和差、和倍、差倍问题讲解

合集下载

【秒懂奥数】3年级和倍,差倍,和差问题详解

【秒懂奥数】3年级和倍,差倍,和差问题详解

【秒懂奥数】3年级和倍,差倍,和差问题详解挑战级数:★★1.小明和小亮玩“石头、剪刀、布”的游戏.两人用同样多的石子做记录,输一次,就给对方一颗石子.他们做了许多次游戏,每次都决出胜负,其中小明胜了3次,小亮增加了9颗石子.那么他们共做了多少次游戏?[分析与解]小亮增加了9颗石子,则小亮比小明多胜9次,小明胜了3次,那么小亮胜了3+9=12次,又因为每次都决出胜负,所以共做了3+12=15次游戏.挑战级数:★★2.用杯子往一个空瓶里倒水,如果倒进6杯水,连瓶共重680克,如果倒进9杯水,连瓶共重920克,求空瓶的重量?[分析与解]第二次多倒入3杯水,瓶子连同水的重量增加了920-680=240克,那么1杯水重240÷3=80克,则6杯水重80×6=480克,所以瓶子重680-480=200克.挑战级数:★★3.某学生到工厂搞勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱.但他工作了20天,由于学校另有安排,他便中止了合同,工厂只付给他一套工作服和20元钱.那么,这套工作服值多少元?[分析与解]这名学生少工作10天,工资少了70-20=50元,那么30天的工资应为50×(30÷10)=150元,而实际只是给他一套工作服和70元钱,所以工作服值150-70=80元.挑战级数:★★★4.甲、乙、丙3人同乘长途汽车,3人所带行李都超过免费重量,要另付行李费.甲付2角,乙付4角,丙付6角.3人行李共重150千克,如果一个人带这些行李超过的重量就要付行李费2元4角,问每人可免费带行李多少千克?[分析与解]3人分开携带自己的行李,共花了2+4+6=12角钱,如果一个人携带这些行李则多花24-12=12角钱,这是因为一人携带比三人携带少了2倍的免费行李重量,所以免费的行李重量相当与12÷2=6角钱.把甲超出的行李重量看成1份,那么免费重量为3份,乙超出的行李重量为2份,丙超出的行李重量为3份.有三人行李共1+2+3+3×3=15份,为150千克,所以1份为150÷15=10千克,那么每人可带的免费行李重10×3=30千克.挑战级数:★★5.两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?[分析与解]甲组人数是3倍乙组人数,即3倍乙组人数9倍甲组的人数少40×3=120人,那么8倍甲组的人数等于120人,所以甲组有120÷8=15人,则乙组有15÷3=5人,那么参加义务劳动的学生共有15+5=20人.挑战级数:★★6.某工厂接到制造6000个A种零件和2000个B种零件的订货单.该厂共有210名工人,每人制造5个A种零件和制造3个B种零件所用时间相等.现把全厂工人分成甲、乙两组分别制造A,B两种零件,并同时投入生产,那么当甲、乙两组各分配多少人时,完成订货单所用时间最少?[分析与解]如果生产同样多的A、B两种零件,生产A种零件的人数为3份,生产B 种零件的人数为5份.现在A种零件是B种零件的3倍,所以生产A种零件的人数为9份,生产B 种零件的人数为5份.共有210名工人,那么生产A组零件的甲组应为210÷(9+5)×9=135人,则生产B组零件的乙组应为210-135=75人.此时A、B零件按订单同时完成,所用时间最少.挑战级数:★★7.仓库存有一批钢材,由两个汽车队负责运往工地.已知甲队单独运要20天,乙队每天可运20吨.现在由甲、乙两队同时运输,干了6天之后,甲队汽车坏了一辆,每天少运4吨,结果又运6天才全部运完.那么这批钢材共有多少吨?[分析与解]我们可以把甲队坏的车换到乙队,让甲队的效率不变,则乙队每天少运4吨,即16吨.甲队工作了6+6=12天,剩下的工作都是由乙队来完成的,那么乙队完成的工作相当与甲队20-12=8天完成的工作.乙队完成了6×20+6×16=216吨,则甲队正常的一天运216÷8=27吨,于是这批钢材共有27×20=540吨.挑战级数:★★8.李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆零件中拿15个放到乙堆中,则两堆零件的个数相等;如果从乙堆零件中拿15个放到甲堆中,则甲堆零件的个数是乙堆的3倍.那么,甲堆原来有零件多少个?李师傅这天共生产零件多少个?[分析与解]显然,甲堆原有的零件比乙堆多30个,而甲队原有的零件又是乙队零件的3倍少15×(3+1)=60个,所以2倍乙堆零件减去60为30.即乙堆原有零件为(60+30)÷2=45个,那么甲堆原有零件45+30=75个,李师傅这天共生产零件45+75=120个.挑战级数:★★★9.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱里取出7只白球、15只红球,如果经过若干次以后,箱子里剩下3只白球、53只红球,那么,箱子里原有红球数比白球数多多少只?[分析与解]设共取球x次,则取走红球15x,白球5x只.有(15x+53)=3(7x+3)+2,解得x=7.所以原有红球15x+53=158,白球7x+3=52.所以红球比白球多106只.解法二:①剩下的红球数53只减去2只是51只,它恰好是3的倍数,并且有:51-3×3=42只,这说明剩下的红球数减2后是剩下的白球数的3倍多42只;②如果每次取出的红球数都是白球数的3倍,那么每次应该取出3×7=21只;③实际每次取出的红球数比假设的少:21-15=6只;④每次少取6只,总共比假设少取42只,那么取了42÷6=7次;⑤箱子里原有红球比白球多:7×(15-7)+(53-3)=106只.挑战级数:★★★10.有红、白球若干个.若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有多少个?[分析与解]若每次拿出1个红球和1个白球,则没有红球时,还剩下50个白球即说明白球比红球多50个;若每次拿出1个红球和3个白球,则没有白球时,还剩下50个红球,那么红球还可以拿50次,则白球比红球的3倍少3×50=150个.则红球=(150+50)÷(3-1)=100个,白球=100+50=100×3-150=150个.这堆红球、白球共有100+150=250个.挑战级数:★★★11.某人以分期付款的方式买一台电视机.买时第一个月付款750元,以后每月付150元;或前一半时间付300元,后一半时间付100元.两种付款方式的付款总数及时间都相同.这台电视机的价格是多少元?[分析与解]显然有第二种付款方式相当于每月付(300+100)÷2=200元,则等同变化后第一种付款方式较第二种付款方式的第一个月多支出了750-200=550元.但以后,每月少支出200-150=50元,所以第一种付款方式中付了550÷50=11个月的150元.那么付款的总时间为11+1=12个月,所以这台电视机的价格为200×12=2400元.解法二:设有x个月,那么第一种付钱方式所付的总钱数:750+150×(x-1)元;第二种付钱方式所付的总钱数:(300+100)×x÷2.由于电视机价格不变.所以有:750+150×(x-1)=(300+100)×x÷2解得:600+150x=200x,x=12,电视机的价格为:600+150×12=2400元.挑战级数:★★12.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人.问甲班和丁班共多少人?[分析与解]有甲、乙、丙、丁4个班的人数之和为83+88=171人,除去乙、丙两班,剩下的即为甲、丁两班,所以甲、丁两班有171-86=85人.挑战级数:★★★13.小木、小林、小森3人去看电影.如果用小木带的钱去买3张电影票,还差5角5分;如果用小林带的钱去买3张电影票,还差6角9分;如果用3个人带去的钱去买3张电影票,就多3角.已知小森带了3角7分,那么买一张电影票要用多少钱?[分析与解]如果用小木的钱买3张票,那么差55分;如果用小林带的钱买3张票,那么差69分;如果用三个人带的钱买3张票,那么多30;小森带了37分,所以小木和小林带的钱买6张票差为55+69=114分,而买3张还差37-30=7分.所以一张电影票的价钱为(114-7)÷(6-3)=117÷3=39分.挑战级数:★★14.有3个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克.问:其中最轻的箱子重多少千克?[分析与解]这3个箱子的总重量的2倍为83+85+86=254千克,则3个箱子共重254÷2=127千克.当其中的两个箱子的重量和最大时,剩下的第三个箱子最轻,所以最轻的箱子重127-86=41千克.挑战级数:★★★15.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,那么这三个数中最小的数是多少?[分析与解]如果设中间的那个数为1份,有后面两个数的积与前面两个数的积相差2份,为114.所以,中间那个数,即1份为114÷2=57,所以最小的那个数为57-1=56。

小学三年级数学:和差、和倍与差倍问题详解(附例题)

小学三年级数学:和差、和倍与差倍问题详解(附例题)

小学三年级数学:和差、和倍与差倍问题详解(附例题)和差问题已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

其实,解和差问题,还有一段顺口溜:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

和差问题的解题公式:大数=(和+差)÷2小数=(和-差)÷2例1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

例2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。

和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数为了帮助我们理解题意,弄清两种量彼此间的关系,常采纳画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

例1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。

例2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。

例3、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?解:160÷(3+1)=40本乙40×3=120本甲答:甲班120本,已班40本。

和差、和倍、差倍问题讲解

和差、和倍、差倍问题讲解

习题讲解和差问题和差公式:(和+差)÷2=大数(和 - 差)÷2=小数1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?和倍问题已知两个数的和与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。

和倍公式:和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)和—小数=大数1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?差倍问题已知两个数的差与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“差倍问题”。

差倍公式:两数差÷(倍数—1)=小数(1倍数)小数×倍数=大数(几倍数)1、小红买的兰花比月季多12朵,已知兰花的朵数是月季的3倍。

小红买了兰花和月季各多少朵?2、甲存款数是乙的4倍,甲比乙多存600元。

甲、乙两人各存款多少元?3、饲养场里养的白兔比灰兔多32只,已知白兔的只数是灰兔的5倍。

白兔、灰兔各养了多少只?例1、甲班和乙班一共有60人。

如果从甲班调6个人到乙班,那么甲班的人数就是乙班人数的2倍。

求甲、乙两班原来的人数。

例2、在一个减法算式里,被减数、减数与差的和是240,减数是差的5倍,则减数是多少?例3、两个自然数相除,商是4,余数是1。

如果被除数、除数、商及余数的和是56,那么被除数等于多少?例4、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?例5、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。

和倍问题差倍问题和差问题

和倍问题差倍问题和差问题

和倍问题学法指导已知两个数的和及它们之间的倍数关系,求这两个数各是多少的应用题叫做和倍应用题,简称和倍问题。

首先我们要并清几个问题:两个数相比,以被比的数为标准,这个被比的数称为一倍数,比的数里有几个这样的一倍数,就是几倍数,我们就说一个数是另一个数的几倍。

它们之间的数量关系式是:一倍数×倍数=几倍数t几倍数÷一倍数=倍数几倍数÷倍数=一倍数在解决和倍问题时,先要确定一个数为标准(通常以较小的数为标准),即一倍数,再根据较大的数与较小的数之间的倍数关系,确定总和相当于一倍数(较小的数)的多少倍,然后求出一倍数(较小的数),再算出其他各数量。

和倍问题的数量关系式是:和÷(倍数+1)=一倍数即较小的数和一较小的数=较大的数,或较小的数×倍数=较大的数~甲、乙两车间共有工人664人,甲车间的人数是乙的3倍,甲、乙两车间各有工人多少人【分析与解答】我们可以用线段图表示题中的已知条件与问题:乙车间:甲车间:从上图看出,甲车间的人数是乙的3倍,那么把乙车间的人数看作1份,甲就有这样的3份,总人数664人占了1+3 =4份,把664人平均分成4份,l份就是乙车间的人数,3份就是甲车间的人数。

/664÷(1+3) =166(人)166 x3 =498(人)或664 - 166= 498(人)答:甲车间有工人498人,乙车间有166人。

试一试1华强和建军共有图书84本,华强的图书本数是建军的3倍。

华强和建军各有图书多少本/【例题】果园里有梨树、苹果树、桃树共207棵,其中梨树的棵数是苹果树的3倍,苹果树的棵数是桃树的2倍。

三种果树各多少棵【分析与解答】我们把桃树的棵数看作1份,苹果树的棵数就是这样的2份,梨树的棵数就是桃树的2 x3 =6倍,三种果树的总棵数就是桃树的6 +2 +1 =9倍。

可以先求出桃树有207÷9=23(棵),苹果树有23×2 =46(棵),梨树就是46 x3 =138(棵)。

和倍差倍及和差问题

和倍差倍及和差问题

第一讲和倍问题和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题。

为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。

例1.甲班和乙班共有图书160本。

甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析:设乙班的图书本数为1倍数,则甲班图书为3倍数,那么甲班和乙班图书本数的和是4倍数。

4倍数的数量是160本,可以求出1倍数,即乙班的图书本数,然后再求甲班的图书本数。

用下图表示它们的关系:解:160÷(3+1)=40(本)………………乙班40⨯3=120(本)或160-40=120(本)………………………甲班答:甲班有图书120本,乙班有图书40本。

这道应用题答完了,怎样验算呢?可把求出的甲班本数和乙班本数相加,看和是不是160本:再把甲班的本数除以乙班本数,看是不是等于3倍。

如果与条件相符,表明这题作对了。

注意验算决不是把原式再算一遍。

验算:120+40=160(本)120÷40=3(倍)。

例2.甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?分析:解这题的关键是找出哪个量是变量,哪个量是不变量。

从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量。

最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍。

依据例1解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(如上图所示)。

解:(30+120)÷(2+1)=150÷3=50(本)………………乙班现有图书50-30=20(本)答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。

验算:(120-20)÷(30+20)=2(倍)(120-20)+(30+20)=150(本)。

和差和倍差倍问题

和差和倍差倍问题

和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。

基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。

解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。

基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?练习:1、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?2、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须从乙仓库运出多少吨放入甲仓库?三、差倍问题已知两个数的差,并且知道两个数倍数关系,求这两个数,这样的问题称为差倍问题。

解决差倍问题的基本方法:设小是1份,如果大数是小数的n倍,根据数量关系知道大数是n份,又知道大数与小数的差,即知道n-1份是几,就可以求出1份是多少。

(四)和倍、差倍、和差问题

(四)和倍、差倍、和差问题

和倍、差倍、和差问题一、和倍问题1、概念和倍问题——已知两个数的和以及他们之间的倍数关系,求这两个数各是多少的问题。

2、数量关系两数和÷两数的倍数和=一倍数的量(小数)两数和÷(倍数+1)=大数一倍数的量×倍数=几倍数二、差倍问题1、概念差倍问题——已知两个数的差以及两数之间的倍数关系,求这两个数各是多少的问题2、数量关系差÷(倍数-1)=1份数(小的数)小数×倍数=大数三、和差问题1、概念和差问题——已知一大一小两个数的和与两个数的差,求两个数各是多少的问题。

2、数量关系(1)(和+差)÷2=大数和-大数=小数(2)(和-差)÷2=小数和-小数=大数(3)船速+水速=顺水速度(4)船速-水速=逆水速度(5)(顺水速度+逆水速度)÷2=船速(6)(顺水速度-逆水速度)÷2=水速习题:1.小宁有圆珠笔芯30支,小青有圆珠笔芯15支。

问小青把多少支给小宁后,小宁的圆珠笔芯支数是小青的8倍?2.红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?3.果园里有苹果树、梨树、桃树共840棵,梨树棵数是桃树棵数的2倍,苹果树棵数是桃树的3倍。

问,三种果树各有多少棵?4.甲数是乙数的4倍,甲乙两数的和是385。

求甲乙两数?5.数学老师将参加数学竞赛的学生分成红、蓝两个小组,结果发现红组学生的人数恰好是蓝组的3倍。

小明发现蓝组学生人数比红组学生人数的2倍少50人。

那么红组和蓝组学生各多少人?6.图书馆新购进一批图书,共三种,其中文艺书25本,百科全书9本,故事书的本数比文艺书的2倍还多10本。

问这批书共有多少本?7.甲、乙、丙三个仓库两两相距5千米,一共存放有120吨煤。

甲仓库的煤比乙仓库的多11吨,乙仓库的煤比丙仓库的2倍少28吨。

每吨煤每千米的运费是20元。

最少要花多少元,能使得甲乙丙三个仓库的煤一样多?8.甲乙丙合伙做水果生意,某天他们一共赚了42个森林币。

小学数学思维专题------和差、和倍、差倍问题

小学数学思维专题------和差、和倍、差倍问题

小学数学思维讲练专题和差、和倍、差倍问题一、和差问题:已知两个数量的和与差,求这两个数量分别是多少的问题数量关系:大数=(和+差)÷2 小数=(和-差)÷2线段分析法:小数差和大数例1、四年级(1)班和(2)班共有学生98人,且(2)比(1)班多6人,(1)和(2)班有学生多少人?例2、老师将140颗糖分给了一班和二班,现在如果从一班拿12颗糖给二班,那么两个班分得的糖一样多,求原来你两班各分得多少颗糖?例3、学校三个运动队共有队员80人,已知田径队人数比足球队和篮球队人数的和还多8人,足球队人数又比篮球队人数多4人。

三个队各有多少人?例4、有甲、乙、丙三包大米,已知甲、乙两包共重32千克,乙、丙共重30千克,甲、丙共重22千克,求三包大米各重多少千克?练一练:1、已知长方形周长32厘米,长比宽多4厘米,求这个长方形的面积。

2、甲乙两车共装水果97筐,从甲车取下14筐到乙车后,甲车还是比乙车多3筐,甲、乙两车原来各装多少筐水果?3、两箱零件共102个。

从甲箱拿出24个放入乙箱后,甲箱还比乙箱多4个。

原来两箱各有多少个零件?4、两个班共有学生92人,如果从一班调2人到二班,则两班人数同样多。

两个班原来各有多少名同学?5、甲、乙两筐水果共重40千克。

从甲筐取6千克放到乙筐后,甲筐里的水果比乙筐还多2千克。

求两筐原有水果多少千克?6、红花、绿花和黄花共有78朵。

红花和绿花的总朵数比黄花多6朵,红花比绿花多6朵。

三种花各有多少朵?二、和倍问题:已知两个数量的和,以及大数是小数的几倍,求这两个数量分别是多少的问题数量关系:总和÷(几倍+1)=较小数总和-较小数=较大数线段分析法:较小数和较大数两个数相比,以被比的数为标准,这个被比的数称为“1倍数”(较小数),比的数里有几个这样的“1倍数”,就是“几倍数”(较大数),我们就说一个数是另一个数的几倍。

解决和倍问题要先确定总和相当于一倍数(较小的数)的多少倍,然后求出一倍数(较小的数),再算出其他各数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题讲解
和差问题
和差公式:(和+差)÷2=大数(和 - 差)÷2=小数
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
和倍问题
已知两个数的和与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。

和倍公式:
和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)和—小数=大数
1、学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两年级各分得多少本图书?
2、小红和小明共有压岁钱800元,小红的钱数是小明的3倍,小红和小明分别有压岁钱多少元?
3、学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本,二、三年级各得图书多少本?
差倍问题
已知两个数的差与两个数的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“差倍问题”。

差倍公式:两数差÷(倍数—1)=小数(1倍数)小数×倍数=大数(几倍数)
1、小红买的兰花比月季多12朵,已知兰花的朵数是月季的3倍。

小红买了兰花和月季各多少朵?
2、甲存款数是乙的4倍,甲比乙多存600元。

甲、乙两人各存款多少元?
3、饲养场里养的白兔比灰兔多32只,已知白兔的只数是灰兔的5倍。

白兔、灰兔各养了多少只?
例1、甲班和乙班一共有60人。

如果从甲班调6个人到乙班,那么甲班的人数就是乙班人数的2倍。

求甲、乙两班原来的人数。

例2、在一个减法算式里,被减数、减数与差的和是240,减数是差的5倍,则减数是多少?
例3、两个自然数相除,商是4,余数是1。

如果被除数、除数、商及余数的和是56,那么被除数等于多少?
例4、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?
例5、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗。

第三堆糖果有多少颗?
例6、有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根的长度是第一根长的3倍,两根绳子原来各长多少米?
例7、亚洲杯决赛中,中国记者的数量是外国记者数量的3倍。

比赛结束后中国记者有180人离场,外国记者有40人离场,剩下的中、外记者数量相等。

原来中、外记者各有多少人?
例8、甲、乙两个数,如果甲数加上320就等于乙数,如果乙数加上460就等于甲数的3倍。

求两个数各是多少?
例9、两块同样长的花布,第一块卖出31 米,第二块卖出19 米后,第二块是第一块的4 倍,求每块花布原有多少米?
例10、甲、乙两校教师的人数相等,由于工作需要,从甲校调30 人到乙校去,这时乙校教师人数正好是甲校教师人数的3 倍,求甲、乙两校原有教师各多少人?
例11、小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍还多80 米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?
例12、阿奇家有两根绳子,长的那根有163 米,短的只有97 米.他把两根绳子剪去同样长的一段,结果长绳所剩长度比短绳所剩长度的7 倍还多6 米.那么两根绳子都剪去了多少米?
例13、有两个炮兵营参加军事演习,它们各准备了若干枚炮弹.开始一营比二营多准备了5 枚炮弹.后来因为演习需要,一营给了二营20 枚炮弹.这时二营炮弹数量就比一营的3 倍还多3 枚.一营最开始准备了几枚炮弹?
例14、小悦和阿奇在操场上练习跑步.一段时间过后,阿奇跑的距离比小悦跑的3 倍少80米.如果小悦比阿奇少跑了500 米,那么小悦和阿奇分别跑了多少米?
例15、甲、乙两筐苹果重量相等.现在从甲筐拿12 千克苹果放入乙筐,结果乙筐苹果的重量就比甲筐的3 倍少2千克.两筐苹果原来各有多少千克?
例16、登月行动地面控制室的成员由两组专家组成,两组共有专家125 人.原来第一组人数较多,所以从第一组调了20 人到第二组,即使这样第一组人数仍比第二组多5 人.原来第一组有多少名专家?
例17、三个物体平均重量是31 千克,甲物体比乙、丙两个物体重量之和轻1 千克,乙物体比丙物体重量的2倍还重2 千克,三个物体各重多少千克?
仅供个人参考
仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
不得用于商业用途。

相关文档
最新文档