和差和倍差倍问题讲解
小学数学三年级 和差、和倍、差倍问题

和差问题解答方法是:(和+差)÷2=大数(和 - 差)÷2=小数1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?5.甲、乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生各多少人?6.甲、乙两个工程队共有1980人,甲队为了支援乙队,抽出285人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?7. 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?8.今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?9.小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?10.甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?11.姐妹二人将自己平时积蓄的零用钱共450元存入银行。
已知姐姐存款比妹妹多50元,姐妹二人各存款多少元?两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和—小数=大数1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?4、甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?5、小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给多少枝小宁后,小宁的圆珠笔芯枝数是小青的8倍?6、红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?7、甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?8、甲书架有图书18本,乙书架有图书8本,班级图书管理员又买来图书16本,怎么分配才能使甲书架图书的本数是乙书架的2倍?9、被除数与除数的和为320,商是7,被除数和除数各是几?10、被除数和除数的和为120,商是7,被除数和除数各是几?11、被除数、除数、商的和为79,商是4,被除数、除数各是几?12、两个整数相除商是21,余数为1,已知被除数、除数、商、余数的和一共是441,被除数、除数各是多少?13、与徒弟一样多。
和差、和倍、差倍问题讲解

习题讲解和差问题和差公式:(和+差)÷2=大数(和 - 差)÷2=小数1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?和倍问题已知两个数的和与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。
和倍公式:和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)和—小数=大数1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?差倍问题已知两个数的差与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“差倍问题”。
差倍公式:两数差÷(倍数—1)=小数(1倍数)小数×倍数=大数(几倍数)1、小红买的兰花比月季多12朵,已知兰花的朵数是月季的3倍。
小红买了兰花和月季各多少朵?2、甲存款数是乙的4倍,甲比乙多存600元。
甲、乙两人各存款多少元?3、饲养场里养的白兔比灰兔多32只,已知白兔的只数是灰兔的5倍。
白兔、灰兔各养了多少只?例1、甲班和乙班一共有60人。
如果从甲班调6个人到乙班,那么甲班的人数就是乙班人数的2倍。
求甲、乙两班原来的人数。
例2、在一个减法算式里,被减数、减数与差的和是240,减数是差的5倍,则减数是多少?例3、两个自然数相除,商是4,余数是1。
如果被除数、除数、商及余数的和是56,那么被除数等于多少?例4、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?例5、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。
和倍、差倍、和差问题解析

第六讲 和倍问题、差倍问题及和差问题一.和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题。
为了帮助我们理解题意,弄清两个量之间的数量关系,经常采用画线段的方法来表示两个量间的这种关系。
例1.甲班和乙班共有图书160本,甲班的图书本书是乙班的3倍,甲、乙两班各有图书多少本?解:乙班:160÷(3+1)=40(本); 甲班:40×3=120(本),或160–40=120(本)。
答:甲班有图书120本,乙班有图书40本。
例2.甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍。
解:甲、乙两班共有图书是120+30=150(本),甲班给乙班若干本图书后,甲、乙两班共有的倍数是2+1=3倍,乙班现有的图书是150÷3=50本,所以甲班给乙班的图书是50–30=20本。
答:甲班给乙班20本后,甲班的图书是乙班图书的2倍。
例3.光明小学有学生760人,其中男生人数比女生人数的3倍少40人,问男、女生各有多少人?解:160本甲班乙班甲班乙班女生人数:(760+40)÷(3+1)=200(人),男生人数:200×3–40=560人,或者760–200=560(人)。
答:男生有560人,女生200人。
例4.果园里有桃树、梨树、苹果树共552棵,桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?解:梨树的棵树:(552+20–12)÷(1+2+1)=560÷4=140(棵); 桃树的棵树:140×2+12=292(棵); 苹果树的棵树:140–20=120棵。
答:桃树、梨树和苹果树分别有292、140、120棵。
例5.549是甲、乙、丙、丁四个数的和,如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则四个数相等,求四个数各是多少?解:女生760人男生20棵苹果树梨树552棵桃树丙数是:(549+2–2)÷(2+2+1+4)=549÷9=61; 甲数是:61×2–2=120; 乙数是:61×2+2=124; 丁数是:61×4=244。
三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题

三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题和倍问题,就是已知几个数的和与这几个数之间的倍数关系,求这几个数各是多少的应用题。
解和倍问题的关键是要找准“和”与“倍”,并能借助线段图来解决问题。
解和倍问题的一般思路是:(1)读题,找出最小的一个数,把它看成1倍量;(2)画图,用线段图表示出数与数之间的倍数关系;(3)比较,观察图形准确判断“和”里面一共是几倍或几倍多几(几倍少几),即判断“和”相当于几个1倍量,并求出1倍量;(4)代入,根据1倍量与几个数之间的倍数关系求出其他的数。
已知两个数的倍数关系,把较小的数看成1份,较大的数就是较小数的几倍,较大的数就是几份。
下面我们来看例题1。
例题1解决这类和倍问题时,首先根据倍数关系画出线段图,以较小量为一段,先画出较小的的量,然后找到和相当于多少份,求出一份数。
一份的数知道了,其他的问题也就好解决了。
例题2我们知道,平均数(每份数)=总数÷总份数。
师傅和徒弟的总份数根据题意可以看成是和徒弟加工个数一样的4份。
当两个量的和与倍数关系不对应时,先求出与倍数关系对应的和,再画线段图求出两个量。
例题3求三个量的和倍问题时,先比较三个数的大小,再找出1倍量,画出线段图,然后通过“剪尾巴”或“填坑”找到三个数的和相当于多少份,求出1份数。
通过以上的例子,详细大家已经对和倍问题有了一定的了解,下面我就给大家出一些相关的练习1、甲乙两人共有150张画片,甲的张数比乙的2倍多30张。
两人各有多少张画片?2、四、五年级共有165人,四年级学生比五年级学生人数的2倍少6人。
四五年级各有学生多少人?3、小丽有红、黄、白三种颜色的珠子54粒,红珠子是黄珠子的2倍,白珠子是黄珠子的3倍。
三种颜色的珠子各有多少粒?和差问题与和倍问题、差倍问题一起统称“和差倍问题”,是小学阶段尤其是中年级常见的典型应用题。
和差问题的特点是已知几个数的和与这几个数的差,求这几个数各是多少的应用题。
07和倍、差倍、和差问题

和倍、差倍、和差问题【知识概述】和倍问题:已知几个数的和与这几个数之间的倍数关系求这几个数的应用题。
基本公式和÷(倍数+1)=较小数(一倍数)较小数×倍数=较大数或:和-较小数=较大数。
差倍问题:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
基本公式差÷(倍数-1)=较小的数较小的数×倍数=较大的数和差问题:已知两个数的和与差,反过来求这两个数。
基本公式(和+差)÷2 = 较大的数(和-差)÷2 = 较小的数温馨提示:为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示几种量间的这种关系,以便于找到解题的途径。
【典型例题】例1 甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?例2 师傅和徒弟共生产零件190个,师傅生产的个数比徒弟的3倍少10个,师、徒各生产多少个?例3 妈妈的年龄比小刚大24岁,今年妈妈的年龄正好是小刚年龄的3倍,今年妈妈和小刚各是几岁。
例4 两个数的和为36,差为22, 则较大的数是多少?较小的数是多少?例5 甲乙丙三数的和是1600,乙数是甲数的2倍,丙数比乙数的2倍多60, 甲乙丙三数各是多少?【巩固训练】1.妹妹有课外书20本,姐姐有课外书25本,姐姐给妹妹()本后,妹妹课外书是姐姐的2倍。
2.弟弟有图书30本, 哥哥有图书90本, 哥哥给弟弟( )本后, 哥哥的图书是弟弟的2倍。
3.被除数、除数和商三个数的和是181,商是12,被除数是()。
4.小明、小红两人集邮,小明的邮票比小红多15张,小明的张数是小红的4倍,小明集邮()张,小红集邮()张。
5.名士基地种的花生是白薯的16倍,现在已经知道种的花生和白薯一共是102棵,种花生()棵, 白薯()棵。
6.小利的科技书和故事书一共75本,但是科技书比故事书少 35本,小利有科技书( )本,故事书( )本。
和差问题、和倍问题、差倍问题

和差问题、和倍问题、差倍问题本次课我们研究和差问题、和倍问题、差倍问题,旨在能够正确运用相关公式,解决实际问题。
其中,教学重点在于分清题目类型,正确运用不同类型的数量关系。
而教学难点则在于理清题意,准确判断题目属于哪一类,然后正确运用相关的数量关系。
本课程需要4个课时。
一、和差问题是指已知两个数的和与差,求出这两个数各是多少的应用题。
基本数量关系是:(和+差)÷2=大数,(和-差)÷2=小数。
解答和差应用题的关键在于选择合适的数作为标准,将若干个不相等的数变为相等的数。
有些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例如,有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?根据公式,我们需要找出两个数的和与差,才能解决问题。
由题意可知:堆煤共重52吨,因此两数和是52;甲比乙多4吨,因此两数差是4.甲的煤多,甲是大数,乙是小数。
故解法如下:甲:(52+4)÷2=28(吨),乙:28-4=24(吨)。
二、和倍问题是指已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少。
解决和倍问题的基本方法是将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系是:小数=和÷(n+1),大数=小数×倍数或和-小数=大数。
例如,甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
因此,乙:160÷(3+1)=40(本),甲:160-40=120(本)。
练:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、XXX和XXX两人今年的年龄是23岁,4年后,XXX 比XXX3岁,问XXX和XXX今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。
三年级数学:和差、和倍与差倍问题详解(附例题)

和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本乙40×3=120本甲答:甲班120本,已班40本。
和差,和倍,差倍问题公式

和差,和倍,差倍问题公式
和差问题、和倍问题和差倍问题是指在代数运算中,针对两个或
多个数的和、差、乘积之间的关系进行求解的问题。
1.和差问题公式:
(1)两个数的和:设两个数分别为a和b,那么它们的和为a+b。
(2)两个数的差:设两个数分别为a和b,那么它们的差为a-b。
2.和倍问题公式:
(1)一个数的n倍:将某个数a乘以n,即为a的n倍。
(2)两个数的和的n倍:设两个数分别为a和b,它们的和为a+b,那么它们的和的n倍为n(a+b)。
3.差倍问题公式:
(1)两个数的差的n倍:设两个数分别为a和b,它们的差为a-b,那么它们的差的n倍为n(a-b)。
拓展:
除了上述提到的和差问题、和倍问题和差倍问题,还有其他类似的代数问题,如积问题、商问题等。
这些问题涉及到数之间的乘积和除法运算,可以利用相应的公式来求解。
例如:
1.积问题公式:
(1)两个数的乘积:设两个数分别为a和b,它们的乘积为a*b。
2.商问题公式:
(1)两个数的商:设两个数分别为a和b,它们的商为a/b。
需要注意的是,除数b不能为零。
这些公式和问题常用于求解代数方程和解决实际问题,通过应用适当的公式,我们可以准确地计算出数之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题讲解
和差问题
和差公式:(和+差)÷2=大数(和 - 差)÷2=小数
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
和倍问题
已知两个数的和与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。
和倍公式:
和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)和—小数=大数
1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?
2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?
3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?
差倍问题
已知两个数的差与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“差倍问题”。
差倍公式:两数差÷(倍数—1)=小数(1倍数)小数×倍数=大数(几倍数)
1、小红买的兰花比月季多12朵,已知兰花的朵数是月季的3倍。
小红买了兰花和月季各多少朵?
2、甲存款数是乙的4倍,甲比乙多存600元。
甲、乙两人各存款多少元?
3、饲养场里养的白兔比灰兔多32只,已知白兔的只数是灰兔的5倍。
白兔、灰兔各养了多少只?
例1、甲班和乙班一共有60人。
如果从甲班调6个人到乙班,那么甲班的人数就是乙班人数的2倍。
求甲、乙两班原来的人数。
例2、在一个减法算式里,被减数、减数与差的和是240,减数是差的5倍,则减数是多少?
例3、两个自然数相除,商是4,余数是1。
如果被除数、除数、商及余数的和是56,那么被除数等于多少?
例4、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?
例5、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。
第三堆糖果有多少颗?
例6、有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根的长度是第一根长的3倍,两根绳子原来各长多少米?
例7、亚洲杯决赛中,中国记者的数量是外国记者数量的3倍。
比赛结束后中国记者有180人离场,外国记者有40人离场,剩下的中、外记者数量相等。
原来中、外记者各有多少人?
例8、甲、乙两个数,如果甲数加上320就等于乙数,如果乙数加上460就等于甲数的3倍。
求两个数各是多少?
例9、两块同样长的花布,第一块卖出31 米,第二块卖出19 米后,第二块是第一块的4 倍,求每块花布原有多少米?
例10、甲、乙两校教师的人数相等,由于工作需要,从甲校调30 人到乙校去,这时乙校教师人数正好是甲校教师人数的3 倍,求甲、乙两校原有教师各多少人?
例11、小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍还多80 米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?
例12、阿奇家有两根绳子,长的那根有163 米,短的只有97 米.他把两根绳子剪去同样长的一段,结果长绳所剩长度比短绳所剩长度的7 倍还多6 米.那么两根绳子都剪去了多少米?
例13、有两个炮兵营参加军事演习,它们各准备了若干枚炮弹.开始一营比二营多准备了5 枚炮弹.后来因为演习需要,一营给了二营20 枚炮弹.这时二营炮弹数量就比一营的3 倍还多3 枚.一营最开始准备了几枚炮弹?
例14、小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍少80米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?
例15、甲、乙两筐苹果重量相等.现在从甲筐拿12 千克苹果放入乙筐,结果乙筐苹果的重量就比甲筐的3 倍少2千克.两筐苹果原来各有多少千克?
例16、登月行动地面控制室的成员由两组专家组成,两组共有专家125 人.原来第一组人数较多,所以从第一组调了20 人到第二组,即使这样第一组人数仍比第二组多5 人.原来第一组有多少名专家?
例17、三个物体平均重量是31 千克,甲物体比乙、丙两个物体重量之和轻1 千克,乙物体比丙物体重量的2倍还重2 千克,三个物体各重多少千克?。