高考数学九大模块

合集下载

高考数学九大模块(20200617161102)

高考数学九大模块(20200617161102)

一.集合与函数1.进行集合的交、并、补运算时, 不要忘了全集和空集的特殊情况, 不要忘记了借助数轴和文氏图进行求解.2.在应用条件时, 易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时, 易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时, 易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增, 则一定存在反函数, 且反函数也单调递增;但一个函数存在反函数, 此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法单调区间不能用集合或不等式11. 求函数单调性时, 易错误地在多个单调区间之间添加符号“∪”和“或”;表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时, 你注意到真数与底数的限制条件了吗?(真数大于零, 底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性, 易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时, 你是否注意到:当时, “方程有解”不能转化为。

若原题中没有指出是二次方程, 二次函数或二次不等式, 你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时, 你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提, 函数的单调性为基础, 分类讨论是关键”, 注意解完之后要写上:“综上, 原不等式的解集是……”.22. 在求不等式的解集、定义域及值域时, 其结果一定要用集合或区间表示;不能用不等式表示.23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a三.数列24.解决一些等比数列的前项和问题, 你注意到要对公比及两种情况进行讨论了吗?25.在“已知, 求”的问题中,你在利用公式时注意到了吗?(时, 应有)需要验证, 有些题目通项是分段函数。

高考数学试卷考点模块

高考数学试卷考点模块

一、集合与函数1. 集合的概念、运算和性质;2. 函数的概念、性质和图像;3. 反函数、复合函数和复合函数的图像;4. 函数的单调性、奇偶性和周期性。

二、三角函数1. 三角函数的定义、性质和图像;2. 三角恒等变换;3. 解三角方程;4. 三角不等式。

三、平面向量1. 向量的概念、运算和性质;2. 向量与数乘;3. 向量的坐标表示;4. 向量共线、垂直和数量积。

四、解析几何1. 直线的方程和性质;2. 圆的方程和性质;3. 点、直线、圆的位置关系;4. 圆锥曲线(椭圆、双曲线、抛物线)的方程、性质和图像。

五、立体几何1. 空间几何体的概念和性质;2. 空间直线、平面和几何体的位置关系;3. 空间几何体的体积和表面积;4. 空间向量在立体几何中的应用。

六、数列1. 数列的概念、性质和运算;2. 等差数列、等比数列的通项公式、求和公式;3. 数列的极限和极限运算。

七、概率与统计1. 随机事件、概率和条件概率;2. 古典概型、几何概型和伯努利概型;3. 离散型随机变量的分布律和期望;4. 假设检验、方差分析等统计方法。

八、复数1. 复数的概念、运算和性质;2. 复数的模和幅角;3. 复数的三角表示法;4. 解复数方程。

九、不等式与不等式组1. 不等式的基本性质;2. 不等式的解法;3. 不等式组的应用。

十、线性规划1. 线性规划的概念和模型;2. 线性规划的基本理论和方法;3. 线性规划的应用。

这些考点模块是高考数学试卷的基础,考生在备考过程中应全面掌握,并结合历年高考真题进行练习,提高解题能力。

同时,考生还需关注以下方面:1. 提高数学思维能力,学会从不同角度分析问题;2. 培养良好的数学语言表达能力,提高解题速度;3. 注重解题方法的总结和归纳,形成自己的解题技巧;4. 保持良好的心态,克服考试压力。

高考数学七大板块核心考点参考

高考数学七大板块核心考点参考

高考数学七大板块核心考点参考第1:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第2:平面向量和三角函数重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第3:数列数列这个板块,重点考两个方面:一个通项;一个是求和。

第4:空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。

第5:概率和统计这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第6:解析几何这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

高考数学八个模块知识点

高考数学八个模块知识点

高考数学八个模块知识点在高中数学教学中,高考是一个重要的里程碑。

数学作为高考的一门主要科目,涉及到了各个模块的知识点。

在这篇文章中,我们将会系统地总结高考数学中的八个模块的知识点,以帮助同学们更好地复习和备考。

一、函数与方程函数与方程是高考数学中的基础模块,也是最为常见和重要的知识点之一。

主要包括函数的性质与图像、一次函数与二次函数、指数函数与对数函数、三角函数等内容。

同学们需要掌握函数的定义、性质,能够绘制函数图像,熟练运用函数的基本性质解决实际问题。

二、数列与数学归纳法数列与数学归纳法是高考数学中的第二个模块,也是一个相对容易掌握的知识点。

这一模块主要包括等差数列与等比数列的概念与性质,数列的通项公式,以及数学归纳法的基本原理与应用。

通过学习数列与数学归纳法,同学们可以解决一些关于数列和求和的问题。

三、三角函数三角函数是高考数学中的一个较为复杂的模块,也是许多同学感到困难的知识点之一。

这一模块主要包括角度的度量、三角函数的概念、性质与图像,以及相关的恒等变换与解三角方程等内容。

同学们需要深入理解三角函数的性质,能够运用三角函数解决各种相关的题目。

四、平面向量平面向量作为高考数学中的一个重要模块,主要包括向量的概念与性质、向量的运算、向量的共线与垂直、向量的应用等内容。

同学们需要掌握向量的基本概念,能够进行向量的加法、减法、数量积、向量积等运算,并能够应用向量解决几何与物理问题。

五、解析几何解析几何作为高考数学中的一个重要模块,主要包括平面解析几何与空间解析几何。

同学们需要掌握坐标系的建立及相关的性质,能够利用解析几何的方法解决几何问题,包括直线的方程与位置关系、圆与圆的位置关系、曲线方程与性质等内容。

六、概率与统计概率与统计作为高考数学中的一个实际应用模块,主要包括事件与概率、随机事件的概率计算、离散型随机变量与其分布、统计图表与数据分析等内容。

同学们需要掌握统计学中的基本概念与方法,能够运用概率与统计解决实际问题,包括随机事件的计算、概率模型的应用、数据的整理与分析等。

高三数学知识点模块归纳

高三数学知识点模块归纳

高三数学知识点模块归纳高三是学生们备战高考的关键时期,在备考的过程中,数学是一门重要的学科。

为了能够系统地学习和复习数学知识,我们将数学知识点进行归纳和总结,方便学生们有针对性地进行学习和巩固。

下面将从高三数学的常见模块出发,逐步介绍各个模块的重点知识点。

一、函数与方程1. 一次函数一次函数是高中数学中最基础也是最常见的函数。

学生应该掌握一次函数的定义、性质和图像的特征。

此外,对于一次函数的相关应用问题也需要进行充分的练习。

2. 二次函数二次函数是高三数学中的重点和难点,学生需要掌握二次函数的性质、图像、顶点坐标等重要知识点,并熟练运用这些知识点解决各种类型的题目。

3. 指数与对数函数学生需要理解指数与对数函数之间的关系,熟练掌握指数函数和对数函数的性质,并能够运用它们解决相关的数学问题。

4. 三角函数三角函数是高中数学中另一个重要的模块。

学生需要熟悉各种三角函数的定义、性质以及它们之间的关系,掌握三角函数的图像与性质,并能够运用三角函数解决相关的几何和物理问题。

二、几何与向量1. 平面几何平面几何是高中数学的基础,学生需要熟悉各种平面图形的特征、性质和相关的定理。

此外,对于平面几何的证明题目也需要进行充分的练习。

2. 空间几何对于空间几何,学生需要理解立体图形的特征和性质,并掌握相关的空间几何定理与公式。

特别是对于立体几何的计算题目,需要进行大量的实际操作和练习。

3. 数量关系与证明在几何与向量模块中,学生需要掌握数量关系与证明的方法。

这方面的题目通常需要学生进行推理和证明,培养学生的逻辑思维与证明能力。

三、概率与统计1. 概率模型与概率计算学生需要理解概率模型的基本思想,熟悉概率计算的方法和技巧。

在这个模块中,统计的基本概念也需要学生掌握。

2. 随机事件与概率学生需要理解随机事件的概念,熟悉各种概率计算方法,并能够运用概率解决生活中的实际问题。

3. 统计分析与统计图表学生需要理解统计分析的基本方法,掌握统计图表的制作与解读技巧,并能够运用统计方法进行实际的调查和分析。

高考数学八大模块总结归纳

高考数学八大模块总结归纳

高考数学八大模块总结归纳在高考数学的学习中,我们通常将数学知识分为八大模块,包括数与式、图形与变换、函数与方程、几何与三视图、统计与概率、三角与证明、向量与解析几何、数学建模。

这八大模块涵盖了高中数学的主要内容,对于考生来说都是不可或缺的。

下面,我们将对这八大模块进行总结和归纳,并简要介绍每个模块的重点知识点。

一、数与式数与式是数学学习的基础,对于高考数学来说更是重中之重。

数与式的主要内容包括整式、分式以及方程与不等式等。

整数、有理数、无理数的性质与运算是数与式的基础,学生需要熟练掌握运算法则和运算技巧。

而方程与不等式的解法是数与式的关键,比如一次方程、二次方程以及分式方程的解法,以及求解不等式的方法等。

二、图形与变换图形与变换是高考数学中的一大重点内容。

该模块主要包括点、线、面的性质与判定、图形的相似与全等、平移、旋转、翻折等变换。

学生需要掌握图形的基本性质,如三角形、四边形的性质与判定,以及图形变换的规律和方法。

此外,直线与平面的位置关系、空间几何体的表面积和体积的计算也是该模块的重点内容。

三、函数与方程函数与方程是高考数学的核心内容之一。

这个模块主要包括函数及其性质与图像、一元二次函数、指数与对数函数、三角函数以及函数方程的解法等。

在学习函数与方程的过程中,学生需要掌握函数的概念和性质,学会分析函数的图像和变化规律。

对于一元二次函数、指数与对数函数以及三角函数,需要了解其基本性质和一些常见的解法。

四、几何与三视图几何与三视图是高考数学中的重点内容之一。

几何与三视图主要包括平行线与三角形、相似与全等、三角函数以及空间几何体的三视图等。

在学习几何与三视图的过程中,学生需要掌握几何证明的方法和技巧,学会利用相似性、全等性等几何性质进行证明和解题。

此外,了解空间几何体的三视图和投影,对于学习三维几何有很大的帮助。

五、统计与概率统计与概率是数学中的实际应用部分,也是高考数学中的重要内容。

统计与概率主要包括统计图表的分析与应用、概率的概念与计算、事件与概率、统计推断等。

高考数学重点知识的学习.doc

高考数学重点知识的学习.doc

高考数学重点知识的学习
高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

平面向量和三角函数
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

数列
数列这个板块,重点考两个方面:一个通项;一个是求和。

(完整word版)高考数学九大核心考点与知识点总结

(完整word版)高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学九大模块 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题用“根轴法”解整式(分式)不等式的注意事项是什么21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗(你理解数列、有穷数列、无穷数列的概念吗你知道无穷数列的前项和与所有项的和的不同吗什么样的无穷等比数列的所有项的和必定存在27.数列单调性问题能否等同于对应函数的单调性问题(数列是特殊函数,但其定义域中的值不是连续的。

)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四.三角函数29.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗你注意到正弦函数、余弦函数的有界性了吗32. 你还记得三角化简的通性通法吗(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)33. 反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。

可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46. 定比分点的坐标公式是什么(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗47. 对不重合的两条直线 (建议在解题时,讨论后利用斜率和截距)48. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。

)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的常用参数方程的方法解决哪一些问题52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序如何利用第二定义推出圆锥曲线的焦半径公式如何应用焦半径公式53. 通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)54. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗题目中是否已经有坐标系了,是否需要建立直角坐标系七.立体几何56.你掌握了空间图形在平面上的直观画法吗(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的每种平行之间转换的条件是什么58.三垂线定理及其逆定理你记住了吗你知道三垂线定理的关键是什么吗(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

62.你知道公式:和中每一字母的意思吗能够熟练地应用它们解题吗63. 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗(注意运用向量的方法解题)68.球及其性质;经纬度定义易混. 经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式. 这些知识你掌握了吗?八.排列、组合和概率69. 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.70.二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为。

二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r. 71.你掌握了三种常见的概率公式吗(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)72. 二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;事件A发生k次的概率: .其中k=0,1,2,3,…,n,且0<P< p>73.求分布列的解答题你能把步骤写全吗?74.如何对总体分布进行估计(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)75.你还记得一般正态总体如何化为标准正态总体吗(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)九.导数及其应用76.在点处可导的定义你还记得吗它的几何意义和物理意义分别是什么利用导数可解决哪些问题具体步骤还记得吗77.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。

”解决有关函数的单调性问题吗?78.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗。

相关文档
最新文档