人教版数学八年级下册教案:18.1.2(三) 平行四边形的判定——三角形的中位线
人教版八年级数学下册_2021春《第3课时_平行四边形的判定》教学设计

人教版八下18.1.2平行四边形判定(第3课时)教学设计教学流程图地位与作用本节内容是在学习平行四边形性质与判定后进行的,是平行四边形性质的应用.在研究平行四边形性质时,我们借助三角形的有关知识进行研究,在学习了平行四边形后,也可以利用平行四边形来研究三角形,体现了辩证与联系的思想.三角形中位线定理是三角形中重要的定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,与相似等内容有着密切的联系,在图形证明和计算中具有广泛的应用.概念解析三角形的中位线平行于第三边并且等于等三边的一半,在同一个题设下,有两个结论,一个结论表明位置关系,另一个结论表明数量关系,两者在这里得到完美呈现.应用这个定理时,不一定同时用到两个结论,有时用到平行关系,有时用到倍分关系,根据具体情况,灵活使用.思想方法三角形的中位线定理的探索和证明,可以完整地体现“合情推理,提出猜想——演绎推理,证明猜想”的几何探究过程,引导学生经历这样的过程,有利于他们体会两种推理功能不同、相辅相成;三角形中位线定理的发现和证明过程体现了归纳、类比、转化等思想方法,核心是通过构造平行四边形,把三角形的问题转化为平行四边形问题.知识类型三角形中位线定理属于原理与规则类知识,需要学生在经历探索、猜想、证明的过程中理解新知识,在联系与应用中将知识转化为能力.教学重点基于以上分析,本课的教学重点是:探索并证明三角形的中位线定理.教学目标解析教学目标1.通过作图、猜想、验证等得出三角形的中位线定理,并能给出证明.2.会利用三角形的中位线定理解决有关问题.目标解析达成目标1的标志是:理解三角形中位线的概念,明确三角形中位线与中线的区别;能通过作图测量等手段猜想三角形中位线与第三边的数量关系与位置关系;能抓住中点这个关键信息,利用对角线互相平分构造平行四边形进行定理的证明.达成目标2的标志是:明确三角形中位线定理的条件与结论;对于题目中存在两个中点的问题能自动联想中位线定理是否可用;在只有一个中点的情况下,根据题目信息(包括结论信息)添加辅助线;能在复杂图形中能敏捷感知中位线并灵活运用三角形中位线定理解决问题.教学问题诊断分析具备的基础学生已经掌握了三角形全等、平行线、平行四边形的性质和判定等知识,在前面的学习中积累了较丰富的几何猜想与论证的经验,并且具备一定的分析思维能力.与本课目标的差距分析八年级学生知识的迁移能力有限,数学思想方法的运用也不够灵活,三角形的中位线定理既要证明线段的位置关系,又要证明线段的倍分关系,对于几何逻辑思维尚不成熟的八年级学生来讲,难度较大.存在的问题三角形的中位线定理的证明的突破口在于添加辅助线,学生在前面的学习中,添加辅助线的练习相对较少,因此,如何适当添加辅助线、是学生的困难所在.应对策略教学中,教师让学生通过观察和动手测量,作出初步猜想,再引导学生去证明猜想,重点分析辅助线是如何想到的.通过问题串的策略让学生意识到所证明的结论既有平行关系,又有数量关系,结合结论与条件的中点信息,联想已学过的知识,在追问与交流中发现构造平行四边形来证明的方法,同时及时回顾与多种证法来深化认识加深体会.教学难点基于以上分析,本课的教学难点是:证明三角形的中位线定理时添加辅助线.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学过程设计课前检测1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B2.A,B,C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有() A.1个B.2个C.3个D.4个答案:C3.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE答案:D4.四个点A,B,C,D在同一平面内,现有下列四个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC,从这些条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B5.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A. 8B. 10C. 12D. 14答案:C设计意图:本组课前检测题主要检查学生对于平行四边形判定掌握的情况.前4题是关于平行四边形的判定,最后一题是关于三角形中位线定理的问题,设计此问题的意图是检查学生对于三角形中位线定理的直观感知.这些知识都是本节课学生所需要的,如果学生这些知识不完整,必将影响本节的学习,需要进行适当的复习.新课学习1.掌握概念,明确区别如图1,△ABC中,D,E分别是边AB,AC的中点,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的中位线.问题1:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?师生活动设计:教师直接提出问题,让学生通过作图,观察得出中位线与中线的区别:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点.设计意图:让学生理解三角形中位线的概念,明确三角形中位线与中线的区别.2.提出问题,观察猜想问题2:观察图1,你能发现△ABC的中位线DE与边BC的位置关系吗?度量一下,DE与BC之间有什么数量关系?师生活动设计:教师直接提出问题,让学生通过观察和动手测量DE,BC的长度,作出初步猜想.设计意图:让学生通过观察测量,提出猜想.3.分析问题,寻找思路问题3:要确定猜想正确,必须进行证明,这首先要对照图形写出已知、求证.请试一试!(已知:在△ABC中,D、E分别是AB、AC的中点.求证:DE∥BC且DE=BC)追问1:怎样分析证明思路?师生活动设计:教师引导学生分析,判断两直线平行,可以用平行线的判定,也可以用平行四边形性质,由于已知条件是线段关系(中点导致出现线段相等),而从线段相等出发证线段平行,应该用平行四边形判定,图中没有平行四边形,因此需要构造一个平行四边形.另外证明线段的倍分可以进行截长或补短.根据以上分析,让学生构造不同的平行四边形如图2(1)---(5).设计意图:让学生运用化三角形问题为平行四边形问题的思想,构造出不同的联系条件和结论的几何模型——平行四边形,形成不同的解题方案.追问2:请各自试一试,上面的五种方案是否都可行,如可行,说出辅助线的画法,如不可行,请说明原因.师生活动设计:学生在独立思考的基础上分小组讨论,教师进行必要的启发.设计意图:在上述方案中,图2中的(1)(2)(3)无法实施,因为根据现有的知识无法判定平行四边形.而方案(4)(5)可行.让学生经历从失败到成功的过程,让学生体会数学问题的解决过程伴随着挫折,需要持之以恒地理性思考.4.推理论证,形成定理问题4:请用适当的方法证明猜想.师生活动设计1:教师引导学生针对方案4,5进行证明.方案4有以下两种证明方法(方案5证明方法与方案4相类似).方法1:如图3,延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图4,延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形BCFD是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.问题5 :请用自己的语言说出得到的结论.师生活动设计:教师引导学生用文字语言和符号语言描述定理内容:(1)三角形的中位线平行于第三边,并且等于第三边的一半.(2)结合图形给出数学表达形式:在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC,且DE=BC .设计意图:用演绎推理证明结论,培养学生严谨的科学态度.由学生讨论得到添加辅助线的方法,提升学生分析与解决问题的能力.目标检测1:如图5,△ABC中,∠C=90°,∠A=30°,AB=8,D,E,F,分别是边BC,AC,AB的中点,斜边上的中线是线段_______,直角△ABC的中位线分别是____________,∠CED=______°,四边形AEDF的周长为__________.设计意图:辨别三角形中位线与中线的区别,能直接应用中位线定理.如果学生能够顺利完成,则进行例1的教学,如果存在问题,则引导学生结合图形再次理解三角形中位线定理.5.尝试运用,掌握定理例1 已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.师生活动设计:教师引导学生分析,因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.证明:如图6,连结AC,△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.设计意图:例1是三角形中位线性质与平行四边形的判定的综合应用,通过巧妙构造三角形,并运用三角形的中位线定理来解题,体会三角形中位线定理的魅力,巩固新知识.可以借助与多媒体或教具把辅助线的添加方法讲清楚,证明完成后,可得出一般认识:顺次连结四边形四条边的中点,所得的四边形是平行四边形.这个结论今后也会经常会用到.目标检测2:如图7,点D、E、F分别是△ABC的边AB、BC、CA的中点.求证:(1)∠A=∠DEF;(2)四边形AFED的周长等于AB+AC.设计意图:能运用三角形中位线定理以及平行四边形的判定解决有关问题.如果学生能顺利完成,则展开追问1,如果存在困难,则引导学生关注“点D、E、F分别是△ABC的边AB、BC、CA的中点.”这个条件,从而应用三角形中位线定理解决问题.追问1:图中有哪些平行四边形?设计意图:通过找平行四边形让学生进一步巩固新知识.课堂小结问题6:通过本节课的研究,你感悟到什么?还有什么疑惑?师生活动设计:让学生回顾课堂中学到的知识,并畅谈由此受到的启发,教师在倾听学生的回答的同时注意适时的归纳总结.设计意图:学生自主小结,提高学生的数学概括表达能力,增强学生学习过程中的反思意识.有助于学生在归纳过程中把所学的知识条理化、系统化.目标检测设计1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC 和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是____m.2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°3.一个三角形的周长是120cm,过三角形各边的中点作对边的平行线,则这三条平行线所组成的三角形的周长是_______cm.4.如图,AD是△ABC的中线,EF是中位线. 求证:AD与EF互相平分.5.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.。
人教初中数学八年级下册18-1-2平行四边形的判定(3)教学设计

人教初中数学八年级下册18-1-2平行四边形的判定(3)教学设计一. 教材分析人教初中数学八年级下册第18章平行四边形的判定,是学生继学习三角形、四边形之后,进一步深化对四边形性质的理解。
本节课主要引导学生探究并证明平行四边形的判定定理,让学生通过自主学习、合作交流,提高分析问题、解决问题的能力。
二. 学情分析学生在之前的学习中已经掌握了四边形的性质,具备了一定的逻辑思维能力。
但对于证明平行四边形的判定定理,还需要在教师的引导下,通过实例分析、小组讨论等方式,进一步深化理解。
三. 教学目标1.理解平行四边形的判定定理,并能够运用判定定理判断一个四边形是否为平行四边形。
2.培养学生的逻辑思维能力和团队协作能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.教学重点:平行四边形的判定定理的证明和应用。
2.教学难点:如何引导学生理解并证明平行四边形的判定定理。
五. 教学方法1.引导法:教师引导学生通过观察、思考、讨论,自主探索平行四边形的判定定理。
2.实例分析法:教师通过展示实例,让学生理解并证明平行四边形的判定定理。
3.小组讨论法:学生分组讨论,培养团队协作能力。
六. 教学准备1.教学课件:制作涵盖判定定理的证明过程和应用实例的课件。
2.学习材料:准备相关的学习资料,以便学生在课堂上进行自主学习。
3.教学道具:准备一些四边形模型,以便学生在课堂上进行观察和分析。
七. 教学过程1.导入(5分钟)教师通过展示一些四边形的图片,引导学生回顾四边形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师呈现判定定理,引导学生观察并思考如何证明这个定理。
在这个过程中,教师可以通过提问的方式,引导学生关注定理的关键词。
3.操练(10分钟)教师学生进行小组讨论,让学生通过合作交流,理解并证明判定定理。
教师在这个过程中,要对学生的讨论进行指导和点拨,帮助学生理清思路。
4.巩固(10分钟)教师通过展示一些实例,让学生运用判定定理进行判断。
八年级数学下册 18.1.2 平行四边形的判定教案 (新版)新人教版

平行四边形的判定一教材分析 :新课标对本节的要求是:探索并证明平行四边形判定定理并能灵活应用。
“平行四边形的判定” 这节内容既是对全等三角形有关知识和平行四边形性质的回顾和延伸,又是以后学习特殊平行四边形的基础,不仅有着广泛的实际应用,而且起着承前启后的作用。
二学习目标分析根据以上对教材的地位和作用以及学情分析结合新课标对本节课的要求确定本节课的教学目标为: 1、知识目标:经过探究使学生掌握平行四边形的判定方法并能灵活运用。
2.能力目标:经历探索、猜想、证明的过程进一步发展推理论证的能力。
体会在证明过程中所运用的归纳、类比、转化等数学思想方法。
3.情感目标:通过探索平行四边形的判定方法的过程逐步培养学生在学习活动中主动探究的意识和合作交流的习惯。
4、教学重难点重点确定为:平行四边形判定方法的探究;难点确定为:平行四边形判定方法的理解和灵活应用三、教法与学法分析在教学过程中学生是学习的主体,教师是学习的组织者、引导者教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线始终在学生知识的“最近发展区”设置问题倡导学生主动参与教学实践活动以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索。
从真正意义上完成对知识的自我建构。
本节课主要思路:教师引导学生从平行四边形的性质及逆命题入手,通过观察、猜想、推理、讨论、归纳,得出正确的判定方法,培养学生的发散思维能力,体会分类讨论的数学思想,体验发现问题、提出问题、分析问题、解决问题的过程。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析新课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。
人教版八年级下册数学 《 18.1.2平行四边形的判定(3)》【教学设计】

《18.1.2平行四边形的判定(3)》本课是在学习完平行四边形的性质和判定后,运用这些知识探索和证明三角形中位线定理.在前面研究平行四边形中,采用了化四边形问题为三角形问题的思想;本节课,则是化三角形问题为平行四边形问题.这说明,知识之间是相互联系的.1.理解三角形中位线的概念,掌握三角形中位线定理的内容;2.经历探索,猜想,证明三角形的中位线定理的过程,进一步发展推理论证的能力. 探索并证明三角形中位线定理课件一、提出问题 做出猜想:我们在研究平行四边形时,经常采用把平行四边形转化为三角形的问题,能否用平行四边形研究三角形呢?如图,△ABC 中,D ,E 分别是边AB ,AC 的中点,连接DE . 像DE 这样,连接三角形两边中点的线段叫做三角形的中位线.问题:看一看,量一量,猜一猜:DE与BC之间有什么位置关系和数量关系?猜想:DE∥BC,DE=BC.二、证明猜想得出结论:如图,D、E分别是△ABC的边AB,AC的中点.求证:DE∥BC,DE=BC.分析:本题既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一条线段长的一半.将DE延长一倍后,可以将证明DE=BC转化为证明延长后的线段与BC相等.此时,能否通过构造平行四边形,利用平行四边形的性质进行证明?证明:如图,延长DE到F,使EF=DE,连接FC,DC,AF.∵AE=EC,DE=EF,∴四边形ADCF是平行四边形,∴CF∥AD,CF=AD.∵AD=BD,∴CF∥BD,CF=BD,∴四边形BDFC为平行四边形,∴DF∥BC,DF=BC.你能用一句话概括你的猜想和证明吗?三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.二、基础训练熟悉定理1.如图,以三角形的三个顶点及三边中点为顶点的平行四边形共有( )A.1个 B.2个 C.3个 D.4个2. 在Rt△ABC中,∠B=90°,D,E,F分别是边BC,CA,AB的中点,AB=6,BC=8,则四边形AEDF的周长是( )A.18 B.16 C.14 D.123.如图18-1-56,在△ABC中,E是AB的中点,AF交BC于点F,CD平分∠ACB,且CD⊥AF,垂足为D,连接DE,若BC=12,AC=8,则DE的长为( )A.2 B.2.5 C.3 D.4三、综合运用形成能力例1 在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH 是平行四边形.解:连接AC,在△ABC中,∵E、F为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC.同理可证,HG∥AC,HG=AC.∴EF∥HG,EF=HG.∴四边形EFGH为平行四边形.练习:如图18-1-61,O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,得到四边形DEFG.求证:四边形DEFG是平行四边形.证明:连接OA在△AOB中,D、E为AB、BO上的中点,∴DE为△AOB的中位线,∴DE=AO,DE∥AO.同理可证,GF=AO,GF∥AO.∴GF∥DE,GF=DE.∴四边形DEFG是平行四边形.四、课堂小结1.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半;2.三角形中位线定理揭示了三角形中位线与第三遍的位置关系和数量关系,当图形中有中点或中线时,常常想到连接中点构造中位线来判定平行和倍分关系;3.前面几节课我们用三角形知识研究了平行四边形问题,本节课我们用平行四边形研究了三角形的问题.略。
18.1.2平行四边形的判定-三角形中位线(教案)

其次,在新课讲授环节,我尝试用理论介绍、案例分析和重点难点解析的方式,帮助学生理解三角形中位线与平行四边形之间的关系。但在这个过程中,我发现有些学生在分析案例时仍然存在困难。这可能是因为我讲解得不够透彻,或者课堂实践环节还不够充分。针对这个问题,我打算在接下来的课程中增加一些互动环节,让学生更多地参与到课堂实践中来,以提高他们的理解和应用能力。
举例:通过绘制具体图形,让学生观察并理解三角形中位线的定义;讲解如何利用中位线判定平行四边形,强调步骤和条件;设计实际情境题,让学生将所学知识应用于解决具体问题。
2.教学难点
-难点内容:三角形中位线判定平行四边形的逻辑推理过程,以及在实际问题中的应用。
-难点突破方法:
a.使用直观教具,如模型、图形等,帮助学生形成直观认识。
4.培养学生的合作交流意识:通过小组合作、讨论交流等形式,促进学生分享观点,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
-核心知识:三角形中位线的性质及其与平行四边形的关系。
-重点细节:
a.理解并掌握三角形中位线的定义。
b.学会运用三角形中位线判定平行四边形。
c.掌握三角形中位线与平行四边形之间的关系,并能应用于解决实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探究三角形中位线性质,使学生能够运用逻辑推理,理解并掌握平行四边形的判定方法。
2.提升学生的空间想象力:借助实物模型、图形绘制等手段,帮助学生形成对三角形中位线和平行四边形的空间想象,培养空间思维能力。
人教版数学八年级下册18.1.2《平行四边形的判定》教学设计3

人教版数学八年级下册18.1.2《平行四边形的判定》教学设计3一. 教材分析人教版数学八年级下册18.1.2《平行四边形的判定》是学生在学习了四边形的性质和判定后,进一步研究平行四边形的性质和判定。
本节课主要让学生掌握平行四边形的判定方法,理解平行四边形的性质,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质和判定,具备了一定的观察、分析、推理的能力。
但对于平行四边形的性质和判定,还需要通过实例和操作来进一步理解和掌握。
三. 教学目标1.理解平行四边形的判定方法,能运用判定方法判断一个四边形是否为平行四边形。
2.掌握平行四边形的性质,能运用性质解决实际问题。
3.培养学生的观察、分析、推理能力,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:平行四边形的判定方法,平行四边形的性质。
2.教学难点:平行四边形的判定方法的运用,平行四边形的性质的运用。
五. 教学方法1.采用问题驱动法,引导学生探究平行四边形的性质和判定。
2.利用实物模型和几何画板,直观展示平行四边形的性质和判定过程。
3.采用小组合作交流的方式,培养学生的团队协作能力。
六. 教学准备1.准备平行四边形的实物模型和几何画板。
2.准备相关练习题和测试题。
七. 教学过程1.导入(5分钟)利用实物模型和几何画板,展示一个平行四边形,引导学生观察并提问:“请大家观察这个图形,它有什么特点?你能找出它的对边和对角线吗?”2.呈现(10分钟)呈现平行四边形的性质和判定方法,引导学生理解并记忆。
性质1:平行四边形的对边相等。
性质2:平行四边形的对角相等。
性质3:平行四边形的对边平行。
判定1:如果一个四边形的对边相等,那么它是平行四边形。
判定2:如果一个四边形的对角相等,那么它是平行四边形。
判定3:如果一个四边形的对边平行,那么它是平行四边形。
3.操练(10分钟)让学生分组合作,利用准备好的实物模型和几何画板,进行平行四边形的判定和性质的练习。
八年级数学下册 18.1.2 平行四边形的判定教案 (新版)新人教版-(新版)新人教版初中八年级下册

平行四边形的判定合作交流明。
题用几何画板分组进行验证(分3大组,每组自选一个命题进行证明)2.之后尝试逐一进行证明。
有困惑要及时和组内同伴交流或向老师询问。
学中的应用(三)展示汇报,归纳提升小组选派代表展示自己的探究成果,结合电子白板演示讲解自己的想法。
(为了尽可能多的多让学生展示,一个小组只展示一种方法。
先引导写出各判定方法的符号语言:1)AB=CD,AC=BD 2) ∠A=∠D, ∠C=∠B 3)AO=OD,OB=OC根据学生的展示,课件结合猜想的情况,归纳出平行四边形的另外三个判定方法:1、两组对边分别相等的四边形是平行四边形2、两组对角分别相等的四边形是平行四边形结合图形写出已知、求证及画图并分组证明。
鼓励学生一题多证(可以用以证明的定理证明其他命题)白板课件互动展示交流3、对角戏互相平分的四边形是平行四边形。
(四)拓展延伸,激活思维1.类比三角形全等的证明过程,由一个条件出发,逐步增添条件,感受到平行四边形的判定需要两个条件3.归纳得到:1、一组对边平行且相等的四边形是平行四边形(作为判定依据);2、一组对边相等,一组对边平行的四边形不一定是平行四边形,如还可能是等腰梯形。
结合平行四边形8个条件:(1)AB=CD,(2)AB//CD(3)AD=BC(4),AD//BC(5)∠A=∠D,(6)∠C=∠B(7)AO=OD,(8)OB=OC来进行自由搭配,这样可以搭配28种搭配方式,已经证明的不需要再证,由于时间关系,重点研究以下两种情况:(1)(2)组合;(1),(4)组合;利用几何画板进行探究(五)典例分析,学以致用基础练习:通过一组让学生抢答的小游戏,学生巩固平行四边形的常用判定方法。
学生尝试证明并交流展示尝试多种方法证明,并说出用到的判定方法。
白板出示典例2.例题:已知:E、F是平行四边形ABCD 对角线AC上的两点,并且AE=CF。
求证:四边形BFDE是平行四边形(六)自评归纳,布置作业1.学生谈一下本节课的收获?可以从知识、思想方法、以及应该注意的方面谈起。
人教版数学八年级下册18.1.2《平行四边形的判定》(第2课时)教案

人教版数学八年级下册18.1.2《平行四边形的判定》(第2课时)教案一. 教材分析《平行四边形的判定》是人教版数学八年级下册第18章的一部分,主要让学生了解并掌握平行四边形的判定方法。
这一节内容是学生在学习了三角形、四边形的基础上进行的,对于学生来说,掌握平行四边形的判定方法,不仅可以丰富他们的几何知识体系,也为后续学习其他多边形打下基础。
二. 学情分析学生在八年级上学期已经学习了三角形、四边形的性质,对多边形有了一定的了解。
但是,对于平行四边形的判定,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已知的三角形、四边形性质出发,逐步过渡到平行四边形的判定。
三. 教学目标1.让学生了解平行四边形的判定方法,并能够运用这些方法判断一个四边形是否为平行四边形。
2.培养学生的逻辑思维能力,提高他们解决几何问题的能力。
3.激发学生学习数学的兴趣,培养他们的数学素养。
四. 教学重难点1.重难点:平行四边形的判定方法及其应用。
2.难点:如何引导学生从已知的三角形、四边形性质出发,推导出平行四边形的判定方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现并总结平行四边形的判定方法。
2.运用多媒体辅助教学,展示平行四边形的判定过程,增强学生的直观感受。
3.采用小组合作学习,让学生在讨论中加深对平行四边形判定方法的理解。
六. 教学准备1.多媒体教学设备。
2.平行四边形的判定相关课件。
3.练习题及答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平行四边形,如电梯、窗户等,引导学生关注平行四边形的特征,激发他们的学习兴趣。
2.呈现(10分钟)呈现平行四边形的判定方法,引导学生从已知的三角形、四边形性质出发,推导出平行四边形的判定方法。
3.操练(10分钟)让学生分组讨论,每组设计一个判定平行四边形的实验,并展示实验过程和结果。
4.巩固(10分钟)让学生独立完成一些判断平行四边形的练习题,检验他们对平行四边形判定方法的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.2(三)平行四边形的判定——三角形的中位线
一、教学目的:
1.理解三角形中位线的概念,掌握它的性质.
2.能较熟练地应用三角形中位线性质进行有关的证明和计算.
3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.
二、重点、难点
1.重点:掌握和运用三角形中位线的性质.
2.难点:三角形中位线性质的证明(辅助线的添加方法).
三、例题的意图分析
例1是是三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.
建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.
例2是一道补充题,选自老教材的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.
四、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2. 你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的
三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
五、例习题分析
例1(教材P98例4) 如图,点D 、E 、分别为△ABC 边AB 、AC
的中点,求证:DE ∥BC 且DE=BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的
知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当
的辅助线来构造平行四边形.
方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,
由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,
BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=
DF ,所以DE ∥BC 且DE=BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同) 2
1212
1
方法2:如图(2),延长DE 到F ,使EF=DE ,连接
CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边
形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥
FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF
∥BC ,且DF=BC ,因为DE=DF ,所以DE ∥BC 且DE=BC . 定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.
〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)
例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、
H 分别是 AB 、BC 、CD 、DA 的中点.
求证:四边形EFGH 是平行四边形.
分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设
法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由
于四边形的对角线可以把四边形分成两个三角形,所以添加辅
助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,
212
1
此题便可得证.
证明:连结AC (图(2)),△DAG 中,
∵ AH=HD ,CG=GD ,
∴ HG ∥AC ,HG=AC (三角形中位线性质). 同理EF ∥AC ,EF=AC . ∴ HG ∥EF ,且HG=EF .
∴ 四边形EFGH 是平行四边形.
此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
六、课堂练习
1.(填空)如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连
结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20
m ,那么A 、B 两点的距离是 m ,理由是 .
2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各
边中点所成三角形的周长.
3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,
(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;
(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.
七、课后练习
1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm .
2.(填空)已知:△ABC 中,点D 、E 、F 分别是△ABC 三边的中
点,如果△DEF 的周长是12cm ,那么△ABC 的周长是 cm .
2
121
3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.。