃗⃗⃗⃗ =(1,0,0), 设平面PBC 的一个法向量为n =(x ,y ,z ),则 {n ·PC⃗⃗⃗⃗ =√32y −12z =0n ·PB ⃗⃗⃗⃗⃗ =x −√32y −12z =0,令y =1,则n =(√3,1,√3),所以cos 〈m ,n 〉=m·n |m ||n |=√31×√7=√217, 因为二面角A - PC - B 为锐角, 所以二面角A - PC - B 的余弦值为√217.微专题3 探索性问题提分题[例4] 解析:(1)证明:因为四边形ABCD 为平行四边形,且△ADE 为等边三角形, 所以∠BCE =120°,又E 为CD 的中点,所以CE =ED =DA =CB ,即△BCE 为等腰三角形, 所以∠CEB =30°.所以∠AEB =180°-∠AED -∠BEC =90°, 即BE ⊥AE .又因为平面AEP ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,BE ⊂平面ABCE , 所以BE ⊥平面APE ,又AP ⊂平面APE ,所以BE ⊥AP .(2)取AE 的中点O ,连接PO ,由于△APE 为正三角形,则PO ⊥AE , 又平面APE ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,PO ⊂平面EAP , 所以PO ⊥平面ABCE ,PO =√3,BE =2√3, 取AB 的中点G ,则OG ∥BE ,由(1)得BE ⊥AE ,所以OG ⊥AE ,以点O 为原点,分别以OA ,OG ,OP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O - xyz ,则O (0,0,0),A (1,0,0),B (-1,2√3,0),P (0,0,√3),E (-1,0,0), 则EA ⃗⃗⃗⃗⃗ =(2,0,0),EB ⃗⃗⃗⃗⃗ =(0,2√3,0),PB ⃗⃗⃗⃗⃗ =(-1,2√3,-√3),EP ⃗⃗⃗⃗ =(1,0,√3), 假设存在点F ,使平面AEF 与平面AEP 的夹角为45°, 设PF⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ =(-λ,2√3λ,-√3λ),λ∈[0,1], 则EF ⃗⃗⃗⃗ =EP ⃗⃗⃗⃗ +PF ⃗⃗⃗⃗ =(1,0,√3)+(-λ,2√3λ,-√3λ)=(1-λ,2√3λ,√3−√3λ), 设平面AEF 的法向量为m =(x ,y ,z ),由{EF ⃗⃗⃗⃗·m =0EA ⃗⃗⃗⃗⃗ ·m =0得{(1−λ)x +2√3λy +(√3,-√3λ)z =02x =0, 取z =2λ,得m =(0,λ-1,2λ);由(1)知EB⃗⃗⃗⃗⃗ 为平面AEP 的一个法向量, 于是,cos 45°=|cos 〈m ,EB ⃗⃗⃗⃗⃗ 〉|=|m·EB ⃗⃗⃗⃗⃗||m |·|EB ⃗⃗⃗⃗⃗|=2√3|λ−1|2√3·√5λ2−2λ+1=√22,解得λ=13或λ=-1(舍去),所以存在点F ,且当点F 为线段PB 的靠近点P 的三等分点时,平面AEF 与平面AEP 的夹角为45°.[巩固训练3]解析:(1)证明:取AB 的中点E ,连接SE ,CE ,∵SA =SB ,∴SE ⊥AB , ∵BC ⊥AC ,∴三角形ACB 为直角三角形,∴BE =EC , 又BS =SC ,∴△SEC ≌△SEB ,∴∠SEB =∠SEC =90°, ∴SE ⊥EC ,又SE ⊥AB ,AB∩CE =E ,∴SE ⊥平面ABC . 又SE ⊂平面SAB ,∴平面SAB ⊥平面ABC .(2)以E 为坐标原点,平行AC 的直线为x 轴,平行BC 的直线为y 轴,ES 为z 轴建立空间直角坐标系,如图,不妨设SA =SB =SC =2,SC ⊥SA ,则AC =2√2,BC =SC =2知EC =2√3,SE =1,则A (-√2,1,0),B (√2,-1,0),C (√2,1,0),E (0,0,0),S (0,0,1), ∴AB⃗⃗⃗⃗⃗ =(2√2,-2,0),SA ⃗⃗⃗⃗ =(-√2,1,-1), 设D (x ,y ,z ),CD ⃗⃗⃗⃗⃗ =λCS⃗⃗⃗⃗ (0≤λ≤1),则(x -√2,y -1,z )=λ(-√2,-1,1), ∴D (√2−√2λ,1-λ,λ),BD⃗⃗⃗⃗⃗ =(-√2λ,2-λ,λ). 设平面SAB 的一个法向量为n =(x 1,y 1,z 1),则{n ·AB⃗⃗⃗⃗⃗ =2√2x 1−2y 1=0n ·SA ⃗⃗⃗⃗ =−√2x 1+y 1−z 1=0,取x 1=1,得n =(1,√2,0),sin 60°=|n·BD ⃗⃗⃗⃗⃗⃗ ||n ||BD ⃗⃗⃗⃗⃗⃗ |,则√2−2√2λ|√3√2λ2+(2−λ)2+λ2=√32, 得λ2+7λ+1=0,又∵0≤λ≤1,方程无解,∴不存在点D ,使直线BD 与平面SAB 所成的角为60°.。

新教材高考数学二轮专题复习第一部分专题攻略专题四立体几何第二讲空间位置关系空间角与空间距离课件

新教材高考数学二轮专题复习第一部分专题攻略专题四立体几何第二讲空间位置关系空间角与空间距离课件
AC
10
2.[2022·广东茂名二模]正三棱锥S - ABC的底面边长为4,侧棱长为
2 3 , D 为 棱 AC 的 中 点 , 则 异 面 直 线 SD 与 AB 所 成 角 的 余 弦 值 为
2
________.
4
解析:取BC的中点E,连接SE,DE,则∠SDE(或其补
角)为异面直线SD与AB所成的角,
解决问题;
2.必要时可以借助空间几何模型,如从长方体、四面体等模型中观
察线面位置关系,并结合有关定理来进行判断.
巩固训练1
1.[2022·湖南衡阳二模]设m、n是空间中两条不同的直线,α、β是两
个不同的平面,则下列说法正确的是(
)
A.若m⊥α,n⊥β,m⊥n,则α⊥β
B.若m⊂α,n⊂β,α∥β,则m∥n
面ABCD,且PA=AB,AD=3AB,则PC与底面ABCD所成角的正切值为
(
)
1
A.
B.3
3
C.
10
10
D. 10
答案:C
解析:因为PA⊥底面ABCD,AC⊂底面ABCD,
所以PA⊥AC,则PC与底面ABCD所成角为∠PCA.
设AB=1,则PA=1,AD=3,AC= 10.
所以tan
PA
10
∠PCA= = .
1 ·2
为θ.则sin θ=|cos 〈n1,n2〉|=
.
1 2
3.平面与平面的夹角
若n1,n2分别为平面α,β的法向量,θ为平面α,β的夹角,则cos θ=
1 ·2
|cos 〈n1,n2〉|=
.
1 2
4.点到直线的距离:已知A,B是直线l上任意两点, P是l外一点,

高考复习专题--数学空间角教案

高考复习专题--数学空间角教案

2014年高考数学第二轮复习专题立体几何---空间角【考点审视】立体几何高考命题及考查重点、难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、线面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载体的线面位置关系的论证,更是年年反复进行考查,在难度上也始终以中等偏难为主。

空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,空间角高考中每年必考,复习时必须高度重视。

对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.考试要求考点1:掌握空间两异面直线所成的角、直线与平面所成的角、二面角、二面角的平面角等概念;考点2:能熟练地在图形中找出相关的角并证明;考点3:能用向量方法和非向量方法进行计算;考点4:通过空间角的计算和应用进一步考察运算能力、逻辑推理能力及空间想象能力.【高考链接】1.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.2. 三种空间角,即异面直线所成角、直线与平面所成角、平面与平面所成二面角。

它们的求法一般化归为求两条相交直线的夹角,通常“线线角抓平移,线面角找射影,面面角作平面角”而达到化归目的,有时二面角大小出通过cos θ=原射S S 来求。

3. 由于近年考题常立足于棱柱、棱锥和正方体,因此复习时应注意多面体的依托作用,熟练多面体性质的应用,才能发现隐蔽条件,利用隐含条件,达到快速准确解题的目的。

【复习回顾】(一)空间角三种角的定义异面直线所成的角(1)定义:,a b 是两条异面直线,经过空间任意一点o ,分别引直线//'a a ,//'b b ,则'a 和'b 所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:090θ≤≤. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 直线和平面所成的角(1)定义 和平面所成的角有三种:斜线和平面所成的角 这条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角. 一条直线和平面平行,或在平面内,则它们所成的角是0°的角. (2)取值范围090θ≤≤° (3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. ③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角二面角及二面角的平面角 (1)半平面 (2)二面角.(3)二面角的平面角 二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°②二面角的平面角具有下列性质:二面角的棱垂直于它的平面角所在的平面。

高三立体几何重点专题复习教案(空间角)

高三立体几何重点专题复习教案(空间角)
2.如图, 平面 , ,若 ,求二面角 的正弦值
分析:要求二面角的正弦值,首先要找到二面角的平面角
解:过 作 于 ,过 作 交 于 ,连结 ,
则 垂直于平面 , 为二面角 的平面角,
∴ ,
又 平面 ,∴ , ,ຫໍສະໝຸດ ∴ 平面 ,∴ , ,又∵ , ,
∴ 平面 ,∴ ,
设 ,则 ,
在 中, ,∴ ,
同理, 中, , ∴ ,
(2)A、D的连线和直线BC所成的角;
(3)二面角A—BD—C的正切值;
10答案.(1) (2) (3)-2
∴AC与PB所成的余弦值
(3)解:作AN⊥CM,垂足为N,连结BN,在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC.∴BN⊥CM,故∠ANB为所求二面角的平面角。∵CB⊥AC,由三垂线定理,得CB⊥PC,
在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中, ∴ ∵AB=2,∴
故所求的二面角余弦值为说明:本题也可通过建立坐标系采用向量方法求解.
7.如图所示,正三角形ABC的边长为3,过其中心G作BC边的平行线,分别交AB\AC于B1,C1,将△AB1C1折起到△A1B1C1的位置.使点A1在平面BB1C1C上的射影恰是线段BC的中点M,求(1)二面角A1—B1C1—M的大小。(2)异面直线A1B1与CC1所成角的余弦值大小。
2、直线与平面所成角的定义?直线与平面所成角的范围是什么?怎样求直线与平面所成的角?
3、二面角的定义?怎样定义二面角的平面角?二面角的平面角的范围?怎样确定二面角的平面角?
二、基本技能训练讲评:
在一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是( )
(A)相等(B)互补

高考数学第二轮复习教案空间角与距离的计算 教案

高考数学第二轮复习教案空间角与距离的计算 教案

EA BC D A1B1C1D1FGH IJ高考数学第二轮复习教案空间角与距离的计算考点核心整合一.空间角计算空间角,其一般方法是根据定义通过作辅助线或辅助面构造出要求的角θ并作出含有角θ的三角形,从而通过解三角形得角θ的值.1.求异面直线所成角的常用方法(1)平移法(定义法):即根据定义找出或作出有关角的图形并证明它符合定义,进而求出角的大小.(2)补形法:有时在原几何体上补一个类似的几何体.2.求直线与平面所成角的常用方法(1)定义法:关键是作出斜线在平面内的射影,即关键是判断射影在平面内的位置.(2)公式法:cosθ= cosθ1cosθ2(其中θ1为所求线面角,θ为斜线与平面内任一直线所成的角,θ2为射影与该直线所成的角).3.二面角的定义从一条直线出发的两个半平面所组成的图形叫做二面角.(1)二面角定量地反映了两个平面相交的位置关系,它是转化成平面内两条相交直线所成的角(二面角的平面角)度量的,与顶点在棱上的位置无关.(2)求二面角大小的三个步骤:①找出或作出二面角的平面角(本着先找后作的原则);②证明符合定义;③指出某角即为二面角的平面角并计算(往往把该平面角放置到一个三角形中去求).简单地表述为:一作,二证,三计算.二面角的大小,课本中给出了具体范围,即为[0,π].(3)求作二面角的平面角的方法:①定义法:在棱上找一点O,在二面角的两个面内分别作棱的垂线AO、BO,则∠AOB即为二面角的平面角.②用三垂线定理(或逆定理)作二面角的平面角:从二面角的一个面内选一个特殊点A,由A向另一个平面作垂线,垂足为B,再由B向棱作垂线交于点C,则∠ACB即为二面角的平面角.③作棱的垂面:作垂直于二面角的棱或二面角两个半平面的垂面,则该垂面与两个半平面交线所成的角就是二面角的平面角.④面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则cosθ=S射影多边形S斜多边形.⑤对于未给棱的二面角的求法,一般情况下首先作棱或在有利条件下利用射影公式求更方便.二、空间的距离立体几何中涉及到的距离有八种:两点间距离、点到直线距离、点到平面距离、两平行线间距离、异面直线间距离、与平面平行的直线到平面的距离、两平行平面间的距离以及求球面上两点间距离.这八种距离都归结到求点到点、点到直线、点到面这三种距离.求距离问题的解题步骤是找到表示该距离的线段,证明该线段合题意,得到该线段所在三角形,解这个三角形,求出距离.1.求异面直线间距离大体有如下的解法:(1)作出两条异面直线的公垂线段然后求之;(2)将异面直线间距离转化为线面之间的距离;(3)将异面直线间距离转化为面面之间的距离;(4)运用“两条异面直线间距离,是分别在两条异面直线上的两点间距离的最小值”这一概念求之;(5)利用体积法(主要是指三棱锥的体积)求之.2.点到直线或平面的距离是空间最常见的,求解的关键是正确作出图形,其中确定垂足位置最重要,应充分利用图形性质,注意各种距离之间的相互转化,等积求法及“平行移动”的思想方法.3.求距离的方法大致有两种:(1)直接法:步骤是“一作,二证,三计算”,即先作出表示该距离的线段,再证明该线段即为所求距离,然后再计算,不能忽视第二步的证明.(2)间接法:包括等积法和转化法,转化法即不断地进行点面、线面、面面距离之间的转化,直到求出为止.考题名师诠释【例1】已知正方体ABCD—A1B1C1D1的棱长为1,在正方体表面上与点A距离为233的点的集合形成一条曲线,则这条曲线的长度为.解析如右图,题目即以A为球心,233为半径的球面与正方体六个面交线的长度,而这条交线有六条弧构成,即EFGHIJ.由对称性知EF = GH = IJ,FG = HI = JE,所以,所求曲线长l = 3(EF⌒+ FG⌒).由AE =233,AA1 = 1,ABCDEOFG则AF = AE = 233,A 1E = AE 2 - AA 12= 33,A 1F = A 1E = 33,∠A 1AE = ∠A 1AF = π6.由对称性∠FAG = π2 -∠A 1AE = π2 - 2×π6 = π6.因此EF ⌒为以A 1为圆心、33为半径、π2为圆心角的一段弧,故EF ⌒= A 1E × π2 = 3π6.同理,FG 为以A 为圆心,233为半径、π6为圆心角的一段圆弧.故FG ⌒= AF × π6 = 3π9.所以,所求曲线的长l = 3(3π6+ 3π9) = 53π6. 答案 53π6.评叙 本题以正方体各侧面截球面求交线为背景,全面考查空间想象能力和分析解决问题的能力.考虑正方体各面与球面的交线时,应知道截线都是圆弧,但不过球心A 的面截球面所的截线是小圆的圆弧,而经过球心A 的面截球面所得的是大圆的圆弧.【例2】(2005年福建卷,20)如图,直二面角D -AB -E 中,四边形ABCD 是边长为2的正方形,AE = EB ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ; (2)求二面角B -AC -E 的大小;(3)求点D 到平面ACE 的距离. (1)证明:∵BF ⊥平面ACE ,∴BF ⊥AE .∵二面角D -AB -E 为直二面角,且CB ⊥AB ,∴CB ⊥平面ABE .∴CB ⊥AE . ∴AE ⊥平面BCE .(2)解:连结BD 交AC 于点G ,,连结FG . ∵正方形ABCD 的边长为2,∴BG ⊥AC ,BG = 2. ∵BF ⊥平面ACE ,由三垂线定理的逆定理,得FG ⊥AC . ∴∠BGF 是二面角B -AC -E 的平面角. 由(1)AE ⊥平面BCE ,∴AE ⊥EB .又∵AE = EB ,∴在等腰直角△AEB 中,BE = 2.又∵直角△BCE 中,EC = BC 2 + BE 2= 6,BF =BC ·BE EC = 2×26= 233, ∴Rt △BFG 中,sin ∠BGF = BF BG = 2332 = 63.∴二面角B -AC -E 等于arcsin63. (3)解:过E 作EO ⊥AB 交AB 于点O ,OE = 1. ∵二面角D -AB -E 为直二面角,∴EO ⊥平面ABCD . 设D 到平面ACE 的距离为h ,∵V D —ACE = V E —ACD , ∴13S △ACE ·h = 13S △ACD ·EO .∵AE ⊥平面BCE ,∴AE ⊥EC .∴h = 12AD ·DC ·EO 12AE ·EC = 12×2×2×112×2×6 = 233.∴点D 到平面ACE 的距离为233.评叙 本题主要考查直线、直线与平面、二面角及点到平面的距离等基础知识,考查空间想象能力、逻辑思维能力与运算能力.【例3】(2005年北京卷,理16)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AB = AD = 2,DC = 23,AA 1 = 3,AD ⊥DC ,AC ⊥BD ,垂足为E .(1)求证:BD ⊥A 1C ;(2)求二面角A 1- BD –C 1的大小;(3)求异面直线AD 与BC 1所成的角的大小. (1)证明: 在直四棱柱ABCD -A 1B 1C 1D 1中,∵A 1A ⊥底面ABCD .∴AC 是A 1C 在平面ABCD 上的射影.∵BD ⊥AC ,∴BD ∥A 1C . (2)解:连结A 1E 、C 1E 、A 1C 1.与(1)同理可证BD ⊥A 1E ,BD ⊥C 1E ,∴∠A 1EC 1为二面角A 1- BD –C 1的平面角. ∵AD ⊥DC ,∴∠A 1D 1C 1 = ∠ADC = 90º.又A 1D 1 = AD = 2,D 1C 1 = DC = 23,AA 1 = 3,且AC ⊥BD ,∴A 1C 1 = 4, AE = 1,EC = 3.∴A 1E = 2,C 1E = 23. 在△A 1EC 1中,A 1C 12= A 1E 2+ C 1E 2,∴∠A 1EC 1 = 90º,即二面角A 1- BD –C 1的大小为90º.BA CD E FABCD(3)解:过B 作BF ∥AD 交AC 于点F ,连结FC 1, 则∠C 1BF 就是AD 与BC 1所成的角. ∵AB = AD = 2,AC ⊥BD ,AE = 1, ∴BF = 2,EF = 1,FC = 2,BC = DC . ∴FC 1 = 7,BC 1 = 15.在△BFC 1中,cos ∠C 1BF = 15 + 4 - 72×2×15 = 155.∴∠C 1BF = arccos155,即异面直线AD 与BC 1所成的角的大小为arccos 155. 【例4】(2004年全国卷Ⅰ,20)如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120º. (1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成的二面角的大小. 解(1):如图,作PO ⊥平面ABCD ,垂足为点O . 连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE . ∵AD ⊥PB ,∴AD ⊥OB .∵PA = PD ,∴OA = OD . 于是OB 平分AD ,点E 为AD 的中点,∴PE ⊥AD .由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角,∴∠PEB = 120º,∠PEO = 60º. 由已知可求得PE = 3.∴PO = PE ·sin60º = 3×32 = 32.即点P 到平面ABCD 的距离为32.(2)如图,取PB 的中点G ,PC 的中点F , 连结EG 、AG 、GF ,则AG ⊥PB ,FG ∥BC ,FG = 12BC .∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB .∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE = BE ,∴EG ⊥PB ,且∠PEG = 60º. 在Rt △PEG 中,EG = PE ·cos60º = 32.在Rt △PEG 中,EG = 12AD = 1.于是tan ∠GAE = EG AE =32.又∠AGF = π - ∠GAE , ∴所求二面角的大小为π - arctan32. 评叙 本题主要考查棱锥、二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力. 特别提示1.求二面角的平面角的步骤:(1)先作出二面角的平面角,其作法有定义法、根据三垂线定理及其逆定理、垂面法;(2)根据作法构造三角形,在直角三角形中,用解直角三角形的方法;在斜三角形中,利用正、余弦定理求二面角的平面角.2.二面角的计算方法常用的还有:射影面积法,向量法.利用这些方法可在不作出二面角的平面角的情况下求出二面角的平面角.考能提升训练一、选择题1.(2005年湖南卷,5)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面的中心,则O 到平面ABC 1D 1的距离为 ………( )A .12B .24C .22D .322.对于已知直线a ,如果直线b 同时满足下列三个条件:①与a 是异面直线;②与a 所成的角为定值 ;③与a 的距离为定值d .那么这样的直线b 有 ……………………………( ) A .1条B .2条C .3条D .无数条3.如图,在正三棱锥P -ABC 中,M 、N 分别是侧棱PB 、PC 的中点,若截面AMN ⊥侧面PBC ,则此三棱锥的侧棱与底面所成角的正切值 是…………………………………………… ( )A .32B . 2C .52D .634.如图,ABC -A 1B 1C 1是直三棱柱,∠BCA = 90º,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC = CA = CC 1,则BD 1与AF 1所成角的余弦值是………………………………………………………………( )A .3010B .12C .3015D .15105.正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图所示).M 为矩形AEFD 内一点,如果ABCDPABCD PE OABCDPE OG F ABD OA 1B 1C 1D 1ABCPMNABCA 1B 1C 1D 1 F 1DMB CF∠MBE = ∠MBC ,MB 和平面BCE 所成角的正切值为12,那么点M到直线EF 的距离为………………………………… ( ) A .22B .1C .32D .12二、填空题6.长方体的一条对角线与交于一点的三个面所成的角分别为α、β、γ,那么下列命题: ①sin 2α+ sin 2β+ sin2γ= 1;②sin 2α+ sin 2β+ sin 2γ= 2;③cos 2α+ cos 2β+ cos 2γ= 1;④cos 2α+ cos 2β+ cos 2γ= 2.其中正确命题的序号是 .7.(2005年江西卷,理15)如图,在直三棱柱ABC -A 1B 1C 1中,AB = BC = 2,BB 1 = 2,∠ABC = 90º,E 、F 分别为AA 1、 C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 三、解答题8.(2004年春季北京卷,17)如图,四棱锥S -ABCD 的底面是边长为1的正方形,SD ⊥底面ABCD ,SB = 3.(1)求证:BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.9.(2005年湖北卷,理20)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB = 3,BC = 1,PA = 2,E 为PD 的中点.(1)求直线AC 与PB 所成角的余弦值;(2)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离.B A 1BCA DSMBA10.如图所示,在矩形ABCD 中,AB = 1,BC = a ,PA ⊥平面ABCD ,PA = 1. (1)在BC 边上是否存在点Q ,使得PQ ⊥QD ?说明理由.(2)若BC 边上有且仅有一个点Q ,使PQ ⊥QD ,求AD 与平面PDQ 所成的角的正弦值. (3)在(2)的条件下,能求出平面PQD 与平面PAB 所成的角的大小吗?训练参考答案一、1.B 2.D 3.C 4.A 5.A 二、6.①④ 7.322三、8.(1)略;(2)45º;(3)90º.9.(1)3714(2)在面ABCD 内过点D 作AC 的垂线交AB 于点F ,连结PF ,N 为PF 的中点,N 点到AB 的距离为1,N 点到AP的距离为36. 10.(1)a ≥2时,BC 边上存在存在点Q ,使得PQ ⊥QD ;a <2时,不存在点Q ,使得PQ ⊥QD ;(2)66;(3)能,大小为arctan 5. BCA DP Q。

新课标版备战高考数学二轮复习难点2.7立体几何中的空间角与距离教学案理34.doc

新课标版备战高考数学二轮复习难点2.7立体几何中的空间角与距离教学案理34.doc

立体几何中的空间角与距离立体几何中的“角”与“距离”是定量分析空间几何元素(点、线、面)间位置关系的两个重要的几何量,在研究这些“角”和“距离”时,常将空间问题转化为平面问题来处理,这是化归思想在立体几何中的具体应用. 空间角是考查学生对立体几何中的视图、空间想象能力、逻辑推理能力以及运算能力的一个综合知识点;空间距离既能考查学生的空间想象能力和逻辑推理能力,又能考查学生的转化思想及运算能力,空间距离的计算也是学生感觉较难的部分.在求解空间的角与距离的问题时,一般应包括三个部分:求作、论证和计算,这三部分是一个统一的整体.求空间中的角或距离的常用方法注意根据定义找出或作出所求的角或距离,给出证明,一般情况下,力求明确所求角或距离的位置.求角与距离的关键是将空间的角与距离灵活地转化为平面上的角与距离,然后将所求量置于一个三角形中,通过解三角形最终求得所需的角与距离. 空间向量是高中数学立体几何中新增加的内容 .借助于空间向量工具,可以对一些传统解法中较为繁琐的问题加以定量化 ,从而降低了思维难度 ,增强了可操作性 ,使学生对立体几何更容易产生兴趣 .空间向量在角和距离的处理上有着独特的优势 ,它最大限度地避开了思维的高强度转换 ,避开了各种辅助线添加的难处 ,代之以空间向量的计算 ,有利于我们较好地解决问题 .1 异面直线所成的角异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的.因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小.在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力.新教材对立体几何的处理有了一些新的变化,淡化了对学生作图能力的要求,引进了空间向量的方法(实际上是把空间问题代数化),避开了一些繁杂的作图,其中在求异面直线所成的角中运用空间向量的方法有很大的优点.另外,对异面直线所成的角的求法我们还可以借用一些固定的模型,引用一些已知的公式来求出角的大小.例1在直三棱柱111ABC A B C -中,底面ABC ∆是直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点.(1)求异面直线1DC 、1B C 所成角的余弦值;(2)求二面角11B DC C --的平面角的余弦值.思路分析:建立空间直角坐标系,由题意写出相关点的坐标;(1)求出异面直线11,DC B C 所在的方向向量11,DC B C ,直接计算即可;(2)求出平面1B DC 与平面1DCC 的法向量,计算即可.(2)因为(0,2,0)CB =,(2,0,0)CA =,1(0,0,2)CC =,所以0CB CA ⋅=,10CB CC ⋅=,所以CB 为平面11ACC A 的一个法向量.因为1(0,2,2)BC =--,(2,0,1)CD =,设平面1B DC 的一个法向量为n , (),,n x y z =.由10,0,n B C n CD ⎧⋅=⎪⎨⋅=⎪⎩得220,20.y z x z --=⎧⎨+=⎩令1x =,则2,2y z ==-,()1,2,2n =-. 4,)3|||n CB CB CB ⋅==⨯11B DC C --点评:本题考查空间向量的应用,属中档题;在空间求线线角、线面角、二面角,是通过建立恰当的空间直角坐标系,正确写出各点的坐标,则通直线所在的方向向量、平面的法向量,通过向量的夹角间接求解,准确运算是解决这类问题的关键.2 直线与平面所成的角直线与平面所成角是空间三大角之一,它既是教与学的难点,又是高考的热点,求直线与平面所成角的常用方法.一、直接法直接法就是根据斜线与平面所成角的定义,直接作出斜线在平面内的射影,则斜线与射影所成角就是斜线与平面所成角,这是解题时首先要考虑的方法,直接法的关键是确定斜线在平面内的射影,下列结论常作为找斜线在平面内射影的依据.(1)(两平面垂直的性质定理)如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(2)如果一个角所在平面外一点到角的两边的距离相等,那么这个点在平面内的射影在这个角的平分线上.(3)经过一个角的顶点引这个角所在平面的斜线,设它和已知角的两边的夹角为锐角且相等,则这条斜线在平面的射影是这个角的平分线.(4)若三棱锥的三条侧棱相等,则其顶点在底面上的射影是底面三角形的外心. 二、借助于空间向量工具,利用直线的方向向量与平面的法向量的夹角来转化,当直线的方向向量与平面的法向量夹角为锐角时,通过直角三角形可以知道 ,直线与平面所成的角与直线的方向向量与平面的法向量夹角互余,因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦,当直线的方向向量与平面的法向量夹角为钝角时,其补角跟直线与平面所成的角互余,因此因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦的相反数.例2【西南名校联盟高三2018年元月】如图,在等腰梯形ABCD 中, 060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证: AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD 所成角的正弦值. 思路分析:(1)由60ABC ∠=︒, 2CD =, 4AB =,点E 为AB 的中点,得三角形BEC 沿线段EC 折起后可得四边形AECD 为菱形,边长为2, 60DAE ∠=︒,取EC 的中点F ,连接DF , BF , DE ,可证EC BF ⊥, EC DF ⊥,即可证EC ⊥平面BFD ,从而AD ⊥平面BFD ,即可得证;(2)以F 为坐标原点,建立空间直角坐标系,由(1)可证BFD ∠为平面BEC 与平面AECD 所成二面角的平面角,从而求出D , E , A , B ,再求出平面ABD 的一个法向量,即可求出直线AE 与平面ABD 所成角的正弦值.∴120BFD ∠=︒,而BF DF ==3BD =且30BFz ∠=︒,得点B的横坐标为2-B 的竖坐标为32,则)00D , ()010E ,,,)20A ,3022B ⎛⎫- ⎪ ⎪⎝⎭,,,故()10AE =-,, 33302BD ⎛⎫=- ⎪ ⎪⎝⎭, ()020AD =-,,, 设平面ABD 的一个法向量为()n x y z =,,,∴()()()333·0?02{ ·020?0BD n x y z AD n x y z ⎛⎫=-= ⎪ ⎪⎝⎭=-=,,,,,,,,,,得30 220x z y -=-=,,点评:直线与平面所成的角解题的一般思路为:首先建立适当的空间直角坐标系并正确写出各点的空间坐标,并求出平面的法向量,最后运用公式即可得出结果. 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3 二面角二面角及其平面角的概念是立体几何最重要的概念之一,在历年高考中几乎都要涉及.尤其是在数学新课改的大环境下,要求对二面角求法的掌握变得更加灵活,二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面位置关系的一个汇集点.研究二面角的求法,可以进一步培养学生的空间想象能力和逻辑思维能力,为培养学生的创新意识和创新能力提供了一个良好的契机. 在求解二面角的问题中,通常首先要定位出二面角的平面角,而这也是学生在解题中感到最为陌生和棘手的问题.特别是若二面角的棱隐而不露其解题的难度又会增大.求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.例3【北京市朝阳区2018届期末】如图,在三棱柱111ABC A B C -中, 90ACB ∠=, D 是线段AC 的中点,且1A D ⊥ 平面ABC .(Ⅰ)求证:平面1A BC ⊥平面11AAC C ;(Ⅱ)求证: 1//B C 平面1A BD ;(Ⅲ)若11A B AC ⊥, 2AC BC ==,求二面角1A A B C --的余弦值.思路分析:(Ⅰ)由90ACB ∠=,可得BC AC ⊥,由1A D ⊥ 平面ABC 可得1A D BC ⊥.根据线面垂直的判定定理可得BC ⊥平面11AAC C ,再利用面面垂直的判定定理可得结论;(Ⅱ)连接1AB ,设11AB A B E ⋂=,根据三角形中位线定理可得1//DE B C ,从而根据线面平行的判定定理可得1//B C 平面1A BD ;(Ⅲ)取AB 的中点F ,则//DF BC ,因为BC AC ⊥,所以DF AC ⊥,又因为1A D ⊥平面ABC ,所以1,,DF DC DA 两两垂直.以D 为原点,分别以1,,DF DC DA 为,,x y z 轴建立空间坐标系,利用向量垂直数量积为零列方程组,分别求出平面1A AB 的一个法向量与平面1A BC 的一个法向量,根据空间向量夹角余弦公式,可得结果.()2,0,0CB =,所以10,{ 0,m CA m CB ⋅=⋅=,即1110,{ 20.y x -==设11z =,则()m =.故17cos ,7m n m n m n ⋅+〈〉===⋅.由图知,二面角1A A B C --的平面角为锐角,所以二面角1A A B C --的余弦值为7.点评:本题考查了线面平行性质定理及判定定理、二面角的求解、空间向量的运算等知识点的应用,其中对于垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直. 利用空间向量求二面角,首先利用垂直关系建立恰当的空间直角坐标系,设立各点坐标,利用方程组解两个平面的法向量,利用向量数量积求夹角,最后根据向量夹角与二面角之间关系得结果.其解题过程中最容易出现以下错误:其一是对于第一问不能熟练运用线线平行、线面平行和面面平行的判定定理和性质定理,进而不能正确处理线面平行的问题;其二是对于第二问不能正确运用空间向量求二面角的大小,其关键是正确地求出各面的法向量.4 空间距离空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. 空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离. (6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离. 七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离. 在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点. 求点到平面的距离:(1)直接法:即直接由点作垂线,求垂线段的长.(2) 转移法:转化成求另一点到该平面的距离.(3)体积法. 求异面直线的距离:(1)定义法:即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法:依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.例4.AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在的平面,,D E 分别是,VA VC 的中点.(1)试判断直线DE 与平面VBC 的位置关系,并说明理由;(2)若已知2,AB VC ==当三棱锥V ABC -体积最大时,求点C 到面VBA 的距离.思路分析:(1)要判断直线DE 与平面VBC 的位置关系,注意到,D E 分别是,VA VC 的中点,可知//DE AC ,只需判断直线AC 与平面VBC 的位置关系,由已知AB 是O 的直径,点C 是O 上的动点,得AC BC ⊥,又直线VC 垂直于O 所在的平面,可得AC ⊥面VBC ,从而可得DE ⊥面VBC .(2)求点C 到面VBA 的距离,首先确定点C 的位置,有已知2,AB VC ==当三棱锥V ABC -体积最大,需写出三棱锥V ABC -的体积表达式,故设,AC b BC b ==,则224a b +=,从而可得1112323V ab ab =⋅⋅=,由基本不等式可得点C 为AB 的中点,最后利用公式V ABC C VAB V V --=即可得出点C 到面VBA 的距离.点评:本题考查是空间的直线与平面的垂直问题和点与平面的距离的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线DE与AC平行,再推证DE与平面VBC垂直即可.关于第二问中的最值问题,V 的体积取得最大值时成立的条件,然后运用等积法求解答时巧妙运用基本不等式,探求出三棱锥ABC出点C到平面VAB的距离.综合以上四类问题,立体几何中的空间角与距离问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.异面直线所成的角,通过作平行线,转化为相交直线所成的角.具体地,有以下两种方法:一是在其中一条上的适当位置选一点,过该点作另一条的平行线;二是在空间适当位置选一点,过该点作两条异面直线的平行线.求异面直线所成的角,点的选取很重要.运用空间向量坐标运算求异面直线所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:两异面直线所成的角不一定是直线的方向向量的夹角. 直线与平面所成的角就是直线与其在该平面内的射影所成的角.求线面角的关键是找出斜线在平面内的射影,一般在斜线上的某个特殊的位置找一点,过该点平面的垂线,从而作出射影;运用空间向量坐标运算求直线与平面所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:直线与平面所成的角的正弦等于直线与平面的法向量的夹角的余弦的绝对值. 求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②射影面积法.利用射影面积公式cos θ= S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等.③空间向量法:法一: ,AB CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=〈〉. 法二:设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角12cos cos ,u u θ=〈〉或12cos cos ,u u θ=-〈〉.求距离的关键是化归.即空间距离向平面距离化归,具体方法如下:(1)求空间中两点间的距离,一般转化为解直角三角形或斜三角形.(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法.(3)求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之.2.用法向量球距离:(1)用法向量求异面直线间的距离:如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b之间的距离是d = ;(2)用法向量求点到平面的距离:已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d =;(3)用法向量求直线到平面间的距离:首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题;(4)用法向量求两平行平面间的距离:首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。

高考数学第二轮复习 立体几何教学案

高考数学第二轮复习 立体几何教学案

2011年高考第二轮专题复习(教学案):立体几何 第1课时 直线、平面、空间几何体考纲指要:立体几何在高考中占据重要的地位,考察的重点及难点是直线与直线、直线与平面、平面与平面平行的性质和判定,而查空间线面的位置关系问题,又常以空间几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式。

考点扫描:1.空间两条直线的位置关系:(1)相交直线;(2)平行直线;(3)异面直线。

2.直线和平面的位置关系:(1)直线在平面内;(2)直线和平面相交;(3)直线和平面平行。

3.两个平面的位置关系有两种:(1)两平面相交;(2)两平面平行。

4.多面体的面积和体积公式,旋转体的面积和体积公式。

考题先知:例1.在平面几何中,我们学习了这样一个命题:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比。

请你类比写出在立体几何中,有关四面体的相似性质,并证之。

解:通过类比,得命题:过四面体的内切球的球心作一截面,将四面体分成的两部分的表面积比等于其体积比。

证明:如图,设四面体P-ABC 的内切球的球心为O ,过O 作截面DEF交三条棱于点E 、D 、F ,记内切圆半径为r,则r 也表示点O 到各面的距离,利用体积的“割补法”知:PDF O PEFO PDE O DEF P V V V V ----++==r S r S r S PDF PEF PDE ⋅+⋅+⋅313131BCFD O DEF O ACFE O ABC O ABDE O ABC DEF V V V V V V ------++++==r S r S r S r S r S BCFD DEF ACFE ABC ABDE ⋅+⋅+⋅+⋅+⋅3131313131,从而21表表S S V V ABC DEF DEF P =--。

例2.(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC 中,2,6==AC AB ,13-=BC ,以∠BAC 为例。

上海高三数学高考二轮复习教案立体几何专题之空间的角与距离(1)含答案

上海高三数学高考二轮复习教案立体几何专题之空间的角与距离(1)含答案

沪教版(上海)高中数学度高三数学二轮复习立体几何专题之空间的角与距离①教学目标1、理解点到平面、直线和直线、直线和平面、平面和平面距离的概念;会用求距离的常用方法(如:直接法、转化法、向量法)2、理解线线角、线面角、面面角的概念定义和取值范围;会用求角的方法“一作二证三计算”。

知识梳理1、空间角:(1)空间角的计算步骤一作、二证、三算。

(2)异面直线所成角:1>范围:___________ (0°,90°];2>计算方法:<1>平移法:一般情况下应用平行四边形的对边、梯形的平行对边、三角形的中位线进行平移;<2>补体法;(3)直线与平面所成的角:1>定义:平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角;一条直线垂直于平面,我们说它们所成的角是直角;2>范围:_____________ [0°,90°];3>斜线与平面所成角的计算:<1>直接法:关键是作垂线,找射影可利用面面垂直的性质;<2>平移法:通过三角形的中位线或平行四边形的对边平移,计算其平行线与平面所成的角(也可平移平面)。

<3>通过等体积法求出斜线任一点到平面的距离d,计算这点与斜足之间的线段长l,则sindl θ=.(6)二面角:1>定义:平面内的一条直线把平面分为两部分,其中的每一部分叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做这个二面角的平面角.规定:二面角的两个半平面重合时,二面角为0,当两个半平面合成一个平面时,二面角为π,因此,二面角的大小范围为_______ [0°,180°];2>确定二面角的方法:<1>定义法;<2>垂面法;注:空间角的计算步骤:一作、二证、三算2、空间距离(1)七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离; (2)点与点的距离: 1>解三角形及多边形;2>空间任意两点A 、B 间的距离即线段AB 的长度: 设()111,,A x y z 、()222,,B x y z ,则()()()222121212AB x x y y z z =-+-+-(3)两条异面两条异面直线的距离:直线的公垂线段的长度;说明:两条异面直线的距离等于其中一条直线到过另一条直线且与这条直线平行的平面的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的空间角与距离立体几何中的“角”与“距离”是定量分析空间几何元素(点、线、面)间位置关系的两个重要的几何量,在研究这些“角”和“距离”时,常将空间问题转化为平面问题来处理,这是化归思想在立体几何中的具体应用. 空间角是考查学生对立体几何中的视图、空间想象能力、逻辑推理能力以及运算能力的一个综合知识点;空间距离既能考查学生的空间想象能力和逻辑推理能力,又能考查学生的转化思想及运算能力,空间距离的计算也是学生感觉较难的部分.在求解空间的角与距离的问题时,一般应包括三个部分:求作、论证和计算,这三部分是一个统一的整体.求空间中的角或距离的常用方法注意根据定义找出或作出所求的角或距离,给出证明,一般情况下,力求明确所求角或距离的位置.求角与距离的关键是将空间的角与距离灵活地转化为平面上的角与距离,然后将所求量置于一个三角形中,通过解三角形最终求得所需的角与距离. 空间向量是高中数学立体几何中新增加的内容 .借助于空间向量工具,可以对一些传统解法中较为繁琐的问题加以定量化 ,从而降低了思维难度 ,增强了可操作性 ,使学生对立体几何更容易产生兴趣 .空间向量在角和距离的处理上有着独特的优势 ,它最大限度地避开了思维的高强度转换 ,避开了各种辅助线添加的难处 ,代之以空间向量的计算 ,有利于我们较好地解决问题 .1 异面直线所成的角异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的.因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小.在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力.新教材对立体几何的处理有了一些新的变化,淡化了对学生作图能力的要求,引进了空间向量的方法(实际上是把空间问题代数化),避开了一些繁杂的作图,其中在求异面直线所成的角中运用空间向量的方法有很大的优点.另外,对异面直线所成的角的求法我们还可以借用一些固定的模型,引用一些已知的公式来求出角的大小.例1在直三棱柱111ABC A B C -中,底面ABC ∆是直角三角形,12AC BC AA ===,D 为侧棱1AA 的中点.(1)求异面直线1DC 、1BC 所成角的余弦值;(2)求二面角11B DC C --的平面角的余弦值.思路分析:建立空间直角坐标系,由题意写出相关点的坐标;(1)求出异面直线11,DC BC 所在的方向向量11,DC BC ,直接计算即可;(2)求出平面1B DC 与平面1DCC 的法向量,计算即可.(2)因为(0,2,0)CB =,(2,0,0)CA =,1(0,0,2)CC =,所以0CB CA ⋅=,10CB CC ⋅=,所以CB 为平面11ACC A 的一个法向量.因为1(0,2,2)BC =--,(2,0,1)CD =,设平面1BDC 的一个法向量为n , (),,n x y z =.由10,0,n B C n CD ⎧⋅=⎪⎨⋅=⎪⎩得220,20.y z x z --=⎧⎨+=⎩令1x =,则2,2y z ==-,()1,2,2n =-. 4,)3|||nCB CB CB ⋅==⨯11B DC C --点评:本题考查空间向量的应用,属中档题;在空间求线线角、线面角、二面角,是通过建立恰当的空间直角坐标系,正确写出各点的坐标,则通直线所在的方向向量、平面的法向量,通过向量的夹角间接求解,准确运算是解决这类问题的关键.2 直线与平面所成的角直线与平面所成角是空间三大角之一,它既是教与学的难点,又是高考的热点,求直线与平面所成角的常用方法.一、直接法直接法就是根据斜线与平面所成角的定义,直接作出斜线在平面内的射影,则斜线与射影所成角就是斜线与平面所成角,这是解题时首先要考虑的方法,直接法的关键是确定斜线在平面内的射影,下列结论常作为找斜线在平面内射影的依据.(1)(两平面垂直的性质定理)如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(2)如果一个角所在平面外一点到角的两边的距离相等,那么这个点在平面内的射影在这个角的平分线上.(3)经过一个角的顶点引这个角所在平面的斜线,设它和已知角的两边的夹角为锐角且相等,则这条斜线在平面的射影是这个角的平分线.(4)若三棱锥的三条侧棱相等,则其顶点在底面上的射影是底面三角形的外心. 二、借助于空间向量工具,利用直线的方向向量与平面的法向量的夹角来转化,当直线的方向向量与平面的法向量夹角为锐角时,通过直角三角形可以知道 ,直线与平面所成的角与直线的方向向量与平面的法向量夹角互余,因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦,当直线的方向向量与平面的法向量夹角为钝角时,其补角跟直线与平面所成的角互余,因此因此直线与平面所成的角的正弦就等于直线的方向向量与平面的法向量夹角的余弦的相反数.例2【西南名校联盟高三2018年元月】如图,在等腰梯形ABCD 中, 060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证: AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD 所成角的正弦值. 思路分析:(1)由60ABC ∠=︒, 2CD =, 4AB =,点E 为AB 的中点,得三角形BEC 沿线段EC 折起后可得四边形AECD 为菱形,边长为2, 60DAE ∠=︒,取EC 的中点F ,连接DF , BF , DE ,可证EC BF ⊥, EC DF ⊥,即可证EC ⊥平面BFD ,从而AD ⊥平面BFD ,即可得证;(2)以F 为坐标原点,建立空间直角坐标系,由(1)可证BFD ∠为平面BEC 与平面AECD 所成二面角的平面角,从而求出D , E , A , B ,再求出平面ABD 的一个法向量,即可求出直线AE 与平面ABD 所成角的正弦值.∴120BFD ∠=︒,而BF DF ==3BD =且30BFz ∠=︒,得点B的横坐标为2-B 的竖坐标为32,则)00D , ()010E ,,,)20A , 302B ⎛⎫ ⎪ ⎪⎝⎭,,, 故()310AE =--,, 33302BD ⎛⎫=- ⎪⎪⎝⎭, ()020AD =-,,, 设平面ABD 的一个法向量为()n x y z =,,,∴()()()333·0?02{ ·020?0BD n x y z AD n x y z ⎛⎫=-= ⎪ ⎪⎝⎭=-=,,,,,,,,,,得30{ 2220x z y -=-=,,点评:直线与平面所成的角解题的一般思路为:首先建立适当的空间直角坐标系并正确写出各点的空间坐标,并求出平面的法向量,最后运用公式即可得出结果. 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3 二面角二面角及其平面角的概念是立体几何最重要的概念之一,在历年高考中几乎都要涉及.尤其是在数学新课改的大环境下,要求对二面角求法的掌握变得更加灵活,二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面位置关系的一个汇集点.研究二面角的求法,可以进一步培养学生的空间想象能力和逻辑思维能力,为培养学生的创新意识和创新能力提供了一个良好的契机. 在求解二面角的问题中,通常首先要定位出二面角的平面角,而这也是学生在解题中感到最为陌生和棘手的问题.特别是若二面角的棱隐而不露其解题的难度又会增大.求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.例3【北京市朝阳区2018届期末】如图,在三棱柱111ABC A B C -中, 90ACB ∠=,D 是线段AC 的中点,且1A D ⊥ 平面ABC .(Ⅰ)求证:平面1A BC ⊥平面11AAC C ;(Ⅱ)求证: 1//B C 平面1A BD ;(Ⅲ)若11A B AC ⊥, 2AC BC ==,求二面角1A A B C --的余弦值.思路分析:(Ⅰ)由90ACB ∠=,可得BC AC ⊥,由1A D ⊥ 平面ABC 可得1A D BC ⊥.根据线面垂直的判定定理可得BC ⊥平面11AAC C ,再利用面面垂直的判定定理可得结论;(Ⅱ)连接1AB ,设11AB A B E ⋂=,根据三角形中位线定理可得1//DE B C ,从而根据线面平行的判定定理可得1//B C 平面1A BD ;(Ⅲ)取AB 的中点F ,则//DF BC ,因为BC AC ⊥,所以DF AC ⊥,又因为1A D ⊥平面ABC ,所以1,,DF DC DA 两两垂直.以D 为原点,分别以1,,DF DC DA 为,,x y z 轴建立空间坐标系,利用向量垂直数量积为零列方程组,分别求出平面1A AB 的一个法向量与平面1A BC 的一个法向量,根据空间向量夹角余弦公式,可得结果.()2,0,0CB =,所以10,{ 0,m CA m CB ⋅=⋅=,即1110,{ 20.y x -+==设11z =,则()m =.故317cos ,7m n m n m n ⋅+〈〉===⋅.由图知,二面角1A A B C --的平面角为锐角,所以二面角1A A B C --.点评:本题考查了线面平行性质定理及判定定理、二面角的求解、空间向量的运算等知识点的应用,其中对于垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直. 利用空间向量求二面角,首先利用垂直关系建立恰当的空间直角坐标系,设立各点坐标,利用方程组解两个平面的法向量,利用向量数量积求夹角,最后根据向量夹角与二面角之间关系得结果.其解题过程中最容易出现以下错误:其一是对于第一问不能熟练运用线线平行、线面平行和面面平行的判定定理和性质定理,进而不能正确处理线面平行的问题;其二是对于第二问不能正确运用空间向量求二面角的大小,其关键是正确地求出各面的法向量.4 空间距离空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. 空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离. (6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离. 七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离. 在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点. 求点到平面的距离:(1)直接法:即直接由点作垂线,求垂线段的长.(2) 转移法:转化成求另一点到该平面的距离.(3)体积法. 求异面直线的距离:(1)定义法:即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法:依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.例4.AB 是O 的直径,点C 是O 上的动点,过动点C 的直线VC 垂直于O 所在的平面,,D E 分别是,VA VC 的中点.(1)试判断直线DE 与平面VBC 的位置关系,并说明理由;(2)若已知2,AB VC ==当三棱锥V ABC -体积最大时,求点C 到面VBA 的距离.思路分析:(1)要判断直线DE 与平面VBC 的位置关系,注意到,D E 分别是,VA VC 的中点,可知//DE AC ,只需判断直线AC 与平面VBC 的位置关系,由已知AB 是O 的直径,点C 是O 上的动点,得AC BC ⊥,又直线VC 垂直于O 所在的平面,可得AC ⊥面VBC ,从而可得DE ⊥面VBC .(2)求点C 到面VBA 的距离,首先确定点C 的位置,有已知2,AB VC ==当三棱锥V ABC -体积最大,需写出三棱锥V ABC -的体积表达式,故设,AC b BC b ==,则224a b +=,从而可得1112323V ab ab =⋅⋅=,由基本不等式可得点C 为AB 的中点,最后利用公式V ABC C VAB V V --=即可得出点C 到面VBA 的距离.点评:本题考查是空间的直线与平面的垂直问题和点与平面的距离的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线DE与AC平行,再推证DE与平面VBC垂直即可.关于第二问中的最值问题,V 的体积取得最大值时成立的条件,然后运用等积法求解答时巧妙运用基本不等式,探求出三棱锥ABC出点C到平面VAB的距离.综合以上四类问题,立体几何中的空间角与距离问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.异面直线所成的角,通过作平行线,转化为相交直线所成的角.具体地,有以下两种方法:一是在其中一条上的适当位置选一点,过该点作另一条的平行线;二是在空间适当位置选一点,过该点作两条异面直线的平行线.求异面直线所成的角,点的选取很重要.运用空间向量坐标运算求异面直线所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:两异面直线所成的角不一定是直线的方向向量的夹角. 直线与平面所成的角就是直线与其在该平面内的射影所成的角.求线面角的关键是找出斜线在平面内的射影,一般在斜线上的某个特殊的位置找一点,过该点平面的垂线,从而作出射影;运用空间向量坐标运算求直线与平面所成的角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.注意:直线与平面所成的角的正弦等于直线与平面的法向量的夹角的余弦的绝对值. 求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②射影面积法.利用射影面积公式cos θ= S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等.③空间向量法:法一: ,AB CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=〈〉. 法二:设1n ,2n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧(同等异补),则二面角l αβ--的平面角12cos cos ,u u θ=〈〉或12cos cos ,u u θ=-〈〉.求距离的关键是化归.即空间距离向平面距离化归,具体方法如下:(1)求空间中两点间的距离,一般转化为解直角三角形或斜三角形.(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法.(3)求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之.2.用法向量球距离:(1)用法向量求异面直线间的距离:如右图所示,a 、b 是两异面直线,是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b之间的距离是d = ;(2)用法向量求点到平面的距离:已知AB 是平面α的 一条斜线,为平面α的法向量,则 A 到平面α的距离为d =;(3)用法向量求直线到平面间的距离:首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题;(4)用法向量求两平行平面间的距离:首先必须确定两个平面是否平行,这时可以在一个平面上任取一点,将两平面间的距离问题转化成点到平面的距离问题.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。

相关文档
最新文档