EMI分析与设计
电路板emi设计

电路板EMI设计介绍在现代电子设备中,电路板是连接各个电子元件的重要组成部分。
然而,电路板在高频运行时可能会产生电磁干扰(EMI),对周围的电子设备和系统造成不利影响。
因此,进行电路板EMI设计是必要的,以确保设备的正常工作和可靠性。
本文将详细探讨电路板EMI设计的相关内容。
电磁干扰概述电磁干扰是指电磁场的能量在电路板或其它电子设备中引起的非预期影响。
这些干扰可以来自电源、信号线、地线等各种来源。
电磁干扰可能导致电路板的性能下降、设备故障、通信中断等问题,因此需要通过EMI设计来减小这些干扰。
EMI设计原则在进行电路板EMI设计时,需要遵循一些基本原则,以确保设计的高效和可靠。
以下是一些常用的EMI设计原则:1. 布局和层叠设计合理的电路板布局和层叠设计可以最大程度地减小电磁干扰。
布局设计应将信号线和电源线与敏感线路、高频线路等相隔离,并避免并行布线。
层叠设计可以通过在不同层次上布置信号层、地层和电源层,有效降低电磁辐射。
2. 地线设计地线是电路板EMI设计中非常重要的一部分。
合理的地线布局可以减小地回线的电阻和电感,降低电磁干扰。
使用大面积的地层和多个接地点,可以提高地线的效果。
3. 滤波设计滤波是减小电磁干扰的一种重要手段。
在电路板设计中,可以通过添加滤波电容、电感和滤波器等元件,来抑制高频噪声和谐波。
4. 屏蔽设计屏蔽设计是减小电磁辐射和接收外部干扰的有效方法。
可以在电路板和电子器件之间设置屏蔽罩,以防止电磁干扰的传播。
EMI设计步骤进行电路板EMI设计时,可以按照以下步骤进行:1. 确定设计需求和规范首先,需要明确设计的需求和规范。
根据电子设备的用途和运行环境,制定相应的EMI设计要求。
2. 进行电路板布局设计根据设计需求,进行电路板的布局设计。
将信号线、地线和电源线合理布置,并避免并行布线和敏感线路的相互干扰。
3. 进行层叠设计根据电路板的复杂度和性能要求,进行层叠设计。
将信号层、地层和电源层分开布局,以降低电磁辐射。
emi设计规则

emi设计规则emi(企业风险管理指数)是一种对企业风险做出评估的指标,它可用于评估企业的经营风险及其后果,从而为经营管理提供支持。
emi设计规则(EDR)是一个框架,可以帮助企业识别、评估、管理不同类型的风险,包括法律、财务、IT、人力资源、技术、组织、运营、和安全风险,并提供可行的行动方案。
emi设计规则的基本概念是以建立一个完整的风险管理体系为基础,为组织提供健全的风险管理流程。
从企业的角度来看,它的目的是通过评估、跟踪和管理不同类型的风险,以最小的成本实现最大的收益,有效地提升企业的整体绩效。
emi设计规则由四个层次组成,包括风险评估、风险管理、风险衡量和风险监控。
第一,风险评估是企业判断风险的第一步,可以通过分析企业的历史数据和当前的行业环境,确定可能发生的风险,并建立可行的应对措施。
具体来说,企业可以定义出多种可能的风险情景,并结合对非标准风险的评估,形成风险评估报告,确定最可能发生、最坏情况和最佳情况下的风险状态,为风险管理提供有效的基础。
第二,风险管理是根据风险评估结果所做出的行动。
通过这一步,企业可以采取控制、减少、接受或转移等具体措施,达到风险最小化的目的。
控制是要采取有效的措施来预防风险的发生,减少是要减少风险的发生或影响,而接受意味着企业将承担风险的风险,转移则意味着用保险、交易或其他方法将风险转移给其他机构。
第三,风险衡量是指企业从不同角度衡量风险的程度,以及风险管理的效果如何。
具体来说,企业可以利用经济成本-效益分析、定量化风险评估方法、数据挖掘等方法来衡量风险,并分析风险控制措施的效果。
第四,风险监控是指企业要及时监控风险情况,以便及时发现风险,并采取有效的应对措施。
企业可以根据风险监控报告,及时调整风险管理战略,以降低风险发生的可能性、减少风险的影响力。
总的来说,emi设计规则的基本原理是以建立一个健全的风险管理体系为目标,以帮助企业实现最高效率经营管理为目标。
它为企业提供了一种组织架构,可以有效地识别、评估、管理和监控风险,从而最大限度地提高组织的绩效。
背光驱动控制系统设计中的EMC与EMI问题分析

背光驱动控制系统设计中的EMC与EMI问题分析背光驱动控制系统是现代电子产品中不可或缺的一个部分。
在设计和实施背光驱动控制系统时,我们需要重视与电磁兼容性(EMC)和电磁干扰(EMI)相关的问题。
本文将对背光驱动控制系统设计中的EMC与EMI问题进行分析,并提出相应的解决方案。
一、背景介绍背光驱动控制系统广泛应用于各种显示设备,例如LCD液晶显示屏、LED显示屏等。
这些显示设备在工作过程中会产生电磁辐射,并且容易受到外部电磁干扰影响。
因此,为了确保背光驱动控制系统的正常运行和稳定性,我们必须解决与EMC与EMI问题相关的挑战。
二、EMC问题分析1. 电磁辐射(EMR)电磁辐射是背光驱动控制系统中的一个主要EMC问题。
当驱动电路工作时,会产生高频信号和尖峰信号,这些信号会通过导线、印刷电路板(PCB)和外壳等传导出去,引发电磁辐射。
这种辐射会对周围的电子设备产生干扰,影响其正常工作。
2. 电磁感应(EMI)电磁感应是EMC问题的另一个重要方面。
当背光驱动控制系统接收外部电磁信号时,可能会产生电磁感应,导致系统内部的电子元件受到干扰。
这种干扰可能导致系统的性能下降,甚至引起系统故障。
三、EMI问题分析1. 干扰源在背光驱动控制系统中,可能存在多种干扰源,包括电源线、数据线、时钟信号等。
这些干扰源会产生电磁能量,通过导线和其他电子元件传递,从而干扰系统的正常工作。
2. 抑制技术为了解决EMI问题,我们可以采取一些抑制技术。
例如,使用屏蔽材料来包覆电子元件和电线,降低电磁辐射的强度;设计合理的接地系统,确保电磁干扰能够有效地释放到地面;使用抑制器件,如滤波器等,来消除电磁噪声。
四、EMC与EMI问题的解决方案1. 布局设计在背光驱动控制系统的布局设计中,我们应该合理安排电路板上的元件和导线,减少传导和辐射路径。
通过优化布局设计,可以降低电磁辐射和敏感元件的电磁干扰。
2. 地线设计地线设计是EMC与EMI问题解决中的重要环节。
EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。
3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。
开关电源所产生的干扰以共模干扰为主。
产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。
注意:1. 避免电流过大而造成饱和。
2.Choke 温度系数要小,对高频阻抗要大。
3.感应电感要大,分布电容要小。
4.直流电阻要小。
B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。
开关电源EMI滤波器原理与设计研究

被动式EMI滤波器主要通过电感和电容的组合来实现干扰的吸收和抑制。而主 动式EMI滤波器则通过在信号线上加入特殊的电子器件来消除干扰。
EMI耗
额定电压是EMI滤波器的重要参数之一,它 表示滤波器可以承受的最大电压值。
插入损耗是指EMI滤波器接入电路后,对信 号传输造成的影响。插入损耗越小,说明滤 波器的性能越好。
群时延
温度系数
群时延是指滤波器对信号传输时间的影响。 群时延越小,说明滤波器的传输速度越快。
温度系数是指EMI滤波器在温度变化时,其 性能变化的程度。温度系数越小,说明滤波 器的稳定性越好。
02
开关电源EMI滤波器设计基 础
EMI滤波器电路拓扑结构
1 2
共模滤波电路
用于减小电源线上共模噪声,包括电阻、电容 和电感等元件。
抑制共模噪声
通过采用共模扼流圈等元件,可以抑制共模噪声,提高滤波 器的性能。
抑制差模噪声
采用差模扼流圈等元件,可以抑制差模噪声,提高滤波器的 性能。
EMI滤波器与整流器的配合设计
整流器与滤波器的配合设计
整流器输出的波形对EMI滤波器的性能有很大影响,因此需要合理设计整流 器与滤波器之间的电路连接方式,以减小整流器对EMI滤波器性能的影响。
2023
《开关电源emi滤波器原理 与设计研究》
目录
• 开关电源EMI滤波器概述 • 开关电源EMI滤波器设计基础 • 开关电源EMI滤波器优化设计 • 开关电源EMI滤波器性能评估 • 开关电源EMI滤波器设计实例 • 结论与展望
01
开关电源EMI滤波器概述
EMI滤波器的定义和作用
EMI滤波器定义
整流器与滤波器的参数匹配
EMI分析

4.2.1 电压瞬变对于电磁干扰的分析,可以从电磁能量外泄方面来考虑,如果器件向外泄露的能量越少,我们可以认为产生的电磁干扰就比较小。
对于高速的数字器件来说,产生高频交流信号时的电压瞬变是产生电磁干扰的一个主要原因。
我们知道,数字信号在开关输出时产生的频谱不是单一的,而是融合了很多高次谐波分量,这些谐波的振幅(即能量)由器件的上升或者下降时间来决定,信号上升和下降速率越快,即开关频率越高,则产生的能量越多。
所以,如果器件在很短的时间内完成很大的电压瞬变,将会产生严重的电磁辐射,这个电磁能量的外泄就会造成电磁干扰问题。
通常,高速数字电路的EMI 发射带宽可以通过下面的公式计算:F=1/πTr,F为开关电路产生的最高EMI频率,单位为GHz,Tr为信号的上升时间或者下降时间,单位为ns。
'700')this.width='700';" border=0> 图1-4-1 理想信号回流示意图'700')this.width='700';" border=0>图1-4-1 实际情况中的信号回流对高频信号回流的理解不能有一个思维定势,认为回流必须完全存在于信号走线正下方的参考平面上。
事实上,信号回流的途径是多方面的:参考平面,相邻的走线,介质,甚至空气都可能成为它选择的通道,究竟哪个占主要地位归根结底看它们和信号走线的耦合程度,耦合最强的将为信号提供最主要的回流途径。
比如在多层PCB设计中,参考平面离信号层很近,耦合了绝大部分的电磁场,99%以上的信号能量将集中在最近的参考平面回流,由于信号和地回流之间的环路面积很小,所以产生的EMI也很低。
但如果由于相邻的参考平面上存在缝隙等非理想因素,这就导致了回流的面积增大,低电感的耦合作用减弱,将会有更多的回流通过其它途径或者直接释放到空中,这就会导致EMI的大大增加。
我们参考图1-4-3来分析信号回流对EMI的影响,可以看到:信号和回流外部区域,由于磁场的极性相反,可以相互抵消,而中间部分是加强的,这也是对外辐射的主要来源。
EMI噪声分析及EMI滤波器的设计

传 到次级 ,开关管Q1 止 时 ,高 频变 压器 进行 磁 截 复位 。通 过 高频 变压 器传来 的高频 脉 冲经 整流 二
极管 整 流成单 一方 向的脉 动直 流 .这个 脉 动直 流
经输 出滤 波 电感 和滤 波 电容 滤 波后 。即可送 出所 需 要 的直流 电压 。
轻 、薄 、小和 高效 率等 种种 便利 之 时 ,同时 也 带
作原 理 。最后 给 出了国 内外对干扰 噪 声所采 用 的一 些规 范和标 准。 关键 词 :开关 电源 ;E ;滤 波器 ;干扰噪 声 MI
0 引 言
开 关 电源作 为 一 种 通用 电源 ,以其 轻 、薄 、 小 和高 效率 等特 点为 人们 所熟 知 ,是 各种 电子设 备 小 型 化 和低 成 本 化 不 可缺 少 的 一种 电源 方 式 , 已成为 当今 的主 流 电源 。随着 电子 信 息产 业 的迅 猛 发展 ,其应 用 范 围也必 将 日益扩 大 ,需 求量 也
1 E 噪 声 电流 MI
开关 电源 的电路 拓扑结 构 很 多 ,按 功 率 开关 管 与高 频变 压器 的组 合工 作方 式 可分 为全 桥 、半
桥 、推挽 、单端 正激 、单 端反 激等 模式 。在 中小 功 率开关 电源模块 中 ,使用 较 多 的电路 拓 扑结 构
为 推挽式 、单 端正 激式 、单 端反 激式 等 。典 型 的 单 端正 激 式 开关 电源 电路 框 图如 图 1 示 .它 由 所
收 稿 日期 :0 0 0 — 2 2 1 — 3 1
开关 频率 的基波 和若 干次谐 波 的频 段 内 ,干扰 噪
声 的幅值 远 远超 过 了G B1 1 J 5 A所规 定 的范 围 .因 而会造 成 系统传 导噪声 等 电磁兼容 指标 超标 。
EMI滤波器电路原理及设计

EMI滤波器电路原理及设计
EMI滤波器的原理是基于信号的频率特性和线路的阻抗匹配。
在设计EMI滤波器时,首先需要分析电路中的电磁干扰源,并根据干扰频率的不
同选择合适的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在滤波器的设计中,核心是选择合适的元件参数以及电路拓扑结构。
其中电感和电容是常用的滤波元件,它们的选择需要考虑滤波器的频率响
应特性。
一般来说,电感可用于低频段的滤波,而电容则适用于高频段的
滤波。
在滤波器的设计中还需要考虑元件的阻抗匹配,以提高滤波效果。
除了滤波器,EMI滤波器还包括抑制器。
抑制器通过增加抑制网络,
进一步提高滤波器对电磁干扰的抑制效果。
抑制网络一般包括与电磁干扰
源之间的串联电感和并联电容。
它们通过改变电路的阻抗特性,减少电磁
干扰信号的传输和辐射。
在设计EMI滤波器时,还需要考虑电路的输入和输出特性以及滤波器
的功率损耗。
输入和输出特性的分析包括电压、电流和功率的测量与计算,以保证滤波器在工作范围内的性能。
而功率损耗则是指滤波器对信号的能
量损耗,需要控制在合理的范围内,以避免对整体电路性能的影响。
总之,EMI滤波器的设计原理是基于信号的频率特性和线路的阻抗匹配。
通过选择合适的滤波器类型、元件参数和抑制网络,可以实现对电磁
干扰的抑制。
设计时需要考虑电路的输入和输出特性以及滤波器的功率损耗,以保证滤波器正常工作并提供良好的滤波效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子设备电磁兼容分析及设计技术北京邮电大学继续教育学院电磁兼容研究室吕英华教授TEL: +86 10 62282664FAX: +86 10 62281116E-Mail: yhlu@1电磁兼容授课参考大纲第一节电磁兼容技术基础1. 基本概念2. 电磁兼容与电子新产品开发3. 电磁干扰源及特性4. 电磁兼容一般方法第二节电磁干扰分析方法1. 电磁拓扑分区2. 电磁耦合顺序图3. 电磁干扰作用途径4. 电磁辐射干扰分析5. 传导干扰分析. 电容耦合. 电感耦合. 公共阻抗耦合6. 保证电磁兼容措施第三节电磁兼容技术基础1. 电子设备组装设计概述. 逻辑分区. 器件布局2. 印刷电路板布线设计. 印刷电路板允许噪声分配. 数字信号及设计频率范围. 印制线长度要求. 3-W和20H原则. 镜像对销和隔离技术3. 电子设备及多层印制板接地设计. 多层印制板接地设计原理. 多层印制板接地方式. 多层印制板接地电路. 多层印制板接地隔离技术第四节多层印制板电磁兼容设计关键技术1. 多层印制板电磁兼容设计原则2. 各种净化电容设计. 集成电路元件的电源保证. 电容的自谐振频率. 电容量计算. 开关元件的平滑电容3. 时钟电路设计. 需要考虑的带宽. 阻抗控制. 传输延迟. 容性负载的影响2. 时钟线的终端处理. 时钟电路印制线条的布线方法. 减小时钟电路辐射的方法. 时钟电路引起的串音、保护线安排第五节电子设备的屏蔽与接地设计一、屏蔽与接地原理. 高频接地屏蔽. 低频屏蔽原理. 屏蔽与接地二、电缆屏蔽设计1 屏蔽电缆的屏蔽原理2 电缆屏蔽效果与接地3 电缆成束与空间布局第六节电子设备接口的电磁兼容设计1. I/O电路设计和连接器的电磁兼容特性及正确使用. 连接器接地不当产生的辐射. 连接器的分区和接地. 特殊功能连接器北京邮电大学吕英华5 2005年6月第七节电子设备的结构性辐射1. 共模电流与差模电流. 共模电流与差模电流的概念. 共模电流与差模电流辐射发射特性. 共模电流与差模电流辐射发射的估算2. 设计方法. 共模电流与差模电流转换的原理. Hartin结构分解法第八节防静电设计1. 静电设计基本原理2. 材料防静电性能3. 人体的静电模型4. 防静电硬件设计5. 防静电软件设计第九节系统接地工程1 系统接地原理2 用电系统3 接地规范4 大地电学特性第十节电磁兼容测试常用仪表1 电磁兼容测试与建模2 示波器用于EMI测量3 EMI接收机用于EMI测量4 频谱分析仪用于EMI测量35 窄带干扰与宽带干扰第一节电磁兼容设计基础一、基本概念二、电子新产品策划基本过程三、影响电子设备的干扰源及特性四、电磁兼容一般方法电子产品开发参考过程电子产品开发参考过程456达到电磁兼容的成本电子战是现代战争的特色n HEMPn HPM 0.01-1μW/ cm2干扰,0.01-1W/ cm2 毁坏芯片, 10-100W/ cm2 永久性损伤, 1000-10000W/ cm2 烧毁n 电子对抗n 电磁弹FCGn ―空爆弹‖的无线电引信7n 无源探测定位, 电磁制导导弹n EMSEC---TEMPEST,特洛伊木马,无线病毒。
电磁寄生1公里,LAN为10公里,海南声音识别—电话窃听n C4I对抗:指挥、控制、通信、计算机和情报89第二节电磁干扰分析方法1.电磁拓扑分区2.电磁耦合顺序图3.电磁干扰作用途径4.电磁辐射干扰分析5.传导干扰分析. 电容耦合. 电感耦合. 公共阻抗耦合6. 保证电磁兼容措施10电磁环境的组成一个简单的电磁干扰模型有三个基本要素:1 存在电磁干扰能源。
2 存在一个受电磁干扰的设备,当电磁干扰超出容许的界限时,被干扰设备性能会发生混乱。
3 在干扰和受干扰设备间存在耦合通道传递电磁能量必须同时具备三个基本要素才会发生电磁干扰。
如果去除了其中之一,就不会发生电磁干扰。
所以,工程师的任务就是要决定哪一个因素是最容易消除的。
一般地说,在设计印制电路板时,消除主要的射频干扰源是最廉价有效的方法(称为电磁抑制)。
干扰源是产生初始波形的主动因素。
印制电路板必须设计成使产生的电磁能量只限于需要的装配部件处。
电子设备的电磁兼容水平包括以下两个性质截然不同的方面:1 电磁发射(EMI):设备传播的电磁干扰有辐射干扰和传导干扰。
2 电磁敏感度或抗扰度(EMS):受影响设备或敏感设备所遭受的伤害效应,包括电磁干扰EMI、静电放电(ESD)和电力过电压(EOS)等形式的伤害。
此外,还要满足特定用户应用环境下的要求。
常见的电磁干扰源及特性²自然界的电磁干扰源:雷电放电、太阳黑子爆发、日辉和地球磁暴等²人为的电磁干扰源:连续干扰源—设备工作时产生的,辐射或传导干扰脉冲干扰源—电磁瞬态过程,有很宽的频谱,向空间辐射间接干扰源—与机械运动有关,如车,船和飞机的壳体与空气中的尘粒、烟尘、雪片等摩擦起电。
接触干扰源—金属的接触面具有复阻抗特性,振动、颠簸、撞击时,接触阻抗是可变的。
外界强辐射场产生感应电流,由于接触阻抗的作用会产二次辐射。
辐射频谱为原辐射频谱加接触阻抗变化的调制,产生附加频率分量。
停止运动时这种干扰便消逝。
典型的人为干扰源及特性点火系统:脉宽1毫微秒到数百毫微秒,30~300 兆赫间的频带内最强,电性干扰可达500微伏/ 米,60~80米输电线系统:0.1到150KHz的范围,辐射干扰的脉冲宽度较大为14KHZ到1GHZ重复频率较低。
电晕放电产生高频振荡,正半周的电晕有较强的放电并伴随着发光。
电感性设备:电动机、电弧焊设备和变压器等设备,不规则的脉冲流,频谱约为10K到1G。
开关器件和继电器:伴随着触点开合着有气体放电和电弧放电。
电弧放电是触点的金属高温汽化形成电流通路,没有气体也产生电弧放电。
电子设备内部的干扰源TTL的开关噪声:开关电流,几十到几吉赫的高频,产生的须状噪声约0.5~1.5伏,宽5-10纳秒。
TTL逻辑元件也极易受影响,2伏20纳秒的噪声就使TTL逻辑器件发生误动作。
动态RAM:DRAM利用电荷存储数位信息,充放电电流的峰值为100MA,频率可达,100MHz,电源线和接地线产生串扰和公共阻抗噪声。
电源和接地:电源投入的过渡过程,负载变化产生快速脉冲电流,经电源和接地通路产生干扰。
振荡器体及变压器:工作时会在周围辐射高频电磁波。
静电放电和I/O端的干扰:经过信号线和连接器,外界的电磁干扰进入电子设备,内部干扰源向外辐射。
北京邮电大学吕英华30 2005年6月保证电磁兼容性²元件、部件级的电磁干扰来源于元件之间的电磁耦合,通常由元器件的分布电气参数决定强弱。
性质属于近区电磁场的作用,用电路的概念建模,有电容、电感耦合或公共阻抗的耦合。
²设备级的电磁干扰与电磁环境,电子设备之间和电子设备内部的电磁耦合有关。
²综合系统和系统级用系统论方法:1、系统的电磁干扰、耦合和敏感性描述,测量和实验。
2、系统电磁兼容建模。
3、确立参数指标。
4、合理组织。
²业务级的电磁兼容:各种组织方法,如无线电管理委员会等。
北京邮电大学吕英华31 2005年6月电磁拓扑分析法n 把一个系统分解为相对简单的有机组成部分n 在电子系统中实现EMC目标的主要技术是在干扰源和敏感设备之间设置屏障:将需要防护的区域用封闭的金属体包围起来,在电磁穿透点加装适当的防护器件。
n 电磁场等强度区的几何分布关系就称为系统的电磁拓扑状态或电磁拓扑图n 等电位面的方法和电力线和磁力线方法n 电磁拓扑图上有电磁能量密度电压、电流、频率和功率等参数。
北京邮电大学吕英华32 2005年6月透入屏蔽外区电缆屏蔽S2VoV1机身屏蔽S12005年6月V2孔缝透入(门,窗等)电路S3V3北京邮电大学吕英华入射EMI能量直接注入点天线33电磁耦合顺序图n 造成当前的电磁拓扑状态的原因及维持系统中不同电磁拓扑状态之间秩序的耦合关系或动态平衡关系,这种分析的过程展开就给出电磁耦合顺序图n 电磁耦合顺序描述的是电磁波传播的过程,耦合的过程。
导行电磁波;交变电磁波。
n 电磁耦合顺序图可以根据基本的传输方程、波动方程、已有的样板研究成果以及基本的电磁过程的模板的分解和迭加的方法进行。
n 电磁耦合顺序图应该标示出相应的耦合参量、传输参量、通道特性、电容、电阻、电感、信号波形、天线增益和方向图等。
北京邮电大学吕英华34 2005年6月设计基本过程把系统分解为相对简单的组成部分1. 功能板2. 背板3.机架与机柜4.器件布局在干扰源和敏感设备之间设置屏障1.金属屏蔽2.滤波器3.接地印制线条4.护沟电磁干扰的出入点(POE)配置防护器件限制EMI经过这些POE进入1.滤波器2.磁环3.垫圈4.共模缓存放大器5.光电配合电磁兼容设计、问题排查性测试,验证达到电磁兼容标准的预测试达到电磁兼容指标的花费最小是设计准则。
北京邮电大学吕英华35 2005年6月电磁干扰作用源分析²干扰三个要素:1、干扰源的大小和特性。
2、电磁干扰作用的途径。
3、设备对电磁干扰的敏感度及防护措施。
r >>²辐射干扰:²远区场²近区场2< rpl产生影响,电和磁的作用是分别进行的,表现为电压和电流。
感应电荷和电流的分布是关键因素²近区辐射场l2pr2 2D2>>lp3米,100兆赫约0.5米电场经耦合电容、磁场经互感2 2D 需要采用全波解l< r <l北京邮电大学吕英华2005年6月3610k1k10010波阻抗2005年6月电场占优区ErH. 1 3r. 1 2非对称场区E . 1r 2H无功近场区. 1r3磁场占优区无功辐射近场区辐射近场区近场区0.1到源点的归一化距离北京邮电大学吕英华平面波区1r E .H实测值. 1r377欧姆转变区远场区10 137辐射发射传播规律电偶极子辐射小电流环辐射孔缝的辐射l 2 2 w P ) ( ( ) p = 40 I m 24 P m高阻抗大电流的电路趋于良好的辐射体;低阻抗线路趋向于成为接收器和转发器。
这种作用取决于线路的自感、互感和电容的大小。
U(wl)90l2北京邮电大学吕英华2005年6月lS 2 w) ( )l22 160p I (2 2m=P =38²电感耦合传导干扰的传播规律导体2Z1 Z22V2C2gZ21²电容耦合导体1C12C V1 1g~²电容耦合V2Q1 导体1C12h1dh1镜象-Q1= jvC 1 12 2V R 12Q2导体2-Q2e2北京邮电大学吕英华= jwM I12005年6月h2h2地面39电容耦合原理C V1 1g~导体1Z1C12Z21北京邮电大学吕英华导体2Z22V 2C2g2005年6月40电感耦合原理导线回路1导线回路2 ~ V1Z21(a)互感耦合示意图北京邮电大学吕英华I1Z1M12V22005年6月Z2241电感耦合与电感耦合的区别+ -~ i=jωC 12V1e =jωM12i1Z21 Z22 Z22 Z21互感耦合时干扰为电动势电容耦合时干扰为电流源北京邮电大学吕英华42 2005年6月区别电感耦合与电感耦合的测量电路VR2 R1将导线两端都接电阻,然后在导线一端的电阻上测量电压,同时减小另一端所接的电阻。