2020版:高通量测序技术临床规范化应用北京专家共识(遗传病部分)

合集下载

全基因组测序在遗传病检测中的临床应用专家共识(完整版)

全基因组测序在遗传病检测中的临床应用专家共识(完整版)

全基因组测序在遗传病检测中的临床应用专家共识(完整版)遗传病是指由于基因或基因组的结构或功能改变所导致的疾病。

下一代测序(next-generation sequencing,NGS)是遗传病检测领域的一项革新性技术。

近年来靶向测序和全外显子组测序(whole exome sequencing,WES)得到广泛认可,逐渐成为辅助医生进行遗传病诊断的重要工具[1]。

这些检测手段尽管有效,仍然存在一些技术限制,特别是在检测结构变异(structural variations,SV)等方面。

全基因组测序(whole genome sequencing,WGS)有望进一步提升临床遗传检测的效能[2]。

WGS对受检者基因组中的全部DNA序列进行检测,较WES所覆盖的区域更广,不仅覆盖了几乎全部基因的外显子序列,也覆盖了内含子序列和基因间序列。

现在认为WGS可有效避免在对相关基因组区域进行靶向富集时产生的技术偏差,不仅可以检出单核苷酸变异(single nucleotide variations,SNV),还可以对SV进行分析,并常规性地对线粒体基因组(mitochondrial genome DNA,mtDNA)变异进行分析[2,3]。

同时其操作步骤相对简化,能更加快速地获得更完整的基因组信息。

因此,WGS 应用于临床遗传诊断有望提高诊断率,缩短诊断流程,节省时间及降低诊疗费用[4]。

由于WGS产生的数据涉及受检者的几乎全部遗传信息,其应用于临床遗传病检测需遵循医学伦理中的自愿、患者受益、不伤害和公平原则。

为了实现其应有的临床意义,并妥善处理检测可能带来的复杂遗传咨询问题,本共识列出了WGS作为遗传病诊断检测手段的关键特征,并在检测申请、检测及分析流程、报告及遗传咨询等方面给出建议,但其实施流程及效能验证的具体步骤不在本共识的涵盖范围。

本共识适用于以NGS技术为主的高覆盖度WGS(通常>40X)在遗传病临床诊断性检测中的应用,主要针对符合孟德尔遗传规律的基因或基因组疾病。

北京市卫生健康委员会关于印发北京市各医疗质量控制和改进中心2020年度工作要点的通知

北京市卫生健康委员会关于印发北京市各医疗质量控制和改进中心2020年度工作要点的通知

北京市卫生健康委员会关于印发北京市各医疗质量控制和改进中心2020年度工作要点的通知文章属性•【制定机关】北京市卫生健康委员会•【公布日期】2020.05.06•【字号】•【施行日期】2020.05.06•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】医疗质量正文北京市卫生健康委员会关于印发北京市各医疗质量控制和改进中心2020年度工作要点的通知各区卫生健康委,各三级医院,各采供血机构,各相关医疗质量控制和改进中心:为持续推进本市医疗质量控制和改进工作,协助卫生健康行政部门、相关医疗机构和采供血机构更好地开展相关专业工作,我委组织制定了《北京市各医疗质量控制和改进中心2020年度工作要点》,现印发给你们,请认真抓好落实。

北京市卫生健康委员会2020年5月26日北京市各医疗质量控制和改进中心2020年度工作要点一、北京市血液净化质量控制和改进中心(一)针对新冠肺炎疫情防控过程中血液透析室遇到的实际问题进行总结分析,形成分析报告。

(二)对《血液净化标准操作规程(2020版)》开展质控培训,落实相关工作。

(三)通过对质控小组工作范围和工作要点的培训,积极推动质控小组在透析室质控工作中的作用。

(四)完成血液净化培训基地的复审再认证工作。

(五)根据《血液净化标准操作规程(2020版)》,修订北京市血液透析室(中心)质控标准,并完成一次全市范围的血液透析室(中心)质控检查,并形成检查报告,向市卫生健康委提出工作建议。

二、北京市医院感染管理质量控制和改进中心(一)根据国家卫生健康委发布的医院感染基本制度的要求,结合本市院感防控的特点,编写本市院感基本制度细则,开展院感防控基本制度的培训、专项检查及制度落实的核查工作。

(二)继续开展医院感染病例日常监测和重点高风险环节监测。

(三)开展北京市第九次院感现患率调查。

(四)利用《北京市医疗机构依法执业自查系统》收集医院感染疑似暴发、暴发和医院感染聚集事件的零报告及感染病例。

《高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识》要点

《高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识》要点

《高通量宏基因组测序技术检测病原微生物的临床应用
规范化专家共识》要点
1.术语标准化:为了避免混淆和误解,专家共识明确了一些术语的定义,包括“高通量宏基因组测序”、“病原微生物”、“DNA序列中的细菌”等。

这有助于各个实验室在交流和报告结果时使用一致的术语。

2.样本采集和存储:专家共识提供了关于病原微生物检测样本采集和
存储的指导,包括不同类型样本(如血液、尿液、呼吸道标本等)的采集
方法、存储条件和保存时限。

这有助于确保样本的质量和可靠性。

3.样本前处理:在进行高通量宏基因组测序之前,样本需要经过一系
列前处理步骤来减少污染和提取纯净的DNA。

专家共识对样本前处理方法
进行了评估,并提供了一些建议和技巧。

4.数据分析:高通量宏基因组测序技术产生大量的DNA序列数据,而
正确且准确的数据分析是关键。

专家共识探讨了不同的数据分析方法,包
括序列质量控制、去除宿主DNA序列、去除污染序列、序列比对和分类等。

此外,针对不同的病原微生物,还提供了相应的数据分析策略。

5.结果解释和报告:高通量宏基因组测序技术可以提供详细的病原微
生物信息,包括物种鉴定、抗药性基因检测等。

专家共识指导了如何正确
解读和报告这些结果,包括确定阈值、结果解释的限制、结果比对和报告
格式等。

6.质控和规范化:为了确保高通量宏基因组测序技术的可靠性和准确性,质控和规范化非常重要。

专家共识列出了一系列质控措施和规范要求,包括样本质量评估、实验室设施要求、实验人员培训等。

2020版:高通量测序技术临床规范化应用北京专家共识(遗传病部分)

2020版:高通量测序技术临床规范化应用北京专家共识(遗传病部分)

2020版:高通量测序技术临床规范化应用北京专家共识(遗传病部分)遗传病是指由于基因突变或染色体数目或结构变异导致的疾病。

根据遗传物质的改变情况,可分为单基因病、多基因病、染色体病、线粒体遗传病和体细胞遗传病[1]。

目前,人类在线孟德尔遗传数据库(OMIM)已经收录了6 000多种分子基础已知的遗传病[2]。

因为遗传异质性和表型多样性,以往的检测方法例如Sanger测序和染色体芯片分析(CMA)等在成本、通量和诊断敏感性等方面难以满足临床应用需求。

近年来,高通量测序即下一代测序(NGS)技术因其可同时对多个基因,甚至全外显子组和全基因组进行测序,现已被广泛应用于遗传病诊断领域,极大地提高了遗传病诊断的预期[3]。

但与以往技术相比,基于NGS技术的检测操作步骤多,对人员能力要求高,不规范使用或过度使用都有可能给受检者及其家庭造成不可预期的困扰和伤害,为保障高通量测序技术在遗传病临床检测中的规范应用,在借鉴国内外相关指南、标准、规范和权威发表的文献,以及《高通量测序技术临床检测规范化应用北京专家共识(第一版通用部分)》[4] (以下简称"通用共识")的基础上,北京市临床检验中心、北京医学会检验医学分会、首都医科大学临床检验诊断学系、北京市医学检验质量控制和改进中心牵头起草了《高通量测序技术临床规范化应用北京专家共识(第一版遗传病部分)》。

本共识中的声明内容为专家讨论并推荐的要点。

遗传病高通量测序实验室建设的总体要求遗传病高通量测序实验室建设时,在实验室环境条件(通风、温湿度、洁净和防震等)、仪器设备配备及日常维护与定期校准和人员专业知识及能力要求等总体上应满足"通用共识"的要求[4],实验室分区设计则在遵循"通用共识"中所阐述的"32字原则"上,同时要考虑遗传变异检测的特点。

实验室应根据不同的遗传检测项目、检测流程、测序平台、建库策略及工作量大小制订切实可行的分区方案。

高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识

高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识

高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识引言高通量宏基因组测序技术是一种快速、灵敏、高通量的新一代测序技术,它能够同时检测多个样本中的病原微生物,并提供详细的遗传信息。

随着相关技术的不断创新和发展,高通量宏基因组测序技术已经在临床微生物学的研究和诊断中取得了显著的突破。

为了规范和促进该技术在临床应用中的使用,研究人员、临床医生和相关专家共同制定了本文档,旨在提供高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识。

背景病原微生物的检测对于诊断和治疗临床感染疾病非常重要。

传统的微生物学检测方法存在一定的局限性,如无法同时检测多个病原微生物,检测结果需要较长时间等。

而高通量宏基因组测序技术可以通过同时测定多个DNA或RNA样本中的微生物基因组序列,快速、准确地鉴定和定量病原微生物,并提供详细的遗传信息。

技术原理高通量宏基因组测序技术主要包括DNA或RNA的提取、文库构建、测序和数据分析等步骤。

首先,从临床样本中提取DNA或RNA,并使用特定的引物扩增目标基因组或全基因组序列。

然后,将扩增的DNA或RNA文库构建成测序文库,经过高通量测序仪进行测序。

最后,通过数据分析得到鉴定和定量病原微生物的结果。

临床应用1. 临床诊断高通量宏基因组测序技术可以快速鉴定病原微生物,并提供详细的遗传信息,对于临床感染疾病的诊断非常有价值。

通过该技术,可以检测多种微生物,包括细菌、真菌和病毒等,为临床医生提供准确的诊断依据。

2. 菌群分析高通量宏基因组测序技术可以对人体菌群进行深入研究。

通过测序分析,可以了解人体内各种微生物的组成和数量,对于研究肠道菌群与人体健康之间的关系非常重要。

3. 药物耐药性检测高通量宏基因组测序技术可以用于检测病原微生物对药物的耐药性。

通过测序分析,可以对病原微生物的基因组进行全面检测,并鉴定其中的耐药基因。

这对于合理选择抗生素和制定个体化的治疗方案非常有意义。

4. 疫情监测高通量宏基因组测序技术在疫情监测中也发挥着重要作用。

高通量测序技术在临床感染性疾病实验室诊断中的应用

高通量测序技术在临床感染性疾病实验室诊断中的应用

高通量测序技术在临床感染性疾病实验室诊断中的应用【摘要】随着测序技术的不断进步,高通量测序技术在临床实验室中受到越来越多的关注,其在感染性疾病的诊断和治疗中有着重要价值。

与传统的微生物实验室诊断手段相比,高通量测序技术在对复杂和混合感染的诊断、敏感性、准确性、检测时间等方面均显现出优势。

然而,该技术在检测规范、成本、报告解读等方面还有一些问题亟待解决,在感染诊断的临床应用中仍存在许多挑战。

近年来,在国家政策的支持与规范下,测序行业持续健康发展,其应用市场也逐渐走向成熟;同时,国内外微生物专家努力推动相关共识及标准的形成,医院也在提高实验室测序相关仪器以及人员和知识储备,以促进高通量测序技术的临床应用,充分利用其优势,使其更好地服务于临床诊疗。

本文主要从高通量测序技术在临床微生物感染性疾病实验室诊断中的应用现状以及政策体系支持及发展方向等方面进行阐述。

微生物感染性疾病具有较高的发病率,不能及时诊断、治疗会带来严重的后果,是导致人类死亡的重要原因。

感染性疾病实验室检测能够及时准确地为临床提供客观的医学数据,对临床病情的诊断以及针对性治疗方案的确定有着积极意义,是各级医疗机构控制感染不可或缺的检测项目。

传统的感染性疾病实验室检测方法,如炎性标志物和细菌分离培养在解决临床问题方面尚存在局限性。

高通量测序技术可直接获取样本中的物种基因信息,实现微生物的鉴定,已经逐渐从科研走向临床应用,成为临床微生物实验室诊断的重要手段。

01、临床微生物感染性疾病实验室诊断1. 临床微生物感染性疾病实验室诊断的重要性实验室诊断是临床感染性疾病诊断最直接、最客观的证据之一。

常规感染性疾病实验室诊断可分为感染相关标志物检测和病原体检测两大类。

人体感染病原微生物后,由于免疫系统应答会出现一系列生理和病理反应,继而产生与感染相关的特异性生物标志物改变。

通过检测感染特异性生物标志物可帮助临床医师进行感染性疾病的诊断或鉴别诊断、指导药物使用、评估病程进展和判断预后。

胃癌高通量测序临床应用中国专家共识(2023年版)解读PPT课件

胃癌高通量测序临床应用中国专家共识(2023年版)解读PPT课件
解读范围
本文将从共识的背景与意义、高通量 测序技术在胃癌研究中的应用、共识 的主要内容等方面进行解读,重点阐 述高通量测序技术在胃癌临床实践中 的指导意义和应用价值。
02 胃癌高通量测序技术概述
高通量测序技术原理及流程
高通量测序技术原理
基于DNA片段得到海量序列数据。
03 胃癌高通量测序临床应用价值
早期筛查与诊断辅助
提高早期胃癌检出率
通过高通量测序技术,可以实现对胃癌相关基因变异的快速、准确检测,有助于在早期 阶段发现胃癌,提高检出率。
辅助诊断
高通量测序技术可以检测肿瘤组织中的基因突变、基因表达异常等,为胃癌的诊断提供 重要辅助信息。
个体化治疗方案制定依据
基因拷贝数变异检测
通过高通量测序技术,检测胃癌相关基因的拷贝数变异情况,如基因扩增或缺失。这些变异可能影响基因的表达和功 能,与胃癌的进展和预后有关。
基因融合检测
利用高通量测序技术,检测胃癌中可能存在的基因融合现象。基因融合可能导致新的融合蛋白的产生, 从而影响胃癌细胞的生长和转移能力。
数据质量控制与标准化处理
指导靶向治疗
高通量测序技术可以检测胃癌患者的基因突 变情况,为患者提供个性化的靶向治疗方案 。
预测化疗药物敏感性
通过对胃癌患者的基因表达谱进行分析,可 以预测患者对化疗药物的敏感性,指导临床 用药。
预后评估及复发监测
评估预后
高通量测序技术可以检测与胃癌预后 相关的基因变异,为患者提供预后评 估信息。
专家共识的重要性
为了规范高通量测序技术在胃癌研究中的应用,提高胃癌的诊疗水平,中国专家制定了《胃癌高通量测序临床应 用中国专家共识(2023年版)》。该共识对于指导临床医生合理应用高通量测序技术,推动胃癌精准医疗的发展 具有重要意义。

高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识ppt课件

高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识ppt课件
推动跨学科合作
鼓励微生物学、遗传学、临床医学等相关领域的专家加强跨学科合作, 共同推动高通量宏基因组测序技术在病原微生物检测中的临床应用和研 究进展。
THANKS FOR WATCHING
感谢您的观看
样本质量
01
样本采集和处理环节对测序结果至关重要,需要严格
控制样本质量,避免污染和误差。
数据分析
02 高通量测序产生的数据量庞大,需要建立完善的数据
分析流程和标准,确保结果的准确性和可靠性。
技术更新
03
随着测序技术的不断发展和进步,需要保持对新技术
的关注和应用,不断提高检测水平和效率。
06 总结和展望
02 高通量宏基因组测序技术 在实验室的应用
样本收集和处理
样本选择
选择适当的临床样本,如血液、 尿液、呼吸道分泌物等,根据患 者的症状和疑似病原体进行针对
性收集。
样本处理
对收集到的样本进行适当的处理 ,如离心、过滤等,以去除杂质
和富集病原微生物。
核酸提取
采用合适的核酸提取方法,如磁 珠法、柱层析法等,提取样本中
未来高通量宏基因组测序技术在病原微生物检测中的潜力 和前景
技术迭代升级
随着技术的不断发展,未来高通量宏基 因组测序技术的检测精度、效率和成本 等方面将持续优化,为病原微生物检测 提供更加可靠的技术支持。
VS
多组学联合分析
宏基因组测序技术可以与其他组学技术( 如代谢组学、蛋白质组学等)进行联合分 析,深入挖掘病原微生物与宿主之间的相 互作用机制,为临床诊断和治疗提供更加 全面的信息。
05 案例分析和经验教训
案例介绍
案例背景
01
介绍某疫情的情况,包括疫情规模、影响范围、病原微生物特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020版:高通量测序技术临床规范化应用北京专家共识(遗传病部分)遗传病是指由于基因突变或染色体数目或结构变异导致的疾病。

根据遗传物质的改变情况,可分为单基因病、多基因病、染色体病、线粒体遗传病和体细胞遗传病[1]。

目前,人类在线孟德尔遗传数据库(OMIM)已经收录了6 000多种分子基础已知的遗传病[2]。

因为遗传异质性和表型多样性,以往的检测方法例如Sanger测序和染色体芯片分析(CMA)等在成本、通量和诊断敏感性等方面难以满足临床应用需求。

近年来,高通量测序即下一代测序(NGS)技术因其可同时对多个基因,甚至全外显子组和全基因组进行测序,现已被广泛应用于遗传病诊断领域,极大地提高了遗传病诊断的预期[3]。

但与以往技术相比,基于NGS技术的检测操作步骤多,对人员能力要求高,不规范使用或过度使用都有可能给受检者及其家庭造成不可预期的困扰和伤害,为保障高通量测序技术在遗传病临床检测中的规范应用,在借鉴国内外相关指南、标准、规范和权威发表的文献,以及《高通量测序技术临床检测规范化应用北京专家共识(第一版通用部分)》[4] (以下简称"通用共识")的基础上,北京市临床检验中心、北京医学会检验医学分会、首都医科大学临床检验诊断学系、北京市医学检验质量控制和改进中心牵头起草了《高通量测序技术临床规范化应用北京专家共识(第一版遗传病部分)》。

本共识中的声明内容为专家讨论并推荐的要点。

遗传病高通量测序实验室建设的总体要求遗传病高通量测序实验室建设时,在实验室环境条件(通风、温湿度、洁净和防震等)、仪器设备配备及日常维护与定期校准和人员专业知识及能力要求等总体上应满足"通用共识"的要求[4],实验室分区设计则在遵循"通用共识"中所阐述的"32字原则"上,同时要考虑遗传变异检测的特点。

实验室应根据不同的遗传检测项目、检测流程、测序平台、建库策略及工作量大小制订切实可行的分区方案。

基于杂交捕获方法进行遗传病目标区域捕获测序(亦称"靶向测序")和全外显子组测序(WES)时,实验室区域应包含:试剂准备区、样本制备区、打断区(适用时)、文库制备区、扩增一区(文库预扩增和纯化)、杂交捕获区、扩增二区(文库扩增和富集)、测序区、电泳区(适用时)等区域。

如采用酶法进行基因组片段化则无需划分独立打断区。

对于没有PCR扩增(PCR-free)过程的全基因组测序(WGS),因不存在靶向区域捕获这一过程,实验流程和分区更为简单,只需试剂准备区、样本制备区、打断区(适用时)、文库制备区、测序区、电泳区(适用时)等区域即可。

如实验室使用自动化建库流程,在确认不会产生交叉污染的情况下,某些区域可以适当合并。

对于多检测技术流程、多检测项目、多测序平台共存的检测实验室,则可在遵循"通用共识"基本原则的基础上,适当共用一些区域[5],为了避免检测结果之间的相互干扰,胚系变异检测和肿瘤体细胞突变检测的"湿实验"过程中的核酸提取及建库过程相关区域宜分开。

实验室应根据所选测序平台及建库流程进行各分区内仪器的配置,以满足实验要求。

各仪器应建立使用、维护和校准(适用时)标准操作程序(SOPs)及相应记录,以保证仪器正常运行。

开展遗传病高通量测序检测实验室人员资质除需满足《医疗机构临床基因扩增检验实验室管理办法》[6]和"通用共识"外,还需要有能研发建立"湿实验"方法和搭建及确认遗传变异生物信息学分析流程(亦称"干实验")的人员;具有建立SOPs和随研究进展及时更新变异解读SOPs的人员;此外,还应有与检测项目相匹配的遗传咨询人员等。

生物信息学分析人员应为一个团队,整体要求有生物信息学专业知识,同时还应有具有医学或遗传学、临床实验室和统计计算等背景的高层次(如有博士学位)人员。

需接受临床实验室相关知识的培训,具备能与信息技术(IT)人员一起合作建立相关疾病变异和表型实验室内部数据库的能力;变异解读人员应具有医学、遗传学和分子生物学专业知识,熟悉相关专业文献,能及时更新知识,对于遗传变异结果能在临床背景下给予相应解释;遗传咨询人员应具有医学背景和遗传学知识,熟悉相关领域遗传咨询的概念和方法,能及时更新相关遗传咨询知识;发放产前诊断报告的实验室应符合最新颁布的政策法规,如《产前诊断技术管理办法》[7]等的相关规定。

此外,实验室负责人是NGS实验室决策者,应对所开展的遗传变异NGS检测项目及其质量保证关键环节有较全面且清晰的了解。

根据自身岗位的不同,所有人员均应接受持续的内部培训、外部培训和相应资质培训及考核,并进行内部的定期能力评估。

【共识1】开展遗传病NGS检测的实验室应根据其所采用的测序平台、建库技术流程以及是否有多项目检测进行适当的实验室分区设计,如实验室同时进行肿瘤体细胞突变NGS检测,则"湿实验"的核酸提取及建库过程相关区域不宜与之混用。

应配备"湿实验"和"干实验"流程研发、变异解读和遗传咨询人员,生物信息学分析人员应为一个具有医学或遗传学背景的团队,负责建立生物信息分析流程并对其进行性能确认,以及与IT人员一起合作建立相关疾病变异和表型实验室内部数据库;变异解读人员应具有医学、遗传学和分子生物学专业知识,并能在临床背景下对遗传变异结果给予相应解释;遗传咨询人员应具有医学背景和遗传学知识,熟悉相关领域遗传咨询的概念和方法。

实验室负责人应清晰了解所开展的遗传变异NGS检测项目及其质量保证关键环节。

所有人员均应随相应研究进展及时更新知识。

遗传病高通量测序检测方法的设计和性能确认一、临床预期用途的确定遗传病NGS检测申请单、结果分析与报告以及临床决策必须基于医学科学证据,因此所开展的检测项目必须有明确的临床预期用途,例如先证者的确认诊断、怀疑患有遗传病的患者的辅助诊断、宫内胎儿表型提示遗传病但染色体核型分析未发现异常的产前诊断、或育龄夫妇的孕前携带者筛查(一般限于早发的严重致残致死的人群携带率较高的隐性遗传病)等。

并根据临床预期用途选择合适的检测方法,例如针对特定疾病和基因的靶向测序,针对编码区域的WES,针对整个基因组的WGS和针对基因组结构异常的拷贝数变异测序(CNV-Seq)等。

【共识2】遗传病NGS检测实验室所开展的检测项目临床预期用途通常应为先证者确认诊断、怀疑患有遗传病的患者的辅助诊断、宫内胎儿表型提示遗传病但染色体核型分析未发现异常的产前诊断、或育龄夫妇的孕前遗传病携带者筛查(一般限于早发的严重致残致死的人群携带率较高的隐性遗传病)等,实验室应根据预设的上述临床预期用途选择合适的NGS 检测方法,如靶向测序、WES和WGS等。

二、检测方法设计与优化在明确检测的临床预期用途后,实验室应对检测方法进行设计和优化。

首先,实验室在建立遗传病相关靶向测序方法时,要根据临床预期用途考虑纳入哪些基因[8,9]。

当预期用途为预测性检测时,如为产前诊断和携带者筛查,则只可以纳入有充分的遗传学和实验证据表明与疾病有明确相关性的基因。

实验室应建立客观的方法对证据进行评估和分类来确定基因和疾病的相关性,即基因的临床有效性,建议采用美国国立卫生研究院(NIH)的临床基因组资源组织(ClinGen)发布的基因临床有效性管理标准操作程序[8,10],利用遗传学和实验证据评估基因的临床有效性,并定期对证据进行系统性回顾,以寻找是否出现新的证据支持。

确定基因列表后,实验室应进一步确定目标基因组区域,选择合适的转录本来定义最小捕获区域,并充分了解每个基因的变异谱,确定热点变异或者常见的致病变异,以及是否有位于内含子或者非编码区的致病变异,并明确哪些区域难以被捕获、测序和数据分析,如果检测范围无法包含对临床敏感性有较大影响的变异,则应补充其他能检出该类变异的检测方法,或在报告中注明检测局限性[11,12]。

当WES作为一线检测方法时,需要尽可能地覆盖已知疾病相关基因的所有外显子及侧翼内含子区域,最理想的是对疾病相关的特定深内含子区域和非编码区也进行捕获,并且对捕获区域中含有基因组中高同源区域的捕获效率做特殊声明,这些需要厂家或实验室研发WES检测时,对各种疾病数据库以及文献开展持续评估,以此不断调整捕获区域。

目前不同来源的WES捕获试剂,其对外显子区域的捕获能力均有不同,实验室需清楚这些差异并在性能确认中明确捕获效率和覆盖度[13]。

与WES相比,WGS不需要捕获,因此测序覆盖度偏倚更少,并能够检测到深内含子区域变异和部分结构变异,但是WGS也不能准确测序所有区域(如着丝点区域、端粒区域或低比对区域等),并且WGS要对整个基因组产生足够的覆盖,这可能会增加检测成本以及提高数据分析及解读难度[13]。

在对WES和WGS检测结果进行变异解读与报告时,需要根据临床预期用途考虑报告哪些基因中的变异。

实验室应预先建立基因的临床有效性和已知基因突变谱的临床应用的一般原则,以便在结果解读与报告时使用[12]。

实验室应对检测进一步优化以满足初始设定的需求,例如初步确定目标区域覆盖度、捕获和测序方法及是否需要其他检测方法作为补充,此外,还要考虑检测周转时间、性能确认时要使用的样本类型和检测的最终成本等。

如需购买测序平台,实验室应仔细考虑每个测序平台价格、测序通量及运行时间差异,并结合本实验室未来检测规模需求确定使用的测序平台。

如需混样操作,则需确定满足覆盖度要求情况下每批次可混合的样本数量。

建立性能确认中分析流程各步骤接受或者拒绝的质量控制参数并初步制定SOPs[9,14]。

【共识3】开展遗传病NGS检测的实验室应根据预设的临床预期用途决定将哪些基因纳入拟检测的靶基因,当预期用途为诸如产前诊断和携带者筛查的预测性检测时,则只能纳入与疾病有明确相关性的基因。

可采用ClinGen发布的基因临床有效性管理标准操作程序,利用遗传学和实验证据评估基因的临床有效性,并定期对证据进行系统性回顾,以寻找是否出现新的证据支持。

如直接采用WES检测,则需要尽可能覆盖已知疾病相关基因的所有外显子。

目前不同来源的WES捕获试剂,其对外显子区域的捕获能力有所不同,实验室需清楚这些差异并在性能确认中明确捕获效率和覆盖度。

WGS在遗传病的基因检测中亦应用越来越广,但其仍存在检测成本高、不能准确测序所有区域及结果解释与报告难等局限性。

因此,实验室应预先建立基因的临床有效性和已知基因突变谱临床检测应用的一般原则,以便在WES或WGS检测结果解读与报告时使用。

三、性能确认目前,我国基于NGS技术的遗传病检测方法属于实验室自建检测(LDT),其在临床应用之前,需要经过完整的分析性能确认和必要的临床性能确认,从而确立检测的分析和临床性能指标,并在性能确认过程中最终建立整个检测和分析过程的SOPs,具体可参见"通用共识"[4]。

相关文档
最新文档