中考数学试题2006年大连市初中毕业升学统一考试数学

合集下载

2006年河北省中考数学试题及参考答案

2006年河北省中考数学试题及参考答案

2006年河北省课程改革实验区初中毕业生升学考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的值是A .-2B .2C .12D .-122.图1中几何体的主视图是3.下列运算中,正确的是A .a +a =a 2B .a ⋅a 2=a 2C .(2a )2=2a 2D .a +2a=3a4.图2是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为 A .50台 B .65台 C .75台D .95台5.某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是 A .300(1+x )=363 B .300(1+x )2=363 C .300(1+2x )=363D .363(1-x )2=3006.在平面直角坐标系中,若点P (x -2,x )在第二象限,则x 的取值范围为A .0<x <2B .x <2销售量(台)30 45 20 甲 乙 丙图2A B C D正面 图1C .x >0D .x >27.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足mVρ=,它的图象如图3所示,则该气体的质量m 为 A .1.4kg B .5kg C .6.4kgD .7kg8.如图4,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为 A .2和3 B .3和2 C .4和1D .1和49.如图5,现有一圆心角为90°,半径为8cm 的扇形纸片, 用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆 锥底面圆的半径为 A .4cm B .3cm C .2cmD .1cm10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一 次方程组是由算筹布置而成的.《九章算 术》中的算筹图是竖排的,为看图方便, 我们把它改为横排,如图6-1、图6-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图6-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图6-2所示的算筹图我们可以表述为A .211,4327.x y x y ⎧⎨⎩+=+=B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨+=+=D .26,4327.x y x y ⎧⎨⎩+=+=2006年河北省课程改革实验区初中毕业生升学考试数 学 试卷卷II (非选择题,共100分)图5m 3)图3ABCDE 图4图6-2图6-1注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上)11.分解因式:a 3-a =______________.12.图7是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号) 13.有四张不透明的卡片为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片, 抽到写有无理数卡片的概率为_______.14.如图8,PA是⊙O 的切线,切点为A ,PA =APO =30°,则⊙O 的半径长为_______.15.小宇同学在一次手工制作活动中,先把一张矩形纸片按图9-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图9-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离 是_______cm .三、解答题(本大题共10个小题;共85分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分) 已知x =-32,求(1+11x +)⋅(x +1)的值.试试基本功 图8左 右左 右 第二次折叠第一次折叠 图9-1 图9-2图717.(本小题满分7分)如图10所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮.(1)请你在图10中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C 标出);(2)已知:MN =20 m ,MD =8 m ,PN =24 m ,求(1)中的点C 到胜利街口的距离CM .18.(本小题满分7分)观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:归纳与猜想① ② ③⑤④4×0+1=4×1-3; 4×1+1=4×2-3; 4×2+1=4×3-3;___________________;___________________;PN 图10Q部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗? 欢迎你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高(2)通过猜想,写出与第n 个图形相对应的等式.19.(本小题满分8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图:(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先下棋的概率.20.(本小题满分8分)员工 管理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数/名 1 3 2 3 24 1 每人月工资/元21000 840020252200 1800 1600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有 名; (2)所有员工月工资的平均数x 为元, 中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员. 请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍 员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.得 分评卷人得 分评卷人………… 判断与决策游戏规则三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到解: (1)树状图为:开始正面正面正面 反面小明 小亮小强 不确定确定结果21.(本小题满分8分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图11所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30m 时,用了_____h .开挖6h时甲队比乙队多挖了_____m ;(2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;(3)当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?22.(本小题满分8分)探索在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD , FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3, 则S 3=__________(用含a 的代数式表示).发现操作与探究 图12-1 C DCD 图12-2 F图12-3像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍. 应用去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?23.(本小题满分8分)如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.实验与推理 图13-2E 图13-3G 图13-1A ( G )B ( E )图12-4HM G24.(本小题满分12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.25.(本小题满分12分)图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.如图14-1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH和正方形MNPQ从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y个平方单位.综合与应用图14-7DQ(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6DQ图14-2图14-3DDD图14-1 (P ) D N图14-5DQ2006年河北省课程改革实验区初中毕业生升学考试数学试题参考答案及评分标准说明:1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 4.对于25(3)题加分的说明:(1)按评分标准给予相应的加分;(2)加分后不超过120分的,按照“原得分+加分=总分”计算考生的总分.加分后超过120分的,按照120分登记总分.一、选择题(每小题2分,共20分)二、填空题(每小题3分,共15分) 11.a (a +1)(a -1); 12.13.21; 14.2; 15.1.三、解答题(本大题共10个小题;共85分)16.解:原式=x +2. ……………………………………………………………………(4分)当x =32 时,原式=12. ……………………………………………………(7分) (说明:本题若直接代入求值正确,也相应给分)17.解:(1)如图1所示,CP 为视线,点C 为所求位置.……………………………(2分)(2)∵AB ∥PQ ,MN ⊥AB 于M ,∴∠CMD =∠PND =90°. 又∵ ∠CDM =∠PDN , ∴ △CDM ∽△PDN ,图1天津中考网( ) ∴ CM MD PN ND=.……………………………………………………………(5分) ∵MN =20m ,MD =8m ,∴ND =12m . ∴82412CM =, ∴CM =16(m ). ∴点C 到胜利街口的距离CM 为16m .…………………………………(7分)18.解:(1)④4×3+1=4×4-3;…………………………………………………………(2分)⑤4×4+1=4×5-3.…………………………………………………………(4分)(2)4(n -1)+1=4n -3.………………………………………………………(7分)19.解:(1)(2)由(1)中的树状图可知:P (确定两人先下棋)=34.…………………(8分) 20.解:(1)16;…………………………………………………………………………(1分)(2)1700;1600;………………………………………………………………(3分)(3)这个经理的介绍不能反映该公司员工的月工资实际水平.……………(4分)用1700元或1600元来介绍更合理些.…………………………………(5分) (说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也得分)(4)250050210008400346y ⨯--⨯=≈1713(元). ……………………………(7分) y 能反映.……………………………………………………………………(8分)21.解:(1)2,10;………………………………………………………………………(2分)(2)设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x .………………………………………(4分) 设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b ⎧⎪⎨⎪⎩+=+= 解得25,20.k b ⎧⎪⎨⎪⎩== ∴y =5x +20. ……………………(6分)(3)由题意,得10x =5x +20,解得x =4(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.……………………(8分)22.探索 (1)a ; ………………………………………………………………………(1分)(2)2a ;………………………………………………………………………(2分) 理由:连结AD ,∵CD =BC ,AE =CA ,∴S △DAC = S △DAE = S △ABC = a ,∴S 2=2a . ………………………………………………………………………(4分)…………………………(6分) 开始 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 小明 小亮 小强 不确定 确 定 确 定 确 定 确 定 确 定 确 定 不确定结果天津中考网( ) (3)6a ; ………………………………………………………………………(5分) 发现 7.………………………………………………………………………………(6分) 应用 拓展区域的面积:(72-1)×10=480(m 2). ……………………………(8分)23.解:(1)BM =FN . …………………………………………………………………(1分)证明:∵△GEF是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF .又∵∠BOM =∠FON , ∴ △OBM ≌△OFN .∴ BM =FN .…………………………………………………………(4分)(2)BM =FN 仍然成立.…………………………………………………………(5分) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF .∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN .∴ BM =FN . ………………………………………………………(8分)24.解:(1)5.71024026045⨯-+=60(吨).……………………………………………(3分)(2)260(100)(457.5)10x y x -=-+⨯,…………………………………………(6分) 化简得: 23315240004y x x =-+-.……………………………………(7分) (3)24000315432-+-=x x y 23(210)90754x =--+. 利达经销店要获得最大月利润,材料的售价应定为每吨210元. ……(9分)(4)我认为,小静说的不对. ………………………………………………(10分)理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=x x W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对. …………………………………………………(12分)方法二:当月利润最大时,x 为210元,此时,月销售额为17325元; 而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大.∴小静说的不对.…………………………………………………(12分)(说明:如果举出其它反例,说理正确,也相应给分)25.解:(1)相应的图形如图2-1,2-2. ……………………………………………(2分)当x =2时,y =3; ………………………………………………………(3分) 当x =18时,y =18. ……………………………………………………(4分)图2-3D Q P 图2-2 D 图2-1 D Q P天津中考网( )(2)①当2-3与=6+x ,SK =MK =2x -1,MT =6-(7-x )-1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.…………………………(6分)②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1.∴y=MN ·MT =6(x -1)=6x -6. ………………………………………(8分) ③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x .∴y = MN ·MT =6(13-x )=78-6x . …………………………………(10分) ④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.……………………(12分)(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分)(3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36. ……………………………………………(1分) ②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36.……………………………………………(2分) ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.……………………………………………(3分) ④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0;当x =49时,y 取得最大值36.……………………………………………(4分) (说明:问题(3)是额外加分题.若考生能指出在各边运动过程中,y 都经历了由0逐步增大到36,又逐步减小到0的变化,所以最小值是0,最大值是36,给2分.)图2-4 D 图2-5 D P 图2-6 D。

海南省2006年中考数学科试题(非课改)含答案

海南省2006年中考数学科试题(非课改)含答案

海南省2006年初中毕业升考试 数学科试题(非课改区)(考试时间100分钟,满分150分,)特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2.答题前请认真阅读试题及有关说明. 3.请合理安排好答题时间.一、选择题(本大题满分30分,每小题36分) 1.计算2-3的结果是A .5B .-5C .1D .-12.今年1至4月份,我省旅游业一直保持良好的发展势头,旅游收入累计达5163000000元,用科学记数法表示是A. 5163×106元 B. 5.163×108元 C. 5.163×109元 D. 5.163×1010元 3. 下列各图中,是中心对称图形的是4.函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 5.化简8的结果是A .2B .4C .22D .22±6.用配方法解方程0142=++x x ,经过配方,得到A .5)2(2=+xB .5)2(2=-xC .3)2(2=-xD .3)2(2=+xABC D7.一次函数2-=x y 的大致图象是8.三角形在正方形网格纸中的位置如图1所示,则sin α的值是 A.43 B.34 C.53 D.549.下列长度的三条线段,能组成三角形的是A .1cm ,1cm ,3cmB .2cm ,3cm ,5cmC .3cm ,4cm ,9cmD .5cm ,6cm ,8cm10.如图2,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连结EG 与FH 交于点O , 则图中的菱形共有A .4个B .5个C .6个D .7个11.如图3,AB 和CD 都是⊙0的直径,∠AOC=90°,则∠C 的度数是A .20°B .25°C .30°D .50° 12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75 跳高人数132351这些运动员跳高成绩的中位数和众数分别是A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 二、填空题(本大题满分24分,每小题3分) 13.计算:=+⋅32a a a . 14. 当x = 时,分式22+-x x 的值为零.15. 今年市场上荔枝的价格比去年便宜了5%,去年的价格是每千克m 元,则今年的价格是每千克 元.图1αA BDC图3OAB DC 图2 O EHF GA.O xyB. OxyC. OxyD.Oxy16. 如图4,直线a 、b 被直线 所截,如果a ∥b ,∠1=120°,那么∠2= 度.17. 如图5,ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,则图中所有与∠B 互余的角是 . 18. 如图6,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米. 19. 如图7,矩形ABCD 的对角线AC 、BD 相交于点O ,AB=2,∠BOC=120°,则AC 的长是 . 20. 用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示).三、解答题(本大题满分66分)21.(本大题满分10分)计算:)21(422-⨯+.22.(本大题满分10分)化简:1112+-+a a a.23.(本大题满分10分)解不等式组:⎩⎨⎧->>-)1(2304x x x .24.(本大题满分10分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?(1) (2) (3)……ABCDO图7共计145元共计280元12图4abAD BC图5图625.(本大题满分11分)如图8,直线x y 2=与反比例函数xk y =的图象在第一象限的交点为A ,AB 垂直x 轴,垂足为B ,已知OB=1,求点A 的坐标和这个反比例函数的解析式.26. (本大题满分11分)如图9,线段AB 与⊙O 相切于点C ,连结OA 、OB ,已知OA=OB=5cm ,AB=8cm ,求⊙O 的半径. 23.(本大题满分12分)如图10,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F. (1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.24.(本大题满分14分)如图11,已知二次函数图象的顶点坐标为C(1,0),直线mx y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.EB ACP图11O xyDABCDE F 图10 GAC B图9BA图8O xy海南省2006年初中毕业升考试数学科试题(非课改区)参考答案及评分标准一、选择题(满分36分)DCBAC DBCDB BA二、填空题(满分24分)13.32a 14. 2 15. (1-5%)m 或95%m 或0.95m 16. 60 17. ∠A 和∠2 18. 7.5 19. 4 20. 10,3n+1 三、解答题(满分90分)21.原式=4-2 ………………………………(6分)=2 ………………………………(10分)22.原式112+-=a a ………………………………(4分)1)1)(1(+-+=a a a ………………………………(6分)1-=a ………(10分)23.解不等式①,得 x >4 ………(4分)解不等式②,得 x >-2 ………(8分)把不等式①和②的解集在同一数轴上表示如图所示:∴ 原不等式组的解集为x >4. ………………………………(10分) 24. 设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元. …………………(1分) 依题意,得 ⎩⎨⎧=+=+280321452y x y x ………………………………(6分)解这个方程组,得 ⎩⎨⎧==10125y x ………………………………(9分)答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分) (注:其他解法仿照以上评分标准.)25.∵ AB 垂直x 轴于点B ,OB=1,且点A 在第一象限,∴ 点A 的横坐为1. ………………………………(2分) 又∵ 直线y=2x 的图象过点A ,∴ y=2x=2×1=2. ………………………………(4分) 即点A 的坐标为(1,2). ………………………………(6分) ∵xk y =的图象过点A(1,2),∴12k =. ………………………………(8分)∴ k=2. ………………………………(10分) ∴ 这个反比例函数的解析式为xy 2=. ………………………………(11分)26. 连结OC. ……………(1分)∵ AB 与⊙O 相切于点C , ∴ OC ⊥AB. ……………(5分) 又∵ OA=OB , ∴ AC=BC=21AB=4821=⨯(cm ). ………(8分) 在Rt ΔAOC 中,3452222=-=-=ACOA OC (cm ).1 2 3 4 -1 0 -2 5 -3 0 AC B∴⊙O 的半径为3cm. ……………(11分) 27. (1) ΔAED ≌ΔDFC. ………………………………(2分)∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. ………………………………(4分) 又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, ………………………………(5分) ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC. ………………………………(7分) ∴ ΔAED ≌ΔDFC (AAS ). ………………………………(9分) (2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ………………………………(12分)∵ DF=DE+EF ,∴ AE=FC+EF. ………………………………(14分)28. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ………………………………(1分) ∴ m=1. ………………………………(2分)设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2,∴ a=1. ………………………………(4分)∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1. ………………(5分)(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E ………………………………(6分) =(x+1)-(x 2-2x+1) ………………………………(7分) =-x 2+3x. ………………………………(8分) 即h=-x 2+3x (0<x <3). ………………………………(9分) (3) 存在. ………………………………(10分)解法1:要使四边形DCEP 是平行四边形,必需有PE=DC. ………………(11分) ∵ 点D 在直线y=x+1上,∴ 点D 的坐标为(1,2),∴ -x 2+3x=2 . 即x 2-3x+2=0 . ………………………………(12分) 解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分) 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. ………………(11分) 设直线CE 的函数关系式为y=x+b. ∵ 直线CE 经过点C(1,0), ∴ 0=1+b, ∴ b=-1 .∴ 直线CE 的函数关系式为y=x-1 . ∴ ⎩⎨⎧+-=-=1212x x y x y 得x 2-3x+2=0. ………………………………(12分)解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分)。

厦门市2006年中考数学试题含答案

厦门市2006年中考数学试题含答案

厦门市2006年初中毕业和高中阶段各类学校招生考试数 学 试 卷(满分:150分;考试时间:120分钟)考生须知:1.解答的内容一律写在答题卡上,否则不得分.交卷只交答题卡,本卷由考场统一处理,考生请勿擅自带走.2.答题、画线一律用0.5毫米的黑色签字笔.一、选择题:(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的)1. 下面几种图形,一定是轴对称图形的是【解析】本题考查判断轴对称图形的方法.(七年级)判断轴对称图形的方法是能找出一条对称轴,使得该图形沿对称轴对折后可以完全重合,通过观察,比较容易就可以得出答案. 【答案】A 2. 4的平方根是A.2 B .-2 C .±2 D.16 【解析】本题考查对数的开方的基本运算.(八年级) ∵2(2)4±=,∴4的平方根是2±. 【答案】C3.函数y =x 的取值范围是A.2x >B.2x <C.2x ≥D.2x ≤ 【解析】本题考查的是函数自变量取值范围的求法.(八年级)A.等腰梯形B.直角梯形C.平行四边形D.直角三角形∵y =202x x -≥⇒≥【答案】C4. 下列事件,是必然事件的是A.掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B.掷一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数就是偶数C.随机从0,1,2,…,9这10个数中选取两个数,和为20D.打开电视,正在播广告【解析】本题考查对事件的判断.(七年级)本题根据常识即可做出决断. 【答案】B5. 已知关于x 的方程20x px q -+=的两根分别是0和-2,则p 、q 的值分别是 A.2p =-,0q = B. 2p =,0q = C.12p =,0q = D. 12p =-,0q = 【解析】本题考查对韦达定理(根与系数的关系)的简单运用.(九年级) 由于选项中0q =是确定的,所以只要考虑p 就可以了,||0(2)2p -=+-=-. 【答案】A6. 下列的图形都是由6个大小一样的正方形拼接而成的,可以看成正方形表面展开图的是【解析】本题考查的是学生的立体思维能力.(七年级) 通过观察思考,容易的出答案. 【答案】A7. 下面四个结论中,正确的是A.35222<<B. 53222<<C. 3222<<D. 5124<<A.B.C.D.【解析】本题考查的是对根式范围的判断.(八年级)本题是课本题目的改编题,这题解法有很多种,法一:首先选项中全部都是正数,故在不等式两边均乘以2再判断2.236≈,经过观察,容易的出答案.法二:首先选项中全部都是正数,故在不等式两边均乘以2再判断3=2=52==.法三:差值比较法:首先选项中全部都是正数,故在不等式两边均乘以22025225552222=>⇒>⇒<<⎨-⎪==>⇒>⎪⎩法四:商值比较法:首先选项中全部都是正数,故在不等式两边均乘以2125222512=>⇒>⎪⎪⇒<=<⇒<⎩法五:平方比较法:首先选项中全部都是正数,故在不等式两边均乘以2222552422525() 5.12524⎧=⎪⎪=⇒<<⎨⎪⎪==⎩【答案】D评价:今年中考的选择题够基础,只单纯考查一些基本的纯数学运算、判断能力,并没有多大的创新性,但是对一些基础薄弱的考生来说,这样的题目无疑是雪中送炭,让人倍感兴喜。

2023年辽宁省大连市中考数学真题(含答案)

2023年辽宁省大连市中考数学真题(含答案)

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线的顶点为.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1. -6绝对值是()A. -6B. 6C. -D.2. 如图所示的几何体中,主视图是()A. B. C.D.3. 如图,直线,则的度数为()A. B. C. D.4. 某种离心机的最大离心力为.数据用科学计数法表示为()A. B. C. D.5. 下列计算正确的是()A. B. C. D.6. 将方程去分母,两边同乘后式子为()A. B. C. D.7. 已知蓄电池两端电压为定值,电流与成反比例函数关系.当时,,则当时,的值为()A. B. C. D.8. 圆心角为,半径为3的扇形弧长为()A. B. C. D.9. 已知抛物线,则当时,函数最大值为()A. B. C. 0 D. 210. 某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A. 本次调查的样本容量为100B. 最喜欢篮球的人数占被调查人数的C. 最喜欢足球的学生为40人D. “排球”对应扇形的圆心角为二、填空题(本题共6小题,每小题3分,共18分)11. 的解集为_______________.12. 一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.13. 如图,在菱形中,为菱形对角线,,点为中点,则的长为_______________.14. 如图,在数轴上,,过作直线于点,在直线上截取,且在上方.连接,以点为圆心,为半径作弧交直线于点,则点的横坐标为_______________.15. 我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出元钱,会多钱;每人出元钱,又差钱,问人数有多少.设有人,则可列方程为:_______________.16. 如图,在正方形中,,延长至,使,连接,平分交于,连接,则的长为_______________.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17. 计算:.18. 某服装店的某件衣服最近销售火爆.现有两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.供应商供应材料的纯度(单位:)如下:72737475767879频数1153311Ⅱ.供应商供应材料的纯度(单位:)如下:72 75 72 75 78 77 73 75 76 77 71 78 79 72 75Ⅲ.两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差757574 3.0775根据以上信息,回答下列问题:(1)表格中的_______________,_______________,_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?19. 如图,在和中,延长交于,,.求证:.20. 为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21. 如图所示是消防员攀爬云梯到小明家的场景.已知,,点关于点的仰角为,则楼的高度为多少?(结果保留整数.参考数据:)22. 为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了,女生跑了,然后男生女生都开始匀速跑步.已知男生的跑步速度为,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时.已知轴表示从开始匀速跑步到停止跑步的时间,轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.23. 如图1,在中,为的直径,点为上一点,为的平分线交于点,连接交于点.(1)求的度数;(2)如图2,过点作的切线交延长线于点,过点作交于点.若,求的长.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24. 如图1,在平面直角坐标系中,直线与直线相交于点,为线段上一动点(不与点重合),过点作轴交直线于点.与的重叠面积为.关于的函数图象如图2所示.(1)的长为_______________;的面积为_______________.(2)求关于的函数解析式,并直接写出自变量的取值范围.25. 综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,点为上一动点,将以为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点落在上时,.”小红:“若点为中点,给出与的长,就可求出的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰中,由翻折得到.(1)如图1,当点落在上时,求证:;(2)如图2,若点为中点,,求的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰中,.若,则求长.26. 如图,在平面直角坐标系中,抛物线上有两点,其中点的横坐标为,点的横坐标为,抛物线过点.过作轴交抛物线另一点为点.以长为边向上构造矩形.(1)求抛物线的解析式;(2)将矩形向左平移个单位,向下平移个单位得到矩形,点的对应点落在抛物线上.①求关于的函数关系式,并直接写出自变量的取值范围;②直线交抛物线于点,交抛物线于点.当点为线段的中点时,求的值;③抛物线与边分别相交于点,点在抛物线的对称轴同侧,当时,求点的坐标.大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线的顶点为.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】D二、填空题(本题共6小题,每小题3分,共18分)【11题答案】【答案】【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】##【15题答案】【答案】【16题答案】【答案】三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)【17题答案】【答案】【18题答案】【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【19题答案】【答案】证明见解析【20题答案】【答案】四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)【21题答案】【答案】楼的高度为【22题答案】【答案】(1)(2)【23题答案】【答案】(1);(2).五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)【24题答案】【答案】(1),(2)【25题答案】【答案】(1)见解析;(2);问题2:【26题答案】【答案】(1)(2)①;②;③或。

上海市(2006-2012)历年中考数学试卷(含答案)

上海市(2006-2012)历年中考数学试卷(含答案)

2012年上海市初中毕业统一学业考试- 1 -2006年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)题号一二 三 四总分 17 18 19 20 21 22 23 24 25 得分考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤. 一.填空题:(本大题共12题,满分36分) 【只要求直接写出结果,每个空格填对得3分,否则得零分】 1.计算:4=__________. 2.计算:12x x+=__________.3.不等式60x ->的解集是__________. 4.分解因式:2x xy +=__________. 5.函数13y x =-的定义域是__________.6.方程211x -=的根是__________.7.方程2340x x +-=的两个实数根为1x ,2x ,则12x x = __________.8.用换元法解方程2221221xx x x-+=-时,如果设221xy x =-,那么原方程可化为__________.9.某型号汽油的数量与相应金额的关系如图1所示,那么这种汽油的单价是每升__________元.10.已知在A B C △和111A B C △中,11AB A B =,1A A =∠∠,要使111ABC A B C △≌△,还需添加一个条件,这个条件可以是__________.11.已知圆O 的半径为1,点P 到圆心O 的距离为2,过点P 引圆O 的切线,那么切线长是__________.12.在中国的园林建筑中,很多建筑图形具有对称性.图2是一个破损花窗的图形,请把它补画成中心对称图形.金额(单位:元)509100 数量(单位:升)图1图22012年上海市初中毕业统一学业考试- 2 -二.选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列方程中,有实数根的是( ) A.2310x x ++=B.411x +=- C.2230x x ++=D.111x x x =--14.二次函数()213y x =--+图象的顶点坐标是( ) A.()13-,B.()13,C.()13--,D.()13-,15.在A B C △中,A D 是B C 边上的中线,G 是重心.如果6A G =,那么线段D G 的长为( )A.2 B.3 C.6 D.12 16.在下列命题中,真命题是( )A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 三.(本大题共5题,满分48分) 17.(本题满分9分)先化简,再求值:2111x x x -⎛⎫+÷ ⎪⎝⎭,其中2x =.18.(本题满分9分) 解方程组:23010x y x y --=⎧⎨++=⎩,.2012年上海市初中毕业统一学业考试- 3 -19.(本题满分10分,每小题满分各5分)已知:如图3,在A B C △中,A D 是边B C 上的高,E 为边A C 的中点,14B C =,12AD =,4sin 5B =.求(1)线段D C 的长;(2)tg EDC ∠的值.20.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某市在中心城区范围内,选取重点示范路口进行交通文明状况满意度调查,将调查结果的满意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识.今年五月发布的调查结果中,橙色与黄色标识路口数之和占被调查路口总数的15%.结合未画完整的图4中所示信息,回答下列问题:(1)此次被调查的路口总数是__________;(2)将图4中绿色标识部分补画完整,并标上相应的路口数;(3)此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随机样本?答:____________________.21.(本题满分10分)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得B C 长为240米,A 到B C 的距离为5米,如图5所示.请你帮他们求出滴水湖的半径.AECDB图 340 30 20 10 01 841红橙黄 蓝绿路口数标识图 4BAC图52012年上海市初中毕业统一学业考试- 4 -四.(本大题共4题,满分50分)22.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图6,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A .(1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且O B A B =,求这个一次函数的解析式.23.(本题满分12分,每小题满分各6分)已知:如图7,在梯形A B C D 中,A D B C ∥,A B D C =.点E ,F ,G 分别在边A B ,B C ,C D 上,A E G F G C ==.(1)求证:四边形A E F G 是平行四边形;(2)当2F G C E F B =∠∠时,求证:四边形A E F G 是矩形.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图8,在直角坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg 2OAB =∠.二次函数22y x m x =++的图象经过点A ,B ,顶点为D .(1)求这个二次函数的解析式;yAxO 图6BE A DGC图7F2012年上海市初中毕业统一学业考试- 5 -(2)将O A B △绕点A 顺时针旋转90 后,点B 落到点C 的位置.将上述二次函数图象沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图象的函数解析式; (3)设(2)中平移后所得二次函数图象与y 轴的交点为1B ,顶点为1D .点P 在平移后的二次函数图象上,且满足1PBB △的面积是1PD D △面积的2倍,求点P 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P 在线段A B 上,点O 在线段A B 延长线上.以点O 为圆心,O P 为半径作圆,点C 是圆O 上的一点.(1)如图9,如果2A P P B =,P B B O =.求证:C AO BC O △∽△; (2)如果A P m =(m 是常数,且1m >),1BP =,O P 是O A ,O B 的比例中项.当点C 在圆O 上运动时,求:A C B C 的值(结果用含m 的式子表示);(3)在(2)的条件下,讨论以B C 为半径的圆B 和以C A 为半径的圆C 的位置关系,并写出相应m 的取值范围.yB AxO图8CA PB O图92012年上海市初中毕业统一学业考试- 6 -2006年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分. 2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数.评分时,给分或扣分均以1分为单位. 答案要点与评分标准一.填空题:(本大题共12题,满分36分)1.2; 2.3x ; 3.6x >; 4.()x x y +;5.3x ≠;6.1;7.4-;8.2210y y -+=(或12y y+=); 9.5.09;10.1B B =∠∠(或1C C =∠∠,或11AC A C =); 11.3;12.答案见图1.二.选择题:(本大题共4题,满分16分) 13.A; 14.B; 15.B;16.C.三.(本大题共5题,满分48分) 17.解:原式211x x x x+-=÷················································································(2分)()()111x x x x x +-+=÷····································································(2分)()()111x xxx x +=+-·······································································(1分)11x =-, ·························································································(2分)当2x =时,原式12121==+-. ·····················································(2分) 18.解:消去y 得220x x +-=, ········································································(3分)图12012年上海市初中毕业统一学业考试- 7 -得12x =-,21x =, ··············································································(3分) 由12x =-,得15y =-, ········································································(1分) 由21x =,得22y =-, ··········································································(1分) ∴原方程组的解是1125x y =-⎧⎨=-⎩,;2212x y =⎧⎨=-⎩,.····················································(1分) 19.解:(1)在R t B D A △中,90BDA = ∠,12AD =,4sin 5A DB A B==, ····(1分)15AB ∴=. ······························································································(1分) 222215129B D A B A D ∴=-=-=. ··················································(2分) 1495D C B C B D ∴=-=-=. ································································(1分)(2)[方法一]过点E 作EF D C ⊥,垂足为F ,EF AD ∴∥. ·············(1分)A E E C = ,1522D F D C ∴==,162E F A D ==. ······························(2分)∴在R t E F D △中,90EFD = ∠,12tg 5E F E D C D F==∠. ····················(2分)[方法二]在R t A D C △中,90ADC = ∠,12tg 5A D C D C==. ··············(2分)D E 是斜边A C 上的中线,12D E A C E C ∴==. ··································(1分)E D CC ∴=∠∠. ·····················································································(1分)12tg tg 5E D C C ∴==∠. ·········································································(1分)20.(1)60; ·······································································································(3分) (2)图略(条形图正确,得2分;标出数字10,得2分); ····························(4分) (3)不能. ·····································································································(3分) 21.解:设圆心为点O ,连结O B ,O A ,O A 交线段B C 于点D . ·····················(1分) A B A C =, AB AC ∴=.O A B C ∴⊥,且11202B D DC B C ===.················································································································(1分) 由题意,5D A =. ··················································································(1分) 在R t BD O △中,222OB OD BD =+, ··················································(2分) 设O B x =米, ························································································(1分) 则()2225120x x =-+, ·········································································(2分)1442x ∴=. ·······················································································(1分) 答:滴水湖的半径为1442.5米. ·····························································(1分) 四.(本大题共4题,满分50分) 22.解:(1)由题意,设点A 的坐标为()3a a ,,0a >. ······································(1分)2012年上海市初中毕业统一学业考试- 8 -点A 在反比例函数12y x=的图象上,得123a a=, ·································(1分)解得12a =,22a =-, ··············································································(1分) 经检验12a =,22a =-是原方程的根,但22a =-不符合题意,舍去. ·····(1分) ∴点A 的坐标为()26,. ·············································································(1分) (2)由题意,设点B 的坐标为()0m ,. ···················································(1分) 0m > ,()2262m m ∴=-+. ····························································(2分) 解得103m =,经检验103m =是原方程的根,∴点B 的坐标为1003⎛⎫⎪⎝⎭,.····(1分)设一次函数的解析式为103y kx =+,··························································(1分)由于这个一次函数图象过点()26A ,,10623k ∴=+,得43k =.···············(1分)∴所求一次函数的解析式为41033y x =+. ·················································(1分)23.证明:(1) 在梯形A B C D 中,A B D C =,B C ∴=∠∠.························(2分)G F G C = ,C G F C ∴=∠∠.······························································(1分)B G FC ∴=∠∠,A B G F ∴∥,即A E G F ∥. ······································(1分) A E G F = ,∴四边形A E F G 是平行四边形.··········································(2分) (2)过点G 作G H F C ⊥,垂足为H .····················································(1分) G F G C =,12F G H F G C ∴=∠∠.·····················································(1分)2F G CE F B = ∠∠,F G H E F B ∴=∠∠. ···········································(1分)90FGH GFH +=∠∠,90EFB GFH ∴+=∠∠. ···························(1分) 90EFG ∴=∠. ·······················································································(1分) 四边形A E F G 是平行四边形,∴四边形A E F G 是矩形. ························(1分) 24.解:(1)由题意,点B 的坐标为()02,, ························································(1分)2O B ∴=,tg 2OAB = ∠,即2O B O A=.1O A ∴=.∴点A 的坐标为()10,. ····························································(2分)又 二次函数22y x m x =++的图象过点A ,2012m ∴=++.解得3m =-, ····························································································(1分) ∴所求二次函数的解析式为232y x x =-+. ·············································(1分)2012年上海市初中毕业统一学业考试- 9 -(2)由题意,可得点C 的坐标为()31,, ····················································(2分) 所求二次函数解析式为231y x x =-+. ·····················································(1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111BB D D ==. ···········································(1分)点P 在平移后所得二次函数图象上,设点P 的坐标为()231x x x -+,. 在1PBB △和1PD D △中,112PBB PD D S S = △△,∴边1B B 上的高是边1D D 上的高的2倍.①当点P 在对称轴的右侧时,322x x ⎛⎫=-⎪⎝⎭,得3x =,∴点P 的坐标为()31,; ②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ⎛⎫=- ⎪⎝⎭,得1x =, ∴点P 的坐标为()11-,; ③当点P 在y 轴的左侧时,0x <,又322x x ⎛⎫-=-⎪⎝⎭,得30x =>(舍去), ∴所求点P 的坐标为()31,或()11-,. ························································(3分)25.(1)证明:2A P P B P B B O P O ==+= ,2A O P O ∴=.2A OP OP O B O∴==.·····················································································(2分)P O C O = , ····························································································(1分) A O C O C OB O∴=.C O A B O C = ∠∠,C AO BC O ∴△∽△. ····················(1分)(2)解:设O P x =,则1OB x =-,O A x m =+,O P 是O A ,O B 的比例中项, ()()21x x x m ∴=-+, ·············································································(1分)得1m x m =-,即1m O P m =-. ··································································(1分)11O B m ∴=-.··························································································(1分)O P 是O A ,O B 的比例中项,即O A O P O PO B=,O P O C = ,O A O C O CO B∴=. ····································································(1分)设圆O 与线段A B 的延长线相交于点Q ,当点C 与点P ,点Q 不重合时,。

2006年河北省中考数学试题及参考答案

2006年河北省中考数学试题及参考答案

2006年河北省课程改革实验区初中毕业生升学考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的值是A .-2B .2C .12D .-122.图1中几何体的主视图是3.下列运算中,正确的是A .a +a =a 2B .a ⋅a 2=a 2C .(2a )2=2a 2D .a +2a=3a4.图2是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为 A .50台 B .65台 C .75台D .95台5.某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是 A .300(1+x )=363 B .300(1+x )2=363 C .300(1+2x )=363D .363(1-x )2=3006.在平面直角坐标系中,若点P (x -2,x )在第二象限,则x 的取值范围为A .0<x <2B .x <2销售量(台)30 45 20 甲 乙 丙图2A B C D正面 图1C .x >0D .x >27.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足mVρ=,它的图象如图3所示,则该气体的质量m 为 A .1.4kg B .5kg C .6.4kgD .7kg8.如图4,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为 A .2和3 B .3和2 C .4和1D .1和49.如图5,现有一圆心角为90°,半径为8cm 的扇形纸片, 用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆 锥底面圆的半径为 A .4cm B .3cm C .2cmD .1cm10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一 次方程组是由算筹布置而成的.《九章算 术》中的算筹图是竖排的,为看图方便, 我们把它改为横排,如图6-1、图6-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图6-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=类似地,图6-2所示的算筹图我们可以表述为A .211,4327.x y x y ⎧⎨⎩+=+=B .211,4322.x y x y ⎧⎨⎩+=+=C .3219,423.x y x y ⎧⎨+=+=D .26,4327.x y x y ⎧⎨⎩+=+=2006年河北省课程改革实验区初中毕业生升学考试数 学 试卷卷II (非选择题,共100分)图5m 3)图3ABCDE 图4图6-2图6-1注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上)11.分解因式:a 3-a =______________.12.图7是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号) 13.有四张不透明的卡片为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片, 抽到写有无理数卡片的概率为_______.14.如图8,PA是⊙O 的切线,切点为A ,PA =APO =30°,则⊙O 的半径长为_______.15.小宇同学在一次手工制作活动中,先把一张矩形纸片按图9-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图9-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离 是_______cm .三、解答题(本大题共10个小题;共85分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分) 已知x =-32,求(1+11x +)⋅(x +1)的值.试试基本功 图8左 右左 右 第二次折叠第一次折叠 图9-1 图9-2图717.(本小题满分7分)如图10所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮.(1)请你在图10中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C 标出);(2)已知:MN =20 m ,MD =8 m ,PN =24 m ,求(1)中的点C 到胜利街口的距离CM .18.(本小题满分7分)观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:归纳与猜想① ② ③⑤④4×0+1=4×1-3; 4×1+1=4×2-3; 4×2+1=4×3-3;___________________;___________________;PN 图10Q部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗? 欢迎你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高(2)通过猜想,写出与第n 个图形相对应的等式.19.(本小题满分8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图:(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先下棋的概率.20.(本小题满分8分)员工 管理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数/名 1 3 2 3 24 1 每人月工资/元21000 840020252200 1800 1600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有 名; (2)所有员工月工资的平均数x 为元, 中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员. 请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍 员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.得 分评卷人得 分评卷人………… 判断与决策游戏规则三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到解: (1)树状图为:开始正面正面正面 反面小明 小亮小强 不确定确定结果21.(本小题满分8分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图11所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30m 时,用了_____h .开挖6h时甲队比乙队多挖了_____m ;(2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;(3)当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?22.(本小题满分8分)探索在如图12-1至图12-3中,△ABC 的面积为a .(1)如图12-1, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图12-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图12-2的基础上延长AB 到点F ,使BF =AB ,连结FD , FE ,得到△DEF (如图12-3).若阴影部分的面积为S 3, 则S 3=__________(用含a 的代数式表示).发现操作与探究 图12-1 C DCD 图12-2 F图12-3像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图12-3),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍. 应用去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图12-4).求这两次扩展的区域(即阴影部分)面积共为多少m 2?23.(本小题满分8分)如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.实验与推理 图13-2E 图13-3G 图13-1A ( G )B ( E )图12-4HM G24.(本小题满分12分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.25.(本小题满分12分)图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.如图14-1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH和正方形MNPQ从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y个平方单位.综合与应用图14-7DQ(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6DQ图14-2图14-3DDD图14-1 (P ) D N图14-5DQ2006年河北省课程改革实验区初中毕业生升学考试数学试题参考答案及评分标准说明:1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数. 4.对于25(3)题加分的说明:(1)按评分标准给予相应的加分;(2)加分后不超过120分的,按照“原得分+加分=总分”计算考生的总分.加分后超过120分的,按照120分登记总分.一、选择题(每小题2分,共20分)二、填空题(每小题3分,共15分) 11.a (a +1)(a -1); 12.13.21; 14.2; 15.1.三、解答题(本大题共10个小题;共85分)16.解:原式=x +2. ……………………………………………………………………(4分)当x =32 时,原式=12. ……………………………………………………(7分) (说明:本题若直接代入求值正确,也相应给分)17.解:(1)如图1所示,CP 为视线,点C 为所求位置.……………………………(2分)(2)∵AB ∥PQ ,MN ⊥AB 于M ,∴∠CMD =∠PND =90°. 又∵ ∠CDM =∠PDN , ∴ △CDM ∽△PDN ,图1天津中考网( ) ∴ CM MD PN ND=.……………………………………………………………(5分) ∵MN =20m ,MD =8m ,∴ND =12m . ∴82412CM =, ∴CM =16(m ). ∴点C 到胜利街口的距离CM 为16m .…………………………………(7分)18.解:(1)④4×3+1=4×4-3;…………………………………………………………(2分)⑤4×4+1=4×5-3.…………………………………………………………(4分)(2)4(n -1)+1=4n -3.………………………………………………………(7分)19.解:(1)(2)由(1)中的树状图可知:P (确定两人先下棋)=34.…………………(8分) 20.解:(1)16;…………………………………………………………………………(1分)(2)1700;1600;………………………………………………………………(3分)(3)这个经理的介绍不能反映该公司员工的月工资实际水平.……………(4分)用1700元或1600元来介绍更合理些.…………………………………(5分) (说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也得分)(4)250050210008400346y ⨯--⨯=≈1713(元). ……………………………(7分) y 能反映.……………………………………………………………………(8分)21.解:(1)2,10;………………………………………………………………………(2分)(2)设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x .………………………………………(4分) 设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b ⎧⎪⎨⎪⎩+=+= 解得25,20.k b ⎧⎪⎨⎪⎩== ∴y =5x +20. ……………………(6分)(3)由题意,得10x =5x +20,解得x =4(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.……………………(8分)22.探索 (1)a ; ………………………………………………………………………(1分)(2)2a ;………………………………………………………………………(2分) 理由:连结AD ,∵CD =BC ,AE =CA ,∴S △DAC = S △DAE = S △ABC = a ,∴S 2=2a . ………………………………………………………………………(4分)…………………………(6分) 开始 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 正面 反面 小明 小亮 小强 不确定 确 定 确 定 确 定 确 定 确 定 确 定 不确定结果天津中考网( ) (3)6a ; ………………………………………………………………………(5分) 发现 7.………………………………………………………………………………(6分) 应用 拓展区域的面积:(72-1)×10=480(m 2). ……………………………(8分)23.解:(1)BM =FN . …………………………………………………………………(1分)证明:∵△GEF是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF .又∵∠BOM =∠FON , ∴ △OBM ≌△OFN .∴ BM =FN .…………………………………………………………(4分)(2)BM =FN 仍然成立.…………………………………………………………(5分) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF .∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN .∴ BM =FN . ………………………………………………………(8分)24.解:(1)5.71024026045⨯-+=60(吨).……………………………………………(3分)(2)260(100)(457.5)10x y x -=-+⨯,…………………………………………(6分) 化简得: 23315240004y x x =-+-.……………………………………(7分) (3)24000315432-+-=x x y 23(210)90754x =--+. 利达经销店要获得最大月利润,材料的售价应定为每吨210元. ……(9分)(4)我认为,小静说的不对. ………………………………………………(10分)理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=x x W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对. …………………………………………………(12分)方法二:当月利润最大时,x 为210元,此时,月销售额为17325元; 而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大.∴小静说的不对.…………………………………………………(12分)(说明:如果举出其它反例,说理正确,也相应给分)25.解:(1)相应的图形如图2-1,2-2. ……………………………………………(2分)当x =2时,y =3; ………………………………………………………(3分) 当x =18时,y =18. ……………………………………………………(4分)图2-3D Q P 图2-2 D 图2-1 D Q P天津中考网( )(2)①当2-3与=6+x ,SK =MK =2x -1,MT =6-(7-x )-1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.…………………………(6分)②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1.∴y=MN ·MT =6(x -1)=6x -6. ………………………………………(8分) ③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x .∴y = MN ·MT =6(13-x )=78-6x . …………………………………(10分) ④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.……………………(12分)(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分)(3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36. ……………………………………………(1分) ②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36.……………………………………………(2分) ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.……………………………………………(3分) ④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0;当x =49时,y 取得最大值36.……………………………………………(4分) (说明:问题(3)是额外加分题.若考生能指出在各边运动过程中,y 都经历了由0逐步增大到36,又逐步减小到0的变化,所以最小值是0,最大值是36,给2分.)图2-4 D 图2-5 D P 图2-6 D。

2006年四川省成都市中考数学试题

2006年四川省成都市中考数学试题

成都市2006年初中毕业考试暨高中阶段学校招生统一考试(含成都市初三毕业会考)数 学 试 卷全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题。

A 卷(共100分)第Ⅰ卷 选择题(共45分)注意事项:1.第I 卷共2页,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。

考试结果,监考人员将试卷和答题卡一并收回。

2.第I 卷全是选择题,各题均有四个选项,只有一项符合题目要求。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

选择题的答案不能答在试卷上。

请注意机读答题卡的横竖格式。

一、选择题:(每小题3分,共30分)1.-|-2|的倒数是 ( )A .2B .21C .-21D .-22.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表 面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A .3.84×104 千米B .3.84×105 千米C .3.84×106 千米D .38.4×104 千米3.右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个4.下列运算正确的是 ( )A .4a 2-(2a)2=2a 3B .(-a 2)·a 1=a 4C .(-2x 2)3=-8x 9D .(-x)2+x=-x第II 卷(非选择题,共70分)注意事项:1.A 卷的第II 卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上。

2006年湖北荆门市数学中考试题几答案

2006年湖北荆门市数学中考试题几答案

湖北省荆门市二00六年初中升学考试数学试卷(附评分标准)人教大纲版.总分120分,考试时间120分钟一选择题(本大题共10小题,每小题2分,满分20分)每小题只有一个正确答案,请将选出的答案代号填入题后的括号内.1.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是( )(A)3. (B)-1. (C)5. (D)-1或3.2.当m<0时,化简2mm的结果是( )(A)-1. (B)1. (C)m. (D)-m.3.2a3b,用含a,b0.54,则下列表示正确的是( )(A)0.3ab. (B)3ab. (C)0.1ab2. (D)0.1a2b.4.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是( )(A)24米2. (B)36米2. (C)48米2. (D)72米2.5.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )(A)75°. (B)45°. (C)30°. (D)15°.6.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( )(A)a2-b2=(a+b)(a-b). (B)(a+b)2=a2+2ab+b2.(C)(a-b)2=a2-2ab+b2. (D)a2-b2=(a-b)2.7.某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( )(A)20元. (B)24元. (C)30元. (D)36元.8.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )(A)6环. (B)7环. (C)8环. (D)9环.9.在半径为1的圆中,135°的圆心角所对的弧长为( )(A)83π. (B)38π. (C)43π. (D)34π.10.已知函数y=-kx+4与y=kx的图象有两个不同的交点,且A(-12,y1)、B(-1,y2)、C(12,y3)在函数y=229kx-的图象上,则y1,y2,y3的大小关系是( )(A)y1<y2<y3. (B)y3<y2<y1. (C)y3<y1<y2. (D)y2<y3<y1.二、填空题(本大题10小题,每小题3分,共30分)11.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为______千瓦时.12.计算:(22xy-)2=________.13.化简:11312332---=________.14.若方程x2+(m2-1)x+m=0的两根互为相反数,则m=______.15.一个蓄水池储水20m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是__________.16.如图,有一张面积为1的正方形纸片ABCD,M、N分别是AD,BC边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结PQ,则PQ=______.17.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格中,作格点△ABC和△OAB相似(相似比不为1),则点C的坐标是____________.18.若(2-x)3=a0+a1x+a2x2+a3x3,则(a0+a2)2-(a1+a2)2的值为________.19.如图,是用火柴棒摆出的一系列三角形图案,按这种方案摆下去,当每边上摆2006根火柴棒时,共需要摆________根火柴棒.20.两圆半径分别为1和7,若它们的两条公切线互相垂直,则它们的圆心距为__________.三、解答题(本大题共8小题,满分70分)21.(6分)解不等式组:523(1),1317. 22x xx x->+⎧⎪⎨-≤-⎪⎩①②22.(6分)为了增强学生的法制观念,学校举办了一次法制知识竞赛.现将全校500名参赛学生的竞赛成绩(得分取整数)进行随机抽样,并绘制出统计得到的频率分布表和频率分布直方图的一部分.分组频数频率0≤m<20 0 020≤m<4040≤m<60 11 0.2260≤m<80 23 0.4680≤m≤100 12合计 1.00(1)补全频率分布表;(2)补全频率分布直方图,图中梯形ABCD的面积是______;(3)估计参赛学生中成绩及格(不低于60分)的人数有多少人?23.(8分)为了完善城市交通网络,为便市出行,市政府决定修建东宝山交通隧道.现要使工程提前3个月完成,需将原定工作效率提高12%,求原计划完成这项工程需用多少个月?24.(8分)[尝试]如图,把一个等腰直角△ABC沿斜边上的中线CD(裁剪线)剪一刀,把分割成的两部分拼成一个四边形A′BCD,如示意图(1).(以下有画图要求的,工具不限,不必写画法和证明)(1)猜一猜:四边形A′BCD一定是__________;(2)试一试:按上述的裁剪方法,请你拼一个与图(1)不同的四边形,并在图(2)中画出示意图.[探究]在等腰直角△ABC中,请你沿一条中位线(裁剪线)剪一刀,把分割成的两部分拼成一个特殊四边形.(1)想一想:你能拼得的特殊四边形分别是________________;(写出两种)(2)画一画:请分别在图(3)、图(4)中画出你拼得的这两个特殊四边形的示意图.[拓广]在等腰直角△ABC中,请你沿一条与中线、中位线不同的裁剪线剪一刀,把分割成的两部分拼成一个特殊四边形.(1)变一变:你确定的裁剪线是________________,(写出一种)拼得的特殊四边形是______;(2)拼一拼:请在图(5)中画出你拼得的这个特殊四边形的示意图.25.(10分)某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?26.(10分)如图①,直线AM⊥AN,⊙O分别与AM、AN相切于B、C两点,连结OC、BC,则有∠ACB=∠OCB;(请思考:为什么?)如果测得AB=a,则可知⊙O的半径r=a.(请思考:为什么?)(1)将图①中直线AN向右平移,与⊙O相交于C1、C2两点,⊙O与AM的切点仍记为B,如图②.请你写出与平移前相应的结论,并将图②补充完整;判断此结论是否成立,且说明理由.(2)在图②中,若只测得AB=a,能否求出⊙O的半径r?若能求出,请你用a表示r;若不能求出,请补充一个条件(补充条件时不能添加辅助线,若补充线段请用b表示,若补充角请用α表示),并用a和补充的条件表示r.27.(10分)如图,某乡村小学有A、B两栋教室,B栋教室在A栋教室正南方向36米处,在A栋教室西南方向2米的C处有一辆拖拉机以每秒8米的速度沿北偏东60°的方向CF行驶,若拖拉机的噪声污染半径为100米,试问A、B两栋教室是否受到拖拉机噪声的影响?若有影响,影响的时间有多少秒?(3 1.7,各步计算结果精确到整数)28.(12分)在平面直角坐标系中,已知A(0,2),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O 运动.设运动时间为t(秒).(1)用含t的代数式表示点P的坐标;(2)当t为何值时,△OPQ为直角三角形?(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.荆门市二00六年初中升学考试数学试题参考答案及评分说明一、选择题题号 1 2 3 4 5 6 7 8 9 10选项 B A A B D A C C D B11.8.47×101012.424xy13.2 14.-1 15.y=20-0.5t(0≤t≤40) 16.317.(4,0)或(3,2)18.1 19.6039063 2或2或10说明:17题答对1个给2分,答对2个给3分;20题每答对1个给1分.三、解答题21.解:解不等式①,得x>52;解不等式②,得x≤4. …………………………………………4分在数轴上表示其解集,如图:∴不等式的解集是52<x ≤4. ………………………………6分22. 解:(1)各格依次为4,0.08,0.24,50;………………………………2分(2)补全直方图如图所示,3分梯形的面积为0.68; …………………………………………4分(3)122350+×500=350,(或(0.22+0.46)×500=350)估计及格人数有350人.………………6分23.解:设原计划完成这项工程需用x个月.依题意得11112%3x x x-=-. ………………4分化简,得312%3x=-.解得x=28.答:原计划完成这项工程需用28个月.………………………………………………………8分24.解:[尝试]①平行四边形;1分②如图(1)所示.3分[探究]①平行四边形、矩形或者等腰梯形,(答其中两个即可)……………………………4分②如图(2)、(3)、(4)、(5)所示.(画其中两个即可)…………………………………………6分[拓广]①直角梯形,将斜边上的呣绕斜边中点旋转任意角度所得的直线;或者将平行于BC边(直角边)的中位线平移与AC交于点D,使AD:DC2:1的直线;或者将平行于AB边(斜边)的中位线平移与AC交于点D,使AD:DC2:1的直线. ……………………………………7分说明:裁剪线只答一种即可.其它叙述方式只要表达正确都应给分.②如图(6)、(7)、(8)所示.(画其中一个即可)………………………………………………8分25.解:(1)由题意,设y=kx+b,图象过点(70,5),(90,3),∴570,390.k bk b=+⎧⎨=+⎩解得1,1012.kb⎧=-⎪⎨⎪=⎩∴y=110-x+12.…………………………………………3分(2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(110-x+12)(x-10)-10(110-x+12)-42.5=-0.1x2+17x-642.5=110-(x-85)2+80.当85元时,年获利的最大值为80万元. ……………………………………………………6分(3)令w =57.5,得-0.1x 2+17x -642.5=57.2.整理,得x 2-170x +7000=0.解得x 1=70,x 2=100.由图象可知,要使年获利不低于57.5万元,销售单价应在70元到100元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.………………………………10分26.解:(1)图②中相应结论为∠AC 1B =∠OC 1B 和∠AC 2B =∠OC 2B .………………………2分 先证∠AC 1B =∠OC 1B .连接OB 、OC 1,∵AM 与⊙O 相切于B ,∴OB ⊥AM .∵AN ⊥AM ,∴OB ∥AN .∴∠AC 1B =∠OBC 1.∵OB =OC 1,∴∠OBC 1=∠OC 1B , ∴∠AC 1B =∠OC 1B .同理可证∠AC 2B =∠OC 2B .……4分(2)若只测得AB =a ,不能求出⊙O 的半径r .……………………………………………………5分 补充条件:另测得AC 1=b .……………………………………………………………………6分 作OD ⊥C 1C 2,则C 1D =C 2D .由AB 2=AC 1•AC 2,得AC 2=2a b .则C 1C 2=AC 2-AC 1=2a b -b =22a b b-. ∴C 1D =12C 1C 2=222a b b -. 故r =OB =AD =AC 1+C 1D =b +222a b b -=222a b b+.…………………………………………10分 说明:1.①若补充条件:另测得AC 2=b ,则r =222a b b+.②若补充条件:另测得C 1C 2=b ,则r =224a b +.③若补充条件:另测得BC 1=b ,则r =222b b a -.④若补充条件:另测得∠ABC 1=α,则r =2sin cos aαα.2.以上答案供参考,若有其他答案,只要正确,都应给分.27.解:过点作直线AB 的垂线,垂足为D .………………………………………………………1分 设拖拉机行驶路线CF 与AD 交于点E .∵AC 2,∠ACD =45°,∴CD =AD 22=300.DE =CD •tan30°=300×33=170. ∴BE =300-36-170=94.……………………………………………4分过点B 作BH ⊥CF ,垂足为H ,则∠EBH =30°.∴BH =BE •cos30°=94×32=80.∵80<100,∴B 栋教室受到拖拉机噪声影响.…………6分 以点B 为圆心,100为半径作弧,交CF 于M 、N 两点,则MN 2210080-×60=120.B栋教室受噪声影响的时间为:120÷8=15(秒).……………………………………………8分作AH′⊥CF,H′为垂足,则∠EAH′=30°.又AE=36+94=130,∴AH′=AE•cos30°=1303=111.∵111>100,∴A栋教室不受拖拉机噪声影响.……………………………………………10分28.解:(1)作PM⊥y轴,PN⊥x轴.∵OA=3,OB=4,∴AB=5.∵PM∥x轴,∴PM APOB AB=.∴345PM t=.∴PM=125t.…………2分∵PN∥y轴,∴PN PBOA AB=.∴5335PN t-=.∴PN=3-95t.∴点P的坐标为(125t,3-95t). ……………………………………4分(2)①当∠POQ=90°时,t=0,△OPQ就是△OAB,为直角三角形.………………………………5分②当∠OPQ=90°时,△OPN∽△PQN,∴PN2=ON•NQ.(3-95t)2=125t(4-t-125t).化简,得19t2-34t+15=0.解得t=1或t=1519.……………………………………………………6分③当∠OQP=90°时,N、Q重合.∴4-t=125t,∴t=2017.………………………………………7分综上所述,当t=0,t=1,t=1519,t=2017时,△OPQ为直角三角形.………………………………8分(3)当t=1或t=1519时,即∠OPQ=90°时,以Rt△OPQ的三个顶点可以确定一条对称轴平行于y轴的抛物线.当t=1时,点P、Q、O三点的坐标分别为P(125,65),Q(3,0),O(0,0).设抛物线的解析式为y=a(x-3)(x-0),即y=a(x2-3x).将P(125,65)代入上式,得a=-56.∴y=-56(x2-3x).即y=-56x2+52x.……………………………………………………………………………12分说明:若选择t=1519时,点P、Q、O三点的坐标分别是P(3619,3019),Q(6119,0),O(0,0).求得抛物线的解析式为y=-1930x2+6130x,相应给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档