地质雷达记录的波相识别

合集下载

地质雷达检测原理及应用

地质雷达检测原理及应用

1.5 地质雷达探测系统的组成
从左到右从上到下依次为: SIR-20主机、电缆、400M 天线、电池和充电器、打标 器、测距轮
1.6 地质雷达天线分类
空气耦合天线:主要用于道 路路面检测(具有快速便捷 的特点,但受到的干扰较 大);
地面耦合天线:主要用于地 质构造检测,检测深度较深 (地面耦合天线能够减少天 线与地面间其他因素的干扰, 检测效果较为准确)
2.2 现场检测工作 2.2.1 仪器设备启动与参数设置 ① 连接主机与电源和天线 ② 打开主机电脑,进入采集软件 ③ 采集方式:时间模式time(也称为连续测量、自由测量)、距离模式
distance(也称为测距轮控制测量、距离测量)、点测模式point ④ 采集关键参数 (1)频率:发射天线的中心频率越高,则分辨率越高,
与探空雷达一样,探地雷达利用超高频电磁波的反射来探测目标体,根 据接收到的反射波的旅行时间、幅度与波形资料,推断地下介质的结构与分 布。
1.2 地质雷达的工作频段
1~100MHz, 低频,地质探测1-30米 100~1000MHz,中频,构造结构探测,2米 1000~5000MHz,高频, 浅表结构体探测, 50厘米
反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射 信号越强
(7世界中粒子呈无序排列的 状态,当外界电磁波穿透该 物质时,微观世界中的粒子 就会成定向排列状态,此时 会形成一个电容板,对外界 穿过的电磁波形成一定的阻 碍作用,而每种物质粒子的 排列规律不同,形成电容板 时阻碍外界电磁波穿过的能 力不同,因此各种物质的介 电常数也不同
(9)在“表格”窗口中点“剖面”选项,设置起始里程,如果里程向右减小,选中 “区域减量”。
三、地质雷达典型缺陷图形判定

地质雷达图像解释(含超前地质预报及检测)

地质雷达图像解释(含超前地质预报及检测)
两个钢筋反射波同相轴并排。
电缆
陶瓷
PVC
金属
污水管
钢拱架
双层钢筋
钢格栅
地质雷达进行隧道地质超前预报的反射波形相对复杂很多,各种 地质体的地质雷达图像特征如下表:
富含水的淤泥夹层
地质雷达应用实例
地下洞群
波形堆积图
说明:电磁波在地下的传播过程中遇到空洞等异常,其强度和相位将有明 显变化,典型显示为双曲线。
二衬欠厚
其他不利地质体的地质雷达图像
其他不利地质体的地质雷达图像
其他不利地质体的地质雷达图像
其他不利地质体的地质雷达图像
二衬板缝三角形脱空
其他不利地质体的地质雷达图像
二衬中的空洞及管线
其他不利地质体的地质雷达图像
孤石脱空
其他不利地质体的地质雷达图像
路面检测
天线不耦合产生雷达干扰波
二衬表面管槽的雷达干扰波
空洞的雷达干扰波
电线的雷达干扰波
3 常见目标的雷达图像特征
1)钢拱架 反射波同相轴呈向上凸起的弧形,顶部反射振幅最强,弧形
两端反射振幅最弱 2)钢筋
反射波同相轴呈向上凸起的尖状,类似于钢拱架的反射波形。 3)空洞
界面反射信号强,三振相明显,在其下部仍有强反射界面信号, 两组信号时程差较大; 4) 钢格栅
富含水和淤泥的大型岩溶
裂隙
溶 洞 顶 部
裂隙
溶 洞 中 部
说明:图像中存在多次强烈的多次反射,此溶洞后经钻孔验证,两条裂 隙补给溶洞的水和淤泥
典型溶洞的地质雷达图像仰拱ຫໍສະໝຸດ 的溶洞典型溶洞的地质雷达图像
典型溶洞的地质雷达图像
其他不利地质体的地质雷达图像
断层
其他不利地质体的地质雷达图像

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术地质雷达技术是地球科学领域中一种非常重要的勘探技术,它能够通过无损检测方式获得地下结构的信息。

本文将介绍地质雷达技术的原理、应用领域以及未来的发展趋势。

一、地质雷达技术的原理地质雷达技术利用微波信号与地下物质相互作用的特性,通过检测回波信号来确定地下结构。

其原理可以简单概括为发射、接收和处理三个步骤:1. 发射:地质雷达系统通过天线发射微波信号,这些信号会在地下不同介质的界面上发生反射、折射、散射等现象。

2. 接收:接收系统会收集回波信号,并将其转化为电信号发送到处理系统进行分析。

3. 处理:处理系统对接收到的信号进行时频分析,通过波形和幅度的变化来获得地下结构的信息。

二、地质雷达技术的应用领域地质雷达技术在地球科学领域有着广泛的应用,可以用于以下几个方面:1. 地质勘探:地质雷达技术可以用于地质勘探,例如矿产资源勘探、岩溶地貌勘察、地下水资源调查等。

通过地质雷达扫描,可以获取地下结构的信息,帮助勘探人员确定勘探区域的地质构造和岩石性质。

2. 土壤研究:地质雷达技术对于土壤研究也有很大的帮助。

通过对土壤中微波信号的分析,可以获取土壤的含水量、密度、孔隙率等信息,有助于土壤质地评价和土壤污染监测。

3. 工程勘察:地质雷达技术在工程勘察中起到了重要的作用。

它可以用于检测地下管线、洞穴、地下隧道等工程建设中的隐患,帮助工程师减少钻探次数、提高工作效率,并确保施工的安全性。

4. 灾害监测:地质雷达技术在灾害监测方面也有广泛应用。

例如,它可以用于监测地质滑坡、地下水位变化、地震活动等,为灾害预警和防治提供重要的数据支持。

三、地质雷达技术的发展趋势随着科技的不断进步,地质雷达技术也在不断发展。

未来,地质雷达技术可能朝着以下几个方向发展:1. 分辨率提升:随着雷达系统技术的改进,地质雷达的分辨率将进一步提升,可以获取更精细的地下结构信息。

2. 多频段应用:地质雷达技术可以利用多种频段的微波信号,通过对多频段信号的处理来获取更丰富的地下信息。

地质雷达测量技术

地质雷达测量技术

地质雷达测量技术内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。

关键词:地质雷达测量技术1 前言地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。

同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。

地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。

它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。

2 地质雷达技术原理地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图3 雷达的使用特性3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。

3.2 操作简便,使用者经过2-3天培训就能掌握。

探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。

并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。

3.3 测量精度高,测试速度快。

地质雷达技术讲解

地质雷达技术讲解
Page 28
载入数据
数据处理与资料解释 一维滤波/去直流漂移
增益/能量衰减
静校正/移动开始时间
一维带通滤波
二维滤波/抽取平均道
二维滤波/滑动平均
偏移/时深转换
图像显示称,工程名称、地点,建设单位、勘察单位、 设计单位、监理单位和施工单位,设计要求,检测目的, 检测依据,检测日期;
Page 16
现场采集 7.安全要求: 测量拱顶和拱腰位置时,工作人员和天线都要用安全带或
绳索与周边物体进行固定,防止工人高空作业时发生危险 和天线滑落摔坏。 8.地面要求: 地面平坦,无杂物、无影响车辆通行的障碍物。
Page 17
衬砌检测报检单
Page 18
衬砌检测报检单
Page 19
机械,尽可能不要采用履带式机械。建议使用市政路 灯维修车或自行搭建,但须保证行使平稳,不晃动。 2.人员配置: 工人4-5名,现场技术人员2名。
Page 14
现场采集 3.标记里程: 在数据采集之前,要每间隔5米或10米的距离用明显的标
记标明隧道里程数,要保证清晰可见。 4.操作平台: 采集拱顶和拱腰位置的数据时,其操作平台至少要能够容
数据采集记录表
Page 20
数据采集记录表
Page 21
Page 22
仪器操作
Page 23
仪器操作
Page 24
仪器操作
Page 25
仪器操作
Page 26
仪器操作
数据处理
雷达波在地下的传播过程中各种噪声和杂波的干扰非常严 重,正确识别各种杂波与噪声、提取其有用信息是探地雷 达记录解释的重要的环节,其关键技术是对地质雷达记录 进行各种数据处理。电磁波的传播形式与地震波十分相似, 而且数据剖面也类似于反射地震数据剖面 ,因此反射地 震数据处理的许多有效技术均可用于地质雷达的数据处理, 但由于雷达波和地震波存在着动力学差异,如强衰减性, 雷达波在湿的地层中衰减比在干的情况下要大,而

地质雷达波形识别方法论述

地质雷达波形识别方法论述

地质雷达波形识别方法论述地质雷达波形识别是地质雷达技术中的一个重要课题,其目的是通过对地质雷达数据的分析和处理,准确判别不同地质单元的边界和内部结构,从而为地质灾害预测、矿产资源勘探、工程建设等提供重要信息。

本文将对地质雷达波形识别方法进行论述。

地质雷达技术是一种通过发射高频电磁波并接收回波来获取地下构造信息的非侵入式检测手段。

地质雷达数据通常表现为一系列波形,包含了地下结构的信息。

波形的形状、幅度、频谱等特征与地质单元的性质密切相关,因此可以通过对波形进行分析来识别地质单元。

1.特征提取方法:地质雷达波形具有很强的时空关联性和非平稳性,因此需要对波形进行特征提取,以便进行后续的分类和识别。

常用的特征包括时域特征(如能量、峰值、斜率等)和频域特征(如频谱、功率谱密度等)。

特征提取可以通过传统的数学方法(如傅里叶变换、小波变换等)或机器学习方法(如支持向量机、神经网络等)来实现。

2.波形分类方法:地质雷达波形通常可以划分为多个类别,每个类别对应不同的地质单元。

波形分类方法旨在将波形准确地归类到相应的类别中,从而实现对地质单元的识别。

常用的波形分类方法包括基于特征的分类方法和基于模型的分类方法。

基于特征的分类方法通过对波形特征进行提取和选择,然后使用分类算法进行识别。

基于模型的分类方法则通过建立地质单元的波形模型,计算波形与模型之间的相似度来进行分类。

3.波形匹配方法:地质雷达波形识别的一个重要任务是寻找地质单元在波形数据中的位置。

波形匹配方法旨在通过比较地质单元的波形特征与数据中的波形特征,找到最佳匹配位置。

常用的波形匹配方法包括相关分析、模板匹配和相位一致性等。

4.误差估计方法:地质雷达数据中常常存在噪声和干扰,这会影响波形识别的准确性。

因此,需要对波形识别结果进行误差估计,以评估识别的可靠性。

常用的误差估计方法包括拟合误差评估和统计分析等。

综上所述,地质雷达波形识别方法是通过对地质雷达数据的特征提取、波形分类、波形匹配和误差估计等过程,来实现对地质单元的边界和内部结构的准确识别。

地质雷达原理及应用

地质雷达原理及应用
采集模式:测距轮(距离):最常用方式,结果解释准确可靠 时间:当无法沿确定测线探测时,如果GPS信号有, 可以采用。 键盘(点测):低频天线做深部探测采用,叠加可以很高
道:在地面上某一点采集的一个完整的波形 道间距/时间间隔:根据探测需要选取 天线中心频率:每个天线都有一个频率范围,它不是单频的
电磁波的频率分布(频谱)
电磁波的传播路径
发射机
土壤 (εr,σ)
X 空气波
接收机
地下直达波 D
反射波
目标物
实际雷达图像的直达波
直达波 反射目标体 杂波
单道波形
叠加次数:叠加是通过平均来提高信噪比,噪声水平是叠加次数 平方根的倒数。 两种叠加方式:样点叠加(在点测时使用),优点是采集 时天线不动,效果好;道叠加(时间和距离采集时使用) 优点是方便。
地质雷达理论及应用
1904年,德国的Hulsemeyer首次尝试用电磁波信号来探测远
距离地面金属体,这便是探地雷达的雏形。1910年,G.Letmbach 和H.Lowy在一项德国专利中指出,用埋设在一组钻孔中的偶极天 线探测地下相对高导电性的区域,正式提出了探地雷达的概念ቤተ መጻሕፍቲ ባይዱ 1926年,德国的Httlsenberg第一个提出应用脉冲技术确定地下 结构的思路,并指出电磁波在介电常数不同的介质交界面上会产 生反射,这个结论也成为了探地雷达研究领域的一条基本理论依 据。1929年Stern进行地质雷达的首次实际应用,他用无线电干 涉法测量冰川的厚度。cook在1960年用脉冲雷达在矿井中做了试 验。但是地下介质比空气对电磁波有更强的衰减特性,其传播规 律比在空气中也要复杂的多,而早期地质雷达频率一般比较低, 应用仅局限于对电磁波吸收很弱的诸如冰层、岩盐等介质中。

地质雷达培训教学文案

地质雷达培训教学文案

地质雷达学习资料一.雷达理论基本要点1.1地质雷达的波组特征雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射与折射波依然保持有原来子波的特点,只是幅值上有所变化。

这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。

子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。

例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。

子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。

有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。

将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。

不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。

天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。

从下边的记录中也可以辨认出子波的特征。

表面反射波、内界面反射波都是近联各州其的衰减波形。

对其进行分析可以得到子波的波组特征为获得雷达探测的结果,需要对雷达记录进行处理与判读,判读是理论与实践相结合的综合分析,需要坚实的理论基础和丰富的实践经验。

雷达记录的判读也叫雷达记录的波相识别或波相分析,它是资料解释的基础。

在此首先介绍波相分析的基本要点。

雷达波资料解释三要素 1.2:反射波的振幅与方向1要点.从反射系数的菲涅耳(Fresnel)公式中可以看出两点,第一点,界面两侧介质的电磁学性质差异越大,反射波越强。

从反射振幅上可以判定两侧介质的性质、属性;。

第二点,波从介电常数小进入介电常数大的介质时,即从高速介质进入低速介质,从光疏进入光密介质时,反射系数为负,即反射波振幅反向。

反之,从低速进入高速介质,反射波振幅与入射波同向。

这是判定界面两侧介质性质与属性的又一条依据;如从空气中进入土层、混凝土反射振幅反向,折射波不反向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7地质雷达记录的波相识别地质雷达反射记录的波形比地震波复杂的多,一方面是由于地质雷达分辨率高记录的信号丰富,另一方面是由于电磁波的干扰因素多,此外还由于雷达发射的子波比较复杂,并非简单的脉冲。

因而雷达资料的处理与解释是一项复杂细致的工作。

特别是各种地层、目标体、干扰波的识别需要坚实的理论基础和丰富的实践经验。

7.1 地质雷达的波组特征雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射与折射波依然保持有原来子波的特点,只是幅值上有所变化。

这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。

子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。

例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。

子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。

有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。

将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。

不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。

天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。

从下边的记录中也可以辨认出子波的特征。

表面反射波、内界面反射波都是近联各州其的衰减波形。

对其进行分析可以得到子波的波组特征7.2 地质与工程介质结构及反射特征雷达的探测对象通常是多界面结构,如各类地层、岩性,松散层、风化层等都是多层结构。

隧道中的围岩、初衬、二衬等,也是多界面结构。

雷达波向介质内传播时,被称为下行波,经反射回表面的波称为上形波。

下行波每遇到一个界面就发生一次反射和折射,入射波能量即被分成两部分,一部分经折射继续向下传播,另一部分经反射掉头向上,变成上行波。

反射与折射能量的分配与反射、折射系数的平方成正比。

上一界面的折射波就是下一界面的入射波,因而下行波的能量不断减少,同时每一界面都在产生反射的上行波。

同理,每一界面反射形成的上行波,也会遇到介质的界面,形成二次的反射与折射。

介质中每一上行波和下行波都是独立运行的,当遇到界面时都会按照Snell定律,进行折射和反射。

因而多层介质中,多次反射与折射波是无尽的,只是反射、折射的经历越多能量越小。

上行波与下行波传播时,独立震相的能量逐渐减少,除由于界面反射与折射造成能量的分散、使每一独立波相的振幅减小之外,还由于介质的吸收,也就是传导电流引起的损耗。

这种介质吸收引起的振幅变化是指数形式的,呈e-αx形式,其中x代表传播路径的累计长度,α为衰减系数,在前文中已有交待。

上图是雷达波传播的示意。

在雷达记录中记录的都是不同路径上行到表面的反射波,内容十分丰富,但实际上并非所有的反射震相都能识别出来,主要识别的是层面的一次反射真相。

一方面是由于能量比太小,超出了仪器的动态范围,另一方面多次反射干扰大、层面连续性差。

在一些特殊的观测条件下,界面反差大,浅部结构简单时,二次波有时也非常清楚,处理中还要采取特殊措施进行压制。

接收到的反射信号f(t)是发射的雷达子波与介质折射系数、反射系数和介质损耗的褶积,即各层反射信号的叠加。

每层反射信号到达时间不同,其幅值是路径介质损耗、下行折射系数、上行折射系数、折返层的反射系数和几何衰减的乘积。

其数学表达式为:F(t)=ΣA O·e-Σ2αh ·R i ·e-iω(t-∑2h/v)· Πixгj·Πisгk/∑2h式中:A O 子波初始幅值;e-Σ2αh传播路径衰减;R i折返层反射系数;e-iω(t-∑2h/v)反射波对应相位;Πix гj下行折射系数的联乘;Πisгk上行折射系数的联乘。

雷达下行上行波传播示意图介质结构与反射特性示意7.3 雷达记录中波组与结构反射特征的叠加在多层结构探查中,雷达探测记录中包含多层反射波。

由于雷达子波有一定的宽度和衰减震相,这样当地层厚度较小时,反射波与子波互相叠加,变得难于识别。

这就限制了雷达的垂相分辨能力。

假如雷达子波的持续时间为τ,那末,雷达垂向所能分辨的最小尺度为h,有如下关系:h≧vτ/2式中v为电磁波速。

该式的含义是层厚中的双程走时应大于子波的持续时间。

当时用小波变换时可以最大限度的压制子波,在反射信号起点形成一个窄脉冲,因而可以大大地提高垂向分辨率。

目前小波变换技术在资料处理中已逐渐被采用,可以有效地解决多层反射与子波干扰的问题。

多层反射波与子波相叠加7.4 雷达目标波相识别的三项基本要点为获得雷达探测的结果,需要对雷达记录进行处理与判读,判读是理论与实践相结合的综合分析,需要坚实的理论基础和丰富的实践经验。

雷达记录的判读也叫雷达记录的波相识别或波相分析,它是资料解释的基础。

在此首先介绍波相分析的基本要点。

要点1:反射波的振幅与方向从反射系数的菲涅耳(Fresnel)公式中可以看出两点,第一点,界面两侧介质的电磁学性质差异越大,反射波越强。

从反射振幅上可以判定两侧介质的性质、属性;。

第二点,波从介电常数小进入介电常数大的介质时,即从高速介质进入低速介质,从光疏进入光密介质时,反射系数为负,即反射波振幅反向。

反之,从低速进入高速介质,反射波振幅与入射波同向。

这是判定界面两侧介质性质与属性的又一条依据;如从空气中进入土层、混凝土反射振幅反向,折射波不反向。

从混凝土后边的脱空区再反射回来时,反射波不反向,结果脱空区的反射与混凝土表面的反射方向正好相反。

如果混凝土后边充满水,波从该界面反射也发生反向,与表面反射波同向,而且反射振幅较大。

混凝土中的钢筋,波速近乎为零,反射自然反向,而且反射振幅特别强。

因而,反射波的振幅和方向特征是雷达波判别最重要依据。

钢筋反射波的振幅与方向要点2:反射波的频谱特性不同介质有不同的结构特征,内部反射波的高、低频率特征明显不同,这可以作为区分不同物质界面的依据。

如混凝土与岩层相比,比较均质,没有岩石内部结构复杂,因而围岩中内反射波明显,特别是高频波丰富。

而混凝土内部反射波较少,只是有缺陷的地方有反射。

又如,表面松散土电磁性质比较均匀,反射波较弱;强风化层中矿物按深度分化布,垂向电磁参数差异较大,呈现低频大振幅连续反射;其下的新鲜基岩中呈现高频弱振幅反射,从频率特性中可清楚地将各层分开。

如围岩中的含水带也表现出低频高振幅的反射特征,易于识别。

节理带、断裂带结构破碎,内部反射和闪射多,在相应走时位置表现为高频密纹反射。

但由于破碎带的散射和吸收作用,从更远的部位反射回来的后续波能量变弱,信号表现为平静区。

反射波的频谱特性要点3:反射波同向轴形态特征:雷达记录资料中,同一连续界面的反射信号形成同相轴,依据同向轴的时间、形态、强弱、方向反正等进行解释判断是地质解释最重要的基础。

同向轴的形态与埋藏的物界面的形态并非完全一致,特别是边缘的反射效应,使得边缘形态有较大的差异。

对于孤立的埋设物其反射的同向轴为向下开口的抛物线,有限平板界面反射的同向轴中部为平板,两端为半支下开口抛物线。

7.5工程勘察中典型目标的波组特征识别基岩波相特征形态浅埋基岩起伏大,反射波强,断续特征明显,与空洞反射有类似之处,是高速体反射波,波相与地面波反向。

基岩陷漏柱边界形态清楚,与岩层水平产状反射波形态形成明显对比。

强反射同相轴连续,分层清晰,有一定韵律,低频成分为主。

具有明显的地层产状特征。

下图为第四系松散地层及挖管道沟形成的地质结构及雷达反射波形态。

地下管道波相特征地下管道,尤其是金属管道反射极强,反射弧形较窄,呈半展开伞形。

中间反射强,向两侧很快衰减。

水与岩土为强反射界面,反射波强,同相轴连续,水中部分杂波很少,岩土地层中可见薄分布,穿透不深。

波相为2-3组强反射小波,同相轴形态起伏变化较大。

第四系含水地层波相特征含水层为电磁波底速层,与上下地层波阻抗差异大,界面清晰,正反相位成组出现,层面连续,以低频波为主,波相为3-4个强振动的小波。

地下含水层形态多为简单倾斜形态。

电磁波从岩土介质进入含水层,是从高波速进入低波速区,第一反射振相,反射系数为负,反射波与入射波反向,与地表反射波同相。

地下空洞反射波形态特征地下空洞多次反射波很强,持续很长一段时间,侧向散射波不太强。

具有局部孤立的特点,高频成分为主。

反射相位与入射波同向,与表面反射波相位相反。

地下埋藏物的波形特征地下埋葬物波阻抗差异不同,反射差异较大。

下图是差异较小的。

波相形态特征与埋设条件有关。

下列埋葬物波阻抗差异较大,反射波强,形态孤立,埋藏体体积小,有多次波特征,说明可能是空的。

如果是空的,第一反射振相是正的;如果是金属的,第一反射振相是负的,而且吸收强,没有多次波。

7.6工程检测中几类典型目标的波组特征识别地质雷达近年在工程检测的应用迅速扩展,在铁路公路路基路面,隧道衬砌与围岩,工程建筑结构,水电工程等领域都有广泛应用,是最具活力的应用领域,有很多很好的实例。

混凝土钢筋结构的波形特征金属导体中电磁波速为零,不能传播。

钢筋对于电磁波的能量几乎全部都反射回来,反射系数近乎为1,反射极强。

应用高频天线探测,钢筋形成清晰的反射弧,呈半张开的伞形。

可靠地检测出钢筋网密度,钢筋粗细,布置位置。

下图是美国GEOMODEL公司的检测实例。

反射波向与表面反射波同相。

金属网反射波形,与钢筋类似,只是一系列反射弧彼此相接很紧密,形成波浪形状。

衬砌厚度和脱空的波形特征衬砌与围岩之间的脱空区为空气,与混凝土和围岩的波阻抗差异很大,反射波正反相间,波相先兰后红,反射很强,脱空区断续蜿蜒,位置清晰明显,极易辨别。

下列2张图是南昆铁路隧道衬砌检测图象。

衬砌与围岩之间分布有大小脱空区。

隧道围岩结构的波相特征灰岩是一种节理、裂隙比较发育的岩体,雷达波可将这种岩体结构清晰的显现出来。

节理裂隙断断续续,反射波高频成分较多,时强时弱,断断续续,反映岩体结构、产状的特征。

7.7 雷达记录表面反射波相的追踪表面反射振相的辨认与追踪很重要,它关系到深度/厚度的计算,不可忽视。

下图是铁路运行隧道拱顶检测的图像。

隧道拱顶检测时,雷达天线移动到接触电网拉线附近时,天线必须下降躲开横拉线,天线与拱顶距离拉大,表面反射波走时也随之变大,形成下凹弧形,弧形的第一个振相就是表面反射波,向两侧可连续追踪。

7.8 隧道检测中干扰波的识别隧道的检测条件是十分复杂的,除了电器设备的干扰外,隧道墙壁、路基铁轨、检测台车等都会产生反射干扰信号。

只有可靠地辨认出衬砌与围岩之间的反射信号与各类干扰信号,才能准确无误的确定砌的厚度。

当天线在移动中与衬砌表面距离变化时,衬砌与围岩之间的反射信号与表面反射信号同步变化,而隧道内的各种反射波是反向变化,形成明显的反差,依此可判定反射波是来自于衬砌内还是隧道内。

相关文档
最新文档