EMI滤波器的设计原理及参数计算方法
开关电源EMI滤波器原理与设计

提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。
开关电源EMI滤波器原理与设计

EMI滤波器的分类
按安装位置分类
可以分为输入EMI滤波器和输出EMI滤波器。输入EMI滤波器安装在电源输入 端,用于抑制电网中的电磁干扰;输出EMI滤波器安装在电源输出端,用于抑 制电源对负载的电磁干扰。
按元件分类
可以分为无源EMI滤波器和有源EMI滤波器。无源EMI滤波器主要由电感和电容 组成,有源EMI滤波器则增加了运算放大器等电子元件。
THANKS
感谢观看
工业控制
如PLC、伺服驱动、传感器等。
汽车电子
如发动机控制、刹车控制等。
案例一:某型号电源的EMI滤波器设计
背景介绍
某型号电源在运行过程中出现了严重 的EMI干扰问题。
设计方案
采用EMI滤波器对电源输出端的干扰 进行抑制。
设计细节
根据电源的输出阻抗特性和干扰频率 ,选择合适的滤波器元件和结构。
实验验证
提高效率
优化电路拓扑结构,以提高电源的效率。例如, 采用同步整流、软开关等技术。
降低电磁干扰
合理设计电路拓扑结构,降低开关电源本身产生 的电磁干扰。
改进元件布局和布线
优化元件布局
合理安排各个元件的位置,以减小它们之间的相互干扰。
合理布线
优化线路布局,减小电流回路的大小和复杂度,以降低线路的电 感和电阻。
样品制作阶段
制作滤波器样品,并进行初步 的测试和验证。
批量生产阶段
在生产线上进行批量生产,并 进行持续的测试和验证。
应用现场阶段
在实际使用现场进行应用和验 证,确保滤波器的性能和效果
符合设计要求。
06
开关电源EMI滤波器应用 与案例分析
应用领域
电力电子设备
如电源、逆变器、变频器等。
直流电源EMI滤波器的设计

直流电源EMI滤波器的设计直流电源EMI滤波器的设计原则、网络结构、参数选择1 设计原则-满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。
设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。
所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。
同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。
即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。
2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM 和差模干扰信号DM,CM 和DM 的分布如图1所示。
它可用来指导如何确定EMI滤波器的网络结构和参数。
EMI滤波器的基本网络结构如图2 所示。
上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:双向滤波功能——电网对电源、电源对电网都应该有滤波功能。
能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。
最大程度地满足阻抗失配原则。
几种实际使用的电源EMI滤波器的网络结构如图3 所示。
3 电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。
降额系数为0.75 V,0. 6 W。
根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。
EMI 滤 波 器 原 理 与 设 计 方 法 详 解

EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。
3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。
开关电源所产生的干扰以共模干扰为主。
产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。
注意:1. 避免电流过大而造成饱和。
2.Choke 温度系数要小,对高频阻抗要大。
3.感应电感要大,分布电容要小。
4.直流电阻要小。
B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。
emi滤波器电路设计 -回复

emi滤波器电路设计-回复EMI滤波器电路设计是电子工程中非常重要的一项工作,它的作用是降低或消除电磁干扰(Electromagnetic Interference,简称EMI),使电路正常运行。
本文将以EMI滤波器电路设计为主题,一步一步回答相关问题。
第一步:了解EMI滤波器的原理和分类EMI滤波器的基本原理是利用滤波器电路对电路信号进行处理,降低或消除电磁辐射、传导噪声对其他设备的影响。
根据滤波器的工作原理和频率响应,EMI滤波器可以分为三类:无源LC滤波器、有源滤波器和混合滤波器。
其中无源LC滤波器是应用最广泛的一种。
第二步:确定EMI滤波器的设计要求在设计EMI滤波器电路之前,需要根据具体应用场景和系统要求,确定一些设计参数和要求,例如带宽范围、最大允许的衰减等级、最大允许的漏电流等。
这些参数和要求将直接影响到滤波器电路的设计和性能。
第三步:选择合适的滤波器拓扑结构在选择滤波器的拓扑结构时,需要考虑滤波器的频率响应、带宽需求以及设计要求等多个因素。
常见的LC滤波器拓扑结构包括L型滤波器、π型滤波器和T型滤波器等。
此外,还可以根据实际需要选择有源滤波器或混合滤波器等。
第四步:计算滤波器的元件数值和参数在确定滤波器的拓扑结构后,需要根据具体的设计要求和滤波器电路的特性,计算滤波器的元件数值和参数。
这包括滤波器电感、电容和电阻等的数值选择和设计。
第五步:绘制EMI滤波器的电路图根据前面的设计计算结果,可以使用相应的电路设计软件或者手绘工具绘制EMI滤波器的电路图。
电路图应该清晰明了,标明每个元件的数值和型号,接线端口应该有合适的标记。
第六步:仿真和优化滤波器电路在绘制完电路图之后,可以使用电路仿真软件对滤波器电路进行仿真和优化。
通过仿真可以验证滤波器电路的设计是否符合要求,并进行必要的调整和优化。
第七步:制作滤波器电路原型并进行测试根据仿真结果,可以制作EMI滤波器电路的原型,并进行实际测试。
EMI滤波器电路原理及设计

EMI滤波器电路原理及设计
EMI滤波器的原理是基于信号的频率特性和线路的阻抗匹配。
在设计EMI滤波器时,首先需要分析电路中的电磁干扰源,并根据干扰频率的不
同选择合适的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在滤波器的设计中,核心是选择合适的元件参数以及电路拓扑结构。
其中电感和电容是常用的滤波元件,它们的选择需要考虑滤波器的频率响
应特性。
一般来说,电感可用于低频段的滤波,而电容则适用于高频段的
滤波。
在滤波器的设计中还需要考虑元件的阻抗匹配,以提高滤波效果。
除了滤波器,EMI滤波器还包括抑制器。
抑制器通过增加抑制网络,
进一步提高滤波器对电磁干扰的抑制效果。
抑制网络一般包括与电磁干扰
源之间的串联电感和并联电容。
它们通过改变电路的阻抗特性,减少电磁
干扰信号的传输和辐射。
在设计EMI滤波器时,还需要考虑电路的输入和输出特性以及滤波器
的功率损耗。
输入和输出特性的分析包括电压、电流和功率的测量与计算,以保证滤波器在工作范围内的性能。
而功率损耗则是指滤波器对信号的能
量损耗,需要控制在合理的范围内,以避免对整体电路性能的影响。
总之,EMI滤波器的设计原理是基于信号的频率特性和线路的阻抗匹配。
通过选择合适的滤波器类型、元件参数和抑制网络,可以实现对电磁
干扰的抑制。
设计时需要考虑电路的输入和输出特性以及滤波器的功率损耗,以保证滤波器正常工作并提供良好的滤波效果。
开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
EMI滤波器电路原理及设计

EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。
这样就对EMC提出了更高的要求指标。
分类:开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。
通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。
EMI滤波器介绍开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。
火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。
在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
1.开关电源的EMI干扰源开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
(1)功率开关管功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。
(2)高频变压器高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。
(3)整流二极管整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI滤波器的设计原理
随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用
1.11 构造原理
电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1.2 基本电路及典型应用
电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
L的电感量与EMI滤波器的额定电流 有关,参见表1。
需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
C1和C2采用薄膜电容器,容量范围大致是0.01mF~0.47μF,主要用来滤除串模干扰。
C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。
C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。
为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。
C1~C4的耐压值均为
630VDC或250VAC。
图2示出一种两级复合式EMI滤波器的内部电路,由于采用两级(亦称两节)滤波,因此滤除噪声的效果更佳。
针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。
2 EMI滤波器在开关电源中的应用
为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路如图3所示
图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,
图(b)则接到输出端。
图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。
图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和
C4接在输出端。
EMI滤波器能有效抑制单片开关电源的电磁干扰。
图4中曲线a为不加EMI 滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。
曲线b是插入如图3(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV ~ 70dBμV。
显然,这种EMI滤波器的效果更佳。
3 EMI 滤波器的技术参数及测试方法
3.1 主要技术参数
EMI 滤波器的主要技术参数有:额定电压、额定电流、漏电流、测试电压、绝缘电阻、直流电阻、使用温度范围、工作温升Tr 、插入损耗AdB 、外形尺寸、重量等。
上述参数中最重要的是插入损耗(亦称插入衰减),它是评价电磁干扰滤波器性能优劣的主要指标。
插入损耗(AdB)是频率的函数,用dB 表示。
设电磁干扰滤波器插入前后传输到负载上的噪声功率分别为P 1、P 2,有公式:
()1220lg AdB P P = (1)
假定负载阻抗在插入前后始终保持不变,则211
P V Z =,222P V Z =。
式中1V 是噪声源直接加到负载上的电压,2V 是在噪声源与负载之间插入电磁干扰滤波器后负载上的噪声电压,且21V V 。
代入(1)式中得到
()1220lg AdB V V = (2)
插入损耗用分贝(dB)表示,分贝值愈大,说明抑制噪声干扰的能力愈强。
鉴于理论计算比较烦琐且误差较大,通常是由生产厂家进行实际测量,根据噪声频谱逐点测出所对应的插入损耗,然后绘出典型的插入损耗曲线,提供给用户。
图5给出一条典型曲线。
由图可见,该产品可将1MHz~30MHz 的噪声电压衰减65dB 。
计算EMI 滤波器对地漏电流的公式为:
2LD C I fCV π= (3)
式中,LD I 为漏电流,f 是电网频率。
以图1为例,50f Hz =,
344400C C C pF =+=,C V 是3C 、4C 上的压降,亦即输出端的对地电压,可取
2201102C V V V ≈=。
由(3)式不难算出,此时漏电流0.15LD I mA =。
3C 和4C 若选4700pF ,则470029400C pF pF =⨯=,0.32LD I mA =。
显然,漏电流与C 成正比。
对漏电流的要求是愈小愈好,这样安全性高,一般应为几百微安至几毫安。
在电子医疗设备中对漏电流的要求更为严格。
需要指出,额定电流还与环境温度A T 有关。
例如国外有的生产厂家给出下述经验公式:
()12
18545A I I T =⨯-⎡⎤⎣⎦ (4)
式中,1I 是40°C 时的额定电流。
举例说明,当50A T C =︒时,10.88I I =;而当25A T C =︒时,11.15I I =。
这表明,额定电流值随温度的降低而增大,这是由于散热条件改善的缘故。
3.2 测量插入损耗的方法
测量插入损耗的电路如图6所示。
e 是噪声信号发生器,i Z 是信号源的内部阻抗,L Z 是负载阻抗,一般取50Ω。
噪声频率范围可选10kHz~30MHz 。
首先要在不同频率下分别测出插入前后负载上的噪声压降1V 、2V ,再代入(2)式中计算出每个频率点的AdB 值,最后绘出插入损耗曲线。
需要指出,上述测试方法比较烦琐,每次都要拆装EMI 滤波器。
为此可用电子开关对两种测试电路进行快速切换。
参考文献
1 沙占友.新编实用数字化测量技术.北京国防工业出版社,1998,1
2 沙占友.电源噪声滤波器应用.自动化仪表,1991,9
3 林先放.开关电源的抗干扰问题.电源技术应用,2000,8。