真菌的生物学特性

真菌的生物学特性
真菌的生物学特性

木霉菌属于半知菌亚门、丝孢纲、丝孢目,粘孢菌类,是一类普遍存在的真菌。绿色木霉是木霉菌中具有重要经济意义的一种,目前在工业、农业和环境科学等方面有着广泛的用途。绿色木霉在自然界分布广泛,常腐生于木材、种子及植物残体上。绿色木霉能产生多种具有生物活性的酶系,如:纤维素酶、几丁质酶、木聚糖酶等。绿色木霉是所产纤维素酶活性最高的菌株之一,所产生的纤维素酶的降解作用,目前日益受到重视,国内外对这方面的研究也很多。同时,绿色木霉又是一种资源丰富的拮抗微生物,在植物病理生物防治中具有重要的作用。它的作用机制有以下几种:产生抗生素;重寄生作用,这是木霉菌作为拮抗菌最重要的机制;溶菌作用;竞争作用。

纤维单胞菌属拉丁学名[Cellulomonas (Bergey et al.,1923),Clark,1952] 在幼龄培养物中细胞为细长的不规则杆菌,0.5~0.6μm×2.0~5.0μm,直到稍弯,有的呈V字状排列,偶见分支但无丝状体。老培养物的杆通常变短,有少数球状细胞出现。革兰氏阳性,但易褪色。常以一根或少数鞭毛运动。不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜。

康宁木霉菌丝有隔膜,蔓延生长,广铺于固体培养基上,菌外观为浅绿,黄绿或绿色,反面无色,分生孢子.梗为菌丝的短侧枝,其上对生或互生分枝,分枝上又可继续分枝,形成2级,3级分枝,分枝末端即为瓶状梗.分生孢子由小梗相继生出面,靠黏液把它们聚成球形或近球形的孢子头,分生孢子卵形成椭圆形,壁光滑.单个孢子近无色,形成堆状为绿色,与此相似的还有绿色木霉! 此菌有很强的纤维素霉及纤维,二糖淀粉酶等,它能利于农副产品,如麦杆,木材,木屑等纤维素原料,使之转变为糖质原料

佛州侧耳子实体覆瓦状丛生。菌盖直径3~12cm,低温时白色,高温时带青蓝色转黄色至白色,初半球形,边缘完整,后平展成扇形或浅漏斗形,边缘不齐或有深刻。菌肉稍薄,白色。菌褶浅黄白色,干时变淡黄色,稍密集至稍稀疏,延生,常在菌柄上形成脉络状。菌柄侧生(有孢菌株),或偏心生至中央生(无孢菌株),细长,内实,白色,长3~7cm,粗1~2cm,基部有时有白色绒毛。孢子印白色;孢子近柱形,6~9μm×2.5~3μm。

黑曲霉半知菌亚门,丝孢纲,丝孢目,丛梗孢科,曲霉属真菌中的一个常见种。

分生孢子梗自基质中伸出,直径15~20pm,长约1~3mm,壁厚而光滑。顶部形成球形顶囊,其上全面覆盖一层梗基和一层小梗,小梗上长有成串褐黑色的球状分生孢子。孢子直径2.5~4.0μm。分生孢子头球状,直径700~800μm,褐黑色。菌落蔓延迅速,初为白色,后变成鲜黄色直至黑色厚绒状。背面无色或中央略带黄褐色。有时在新分离的菌株中能找到白色、圆形、直径约1mm的菌核。分生孢子头褐黑色放射状,分生孢子梗长短不一。顶囊球形,双层小梗。分生孢子褐色球形。

广泛分布于世界各地的粮食、植物性产品和土壤中。是重要的发酵工业菌种,可生产淀粉酶、酸性蛋白酶、纤维素酶、果胶酶、葡萄糖氧化酶、柠檬酸、葡糖酸和没食子酸等。有的菌株还可将羟基孕甾酮转化为雄烯。生长适温37℃,最低相对湿度为88%,能引致水分较高的粮食霉变和其他工业器材霉变。

侧孢霉是一种嗜热丝状真菌,具有分解纤维素的特性.固体PDA培养条件下进行形态观察表明,所采用的嗜热侧孢霉菌株,菌丝丛枝状、有隔,分生孢子浅褐色,顶生或侧生.利用ITS序列

进行分子分类发现嗜热侧孢霉与嗜热革节孢(Scytalidium thermophilium)及特异腐质霉(Humicola insolens)2种嗜热菌相距最近.嗜热侧孢霉的生长pH值范围较宽,在初始pH值4.0-12.0的PDA平板上均可生长,以4.0-8.0时生长较好.以还原糖含量变化和蔗渣减少量为指标,以蔗渣为唯一碳源进行液体发酵

芽孢杆菌(Bacillaceae)

细菌的一科,能形成芽孢(内生孢子)的杆菌或球菌。包括芽孢杆菌属、芽孢乳杆菌属、梭菌属、脱硫肠状菌属和芽孢八叠球菌属等。它们对外界有害因子抵抗力强,分布广,存在于土壤、水、空气以及动物肠道等处。芽孢杆菌bacillus 杆菌科的一属细菌。为好氧或兼性厌氧的杆菌,一般为革兰氏染色阳性。在某种环境下,菌体内的结构发生变化,经过前孢子阶段,形成一个完整的芽孢。芽孢对热、放射线和化学物质等有很强的抵抗力。在化学组成方面,在芽孢内含有大量营养细胞中不存在的二吡啶羧酸的钙盐;在结构方面,芽孢的原生质外围有三层膜,从内到外是厚的皮层(cortex)、孢子壳和孢子外膜。在芽孢杆菌属中,对种的划分是以菌体的大小、孢子的形状及其在菌体内的位置、糖的利用及其产物、能否还原硝酸,以及在高浓度的食盐条件下能否生长等为依据。广泛分布在水、空气和土壤中。代表种是枯草芽孢杆菌(Bacillus subtilis)。英语bacillus一词,也可作杆菌或整个芽孢细菌的通称。

球菌在微生物的检验中常用的是金黄色葡萄球菌真菌(fungus;eumycetes)是具有真核和细胞壁的异养生物。种属很多,已报道的属达1万以上,种超过10万个。其营养体除少数低等类型为单细胞外,大多是由纤细管状菌丝构成的菌丝体。低等真菌的菌丝无隔膜,高等真菌的菌丝都有隔膜,前者称为无隔菌丝,后者称有隔菌丝。在多数真菌的细胞壁中最具特征性的是含有甲壳质,其次是纤维素。常见的真菌细胞器有:线粒体,微体,核糖体,液泡,溶酶体,泡囊,内质网,微管,鞭毛等;常见的内含物有肝糖,晶体,脂体等。

真菌通常又分为三类,即酵母菌、霉菌和蕈菌(大型真菌),它们归属于不同的亚门。

大型真菌是指能形成肉质或胶质的子实体或菌核,大多数属于担子菌亚门,少数属于子囊菌亚门。常见的大型真菌有香菇、草菇、金针菇、双孢蘑菇、平菇、木耳、银耳、竹荪、羊肚菌等。它们既是一类重要的菌类蔬菜,又是食品和制药工业的重要资源。

[编辑本段]真菌的营养体

真菌营养生长阶段的结构称为营养体。绝大多数真菌的营养体都是可分枝的丝状体,单根丝状体称为菌丝(hypha)。许多菌丝在一起统称菌丝体(mycelium)。菌丝体在基质上生长的形态称为菌落(colnny)。菌丝在显微镜下观察时呈管状,具有细胞壁和细胞质,无色或有色。菌丝可无限生长,但直径是有限的,一般为2—30微米,最大的可达100微米。低等真菌的菌丝没有隔膜(septum)称为无隔菌丝,而高等真菌的菌丝有许多隔膜,称为有隔菌丝。此外,少数真菌的营养体不是丝状体。而是无细胞壁且形状可变的原质团(plasmodium)或具细胞壁的、卵圆形的单细胞。寄生在植物上的真菌往往以菌丝体在寄主的细胞间或穿过细胞扩展蔓延。

当菌丝体与寄主细胞壁或原生质接触后,营养物质因渗透压的关系进入菌丝体内。有些真菌如活体营养生物侵入寄主后,菌丝体在寄主细胞内形成吸收养分的特殊机构称为吸器(hauStorium)。吸器的形状不一,因种类不同而异,如白粉菌吸器为掌状,霜霉菌为丝状,锈菌为指状,白锈菌为小球状。有些真菌的菌丝体生长到一定阶段,可形成疏松或紧密的组织体。苗丝组织体主要有菌核(sclerotium)、子座(stroma)和菌索(rhizomorph)等。菌核是由菌丝紧密交织而成的休眠体,内层是疏丝组织,外层是拟薄壁组织,表皮细胞壁厚、色深、较坚硬。菌核的功能主要是抵抗不良环境。但当条件适宜时,菌核能萌发产生新的营养菌丝或从上面形成新的繁殖体。菌核的形状和大小差异较大,通常似绿豆、鼠粪或不规则状。子座

是由菌丝在寄主表面或表皮下交织形成的一种垫状结构,有时与寄主组织结合而成。子座的主要功能是形成产生抱子的机构,但也有度过不良环境的作用。菌索是由菌丝体平行组成的长条形绳索状结构,外形与植物的根有些相似,所以也称根状菌索。菌索可抵抗不良环境,也有助于菌体在基质上蔓延。

有些真菌菌丝或孢子中的某些细胞膨大变圆、原生质浓缩、细胞壁加厚而形成厚垣孢子(chlamydospore)。它能抵抗不良环境,待条件适宜时,再萌发成菌丝。

[编辑本段]真菌的繁殖体

当营养生活进行到一定时期时,真菌就开始转入繁殖阶段,形成各种繁殖体即子实体(fruitingbody)。真菌的繁殖体包括无性繁殖形成的无性孢子和有性生殖产生的有性孢子。1.无性繁殖(asexual reproduction)

无性繁殖是指营养体不经过核配和减数分裂产生后代个体的繁殖。它的基本特征是营养繁殖通常直接由菌丝分化产生无性孢子。常见的无性孢子有三种类型:

(1)游动孢子(zoospore):形成于游动孢子囊(zoosporangium)内。游动孢子囊由菌丝或孢囊梗顶端膨大而成。游动孢子无细胞壁,具1—2根鞭毛,释放后能在水中游动。

(2)孢囊孢子(sporangiospore):形成于孢囊孢子囊(sporangium)内。孢子囊由孢囊梗的顶端膨大而成。孢囊孢子有细胞壁,无鞭毛,释放后可随风飞散。

(3)分生孢子(conidium)产生于由菌丝分化而形成的分生泡子梗(conidiophore)上,顶生、侧生或串生,形状、大小多种多样,单胞或多胞,无色或有色,成熟后从袍子梗上脱落。有些真菌的分生抱子和分生孢子梗还着生在分生孢子果内。袍子果主要有两种类型,即近球形的具孔口的分生抱子器(pycnidium)和杯状或盘状的分生孢子盘(acervulus)。

2.有性生殖(sexualreproduction)真菌生长发育到一定时期(一般到后期)就进行有性生殖。有性生殖是经过两个性细胞结合后细胞核产生减数分裂产生袍子的繁殖方式。多数真菌由菌丝分化产生性器官即配子囊(gametangium),通过雌、雄配于囊结合形成有性泡子。其整个过程可分为质配、核配和减数分裂三个阶段。第一阶段是质配,即经过两个性细胞的融合,两者的细胞质和细胞核(N)合并在同一细胞中,形成双核期(N+N)。第二阶段是核配,就是在融合的细胞内两个单倍体的细胞核结合成一个双倍体的核(2N)。第三阶段是减数分裂,双倍体细胞核经过两次连续的分裂,形成四个单倍体的核(N),从而回到原来的单倍体阶段。经过有性生殖,真菌可产生四种类型的有性孢子。

(1)卵孢子(oospore):卵菌的有性孢子。是由两个异型配子囊——雄器和藏卵器接触后,雄器的细胞质和细胞核经授精管进入藏卵器,与卵球核配,最后受精的卵球发育成厚壁的、双倍体的卵孢子。

(2)接合孢子(zygospore):接合菌的有性孢子。是由两个配子囊以配子囊结合的方式融合成1个细胞,并在这个细胞中进行质配和核配后形成的厚壁孢子。

(3)子囊孢子(ascospore):子囊菌的有性孢子。通常是由两个异型配子囊——雄器和产囊体相结合,经质配、核配和减数分裂而形成的单倍体孢子。子囊孢子着生在无色透明、棒状或卵圆形的囊状结构即子囊(ascus)内。每个子囊中一般形成8个子囊孢子。子囊通常产生在具包被的子囊果内。子囊果一般有四种类型,即球状而无孔口的闭囊壳(cletothecium),瓶状或球状且有真正壳壁和固定孔口的子囊壳(perithecium),由于座溶解而成的、无真正壳壁和固定孔口的子囊腔(locule),以及盘状或杯状的子囊盘(9pothecium)。

(4)担孢子(basidiospore):担子菌的有性孢子。通常是直接由“+”、“-”菌丝结合形成双核菌丝,以后双核菌丝的顶端细胞膨大成棒状的担子(basidium)。在担子内的双核经过核配和减数分裂,最后在担子上产生4个外生的单倍体的担孢子。

此外,有些低等真菌如根肿菌和壶菌产生的有性孢子是一种由游动配子结合成合子,再由合子发育而成的厚壁的休眠抱子(restingspore)。

[编辑本段]真菌的起源和演化

关于真菌的起源和演化主要有两派看法。一派认为真菌是由藻类演化而来。这些藻类因丧失色素而从自养变成异养,生理的变化引起了形态的改变。另一派认为除卵菌来自藻类外,其余的真菌来自原始鞭毛生物。

真菌是一项丰富的自然资源。人和动物每年消耗大量的真菌菌体和子实体;真菌也是重要的药材。真菌的某些代谢产物在工业上具有广泛用途,如乙醇,柠檬酸,甘油,酶制剂,甾醇,脂肪,塑料,促生素,维生素等。而且这些东西都能进行大规模的生产。在真菌的腐解作用中,它使许多重要化学元素得以再循环。真菌直接或间接地影响着地球生物圈的物质循环和能量转换。

真菌有以下几种:

霉菌

亦称“丝状菌”。属真菌。体呈丝状,丛生,可产生多种形式的孢子。多腐生。种类很多,常见的有根霉、毛霉、曲霉和青霉等。霉菌可用以生产工业原料(柠檬酸、甲烯琥珀酸等),进行食品加工(酿造酱油等),制造抗菌素(如青霉素、灰黄霉素)和生产农药(如“920”、白僵菌)等。但也能引起工业原料和产品以及农林产品发霉变质。另有一小部分霉菌可引起人与动植物的病害,如头癣、脚癣及番薯腐烂病等。

酵母菌

属真菌。体呈圆形、卵形或椭圆形,内有细胞核、液泡和颗粒体物质。通常以出芽繁殖;有的能进行二等分分裂;有的种类能产生子囊孢子。广泛分布于自然界,尤其在葡萄及其他各种果品和蔬菜上更多。是重要的发酵素,能分解碳水化合物产生酒精和二氧化碳等。生产上常用的有面包酵母、饲料酵母、酒精酵母和葡萄酒酵母等。有些能合成纤维素供医药使用,也有用于石油发酵的。

啤酒酵母(Saccharomyces)

属酵母菌属。细胞呈圆形、卵形或椭圆形。以出芽繁殖,能形成子囊孢子。在发酵工业上,可用来发酵生产酒精或药用酵母,也可通过菌体的综合利用提取凝血质、麦角固醇、卵磷脂、辅酶甲与细胞色素丙等产品。

红曲霉素(Monascuspurpureus)属于囊菌纲,曲霉科。菌丝体紫红色。无性生殖时,茵丝分枝顶端形成单独的或一小串球形或梨形的分生抱子。有性生殖时,产生球形、橙红色的闭囊果,内生含有八个子囊孢子的子囊。红曲霉可制红曲、酿制红乳腐和生产糖化酶等。假丝酵母(Candida)

一属能形成假菌丝、不产生子囊孢子的酵母。不少的假丝酵母能利用正烷烃为碳源进行石油发酵脱蜡,并产生有价值的产品。其中氧化正烷烃能力较强的假丝酵母多是解脂假丝酵母(C.lipolytica)或热带假丝酵母(C.tropicalis)。有些种类可用作饲料酵母;个别种类能引起人或动物的疾病。

白色念珠菌(Candidaalbicans)

或亦称“白色假丝酵母”。一种呈椭圆形、行出芽繁殖的假丝酵母。通常存在于正常人的口腔、肠道、上呼吸道等处,能引起鹅口疮等口腔疾病或其他疾病。

黄曲霉(Aspergillusflavus)

半知菌类,黄曲霉群的一种常见腐生真菌。多见于发霉的粮食、粮食制品或其他霉腐的有机物上。菌落生长较快,结构疏松,表面黄绿色,背面无色或略呈褐色。菌体由许多复杂的分枝菌丝构成。营养菌丝具有分隔;气生菌丝的一部分形成长而粗糙的分生孢子梗,梗的顶端产生烧瓶形或近球形的顶囊,囊的表面产生许多小梗(一般为双层),小梗上着生成串的表面粗糙的球形分生孢子。分生孢子梗、顶囊、小梗和分生孢于合成孢子穗。可用于生产淀粉酶、蛋白酶和磷酸二酯酶等,也是酿造工业中的常见菌种。近年来,发现其中某些菌株会产

生引起人、畜肝脏致癌的黄曲霉毒素。早在六世纪时,《齐民要术》中就有用“黄衣”、“黄蒸”两种麦曲来制酱的记载,这两种黄色的麦曲,主要由黄曲霉一类微生物产生的大量孢子和蛋白酶、淀粉酶所组成。

白地霉(Geotrichumcandidum)

属真菌。菌落平面扩散,组织轻软,乳白色。菌丝生长到一定阶段时,断裂成圆柱状的裂生抱子。菌体生长最适宜的温度为28℃。常见于牛奶和各种乳制品(如酸牛奶和乳酪)中;在泡菜和酱上,也常有白地霉。可用来制造核苦酸、酵母片等。

抗生菌

亦称“拮(颉)抗菌”。能抑制别种微生物的生长发育,甚至杀死别种微生物的一些微生物。其中有的能产生抗菌素,主要是放线菌及若干真菌和细菌等。如链霉菌产生链霉素,青霉菌产生青霉素,多粘芽抱杆菌产生多粘菌素等。

假菌丝

某些酵母如假丝酵母经出芽繁殖后,子细胞结成长链,并有分枝,称为假菌丝。细胞间连接处较为狭窄,如藕节状,一般没有隔膜。

抗菌素

亦称“抗生素”。主要指微生物所产生的能抑制或杀死其他微生物的化学物质,如青霉素、链霉素、金霉素、春雷霉累、庆大霉素等。从某些高等植物和动物组织中也可提得抗菌素。有些抗菌素,如氯霉素和环丝氨酸,目前主要用化学合成方法进行生产。改变抗菌素的化学结构,可以获得性能较好的新抗菌素,如半合成的新型青霉素。在医学上,广泛地应用抗菌素以治疗许多微生物感染性疾病和某些癌症等。在畜牧兽医学方面,不仅用来防治某些传染病,有些抗菌素还可用以促进家禽、家畜的生长。在农林业方面,可用以防治植物的微生物性病害。在食品工业上,则可用作某些食品的保存剂。

病原性真菌

真菌(Fungus)在生物学分类上属于藻菌植物中真菌超纲,具真核细胞型的微生物,它们在自然界分布广泛,绝大多数对人有利,如酿酒、制酱,发酵饲料,农田增肥,制造抗生素,生长蘑茹,食品加工及提供中草药药源(如灵芝、茯苓、冬虫夏草等,都是真菌的产物或本身或利用真菌的作用所制备的)。对人类致病的真菌分浅部真菌和深部真菌,前者侵犯皮肤、毛发、指甲,为慢性,对治疗有顽固性,但影响身体较小,后者可侵犯全身内脏,严重的可引起死亡。此外有些真菌寄生于粮食、饲料、食品中,能产生毒素引起中毒性真菌病。常见真菌培养基有:

配方一萨市(Sabouraud’s)培养基

蛋白胨10克琼脂20克

麦芽糖40克水1000毫升

先把蛋白胨、琼脂加水后,加热,不断搅拌,待琼脂溶解后,加入40克麦芽糖(或葡萄糖),搅拌,使它溶解,然后分装,灭菌,备用。

本培养菌是培养许多种类真菌所常用的。

配方二马铃薯糖琼脂培养基

把马铃薯洗净去皮,取200克切成小块,加水1000毫升,煮沸半小时后,补足水分。在滤液中加入10克琼脂,煮沸溶解后加糖20克(用于培养霉菌的加入蔗糖,用于培养酵母菌的加入葡萄糖),补足水分,分装,灭菌,备用。

把这培养基的pH值调到7.2~7.4,配方中的糖,如用葡萄糖还可用来培养放线菌和芽孢杆菌。

配方三黄豆芽汁培养基

黄豆芽100克琼脂15克

葡萄糖20克水1000毫升

洗净黄豆芽,加水煮沸30分钟。用纱布过滤,滤液中加入琼脂,加热溶解后放入糖,搅拌使它溶解,补足水分到1000毫升,分装,灭菌,备用。

把这培养基的pH值调到7.2~7.4,可用来培养细菌和放线菌。

配方四豌豆琼脂培养基

豌豆80粒琼脂5克

水200毫升

取80粒干豌豆加水,煮沸1小时,用纱布过滤后,在滤液中加入琼脂,煮沸到溶解,分装,灭菌,备用。

[编辑本段]真菌与生活

环境的再循环

真菌像细菌和微生物一样都是分解者,就是一些分解死亡生物的有机物的生物。真菌将生物分解为各类无机物,使土地肥力增强。

食物与真菌

还有些真菌也成为重要的食物来源。可食用的蕈菌有200多种,如冬菇、草菇、木耳、云耳等。以及真菌所侵入后的生(动)物空壳,如冬虫夏草。

还有的真菌用于食物加工,例如酵母菌用于面包等加工,酿酒也需要真菌。

致病的真菌

在农业、林业和畜牧业中,真菌又有有害的一面。真菌能引起植物多种病害,从而造成巨大的经济损失。例如,1845年欧洲由于马铃薯晚疫病的流行摧毁了5/6的马铃薯,中国由于1950年的小麦锈病和1974年的稻瘟病而使小麦和水稻各减产60亿千克。

真菌还可引起动、植物和人类的多种疾病,在人类主要有三种类型:①.真菌感染;②.变态反应性疾病;③.中毒性疾病。

抗病的真菌

亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。

霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。

真菌与植物根系的关系

植物的根和真菌也有共生关系,和真菌共生的根称为菌根。

外生菌根:真菌的菌丝在根的表面形成菌丝体包在幼根的表面,有时也侵入皮层细胞间,但不进入细胞内,此时以菌丝代替了根毛的功能,增加了根系的吸收面积,如松等;

内生菌根:菌丝通过细胞壁侵入到表皮和皮层细胞内,加强吸收机能,促进根内的物质运输,如柑橘、核桃等;

内外生菌根:也有菌丝不仅包在幼根表面同时也深入到细胞中,称内外生菌根,如苹果、柳树等。

菌丝吸收水分、无机盐等供给植物,同时产生植物激素和维生素B等促进根系的生长;植物供给真菌糖类、氨基酸等有机养料。

能形成菌根的高等植物2000多种,如侧柏、毛白杨、银杏、小麦、葱等;

具菌根的植物在没有真菌存在时不能正常生长,因此造林时须事先接种和感染所需真菌,以利于荒地上成功造林。

真菌【词外小释】

由菌丝组成,无根、茎、叶的分化,无叶绿素,不能自己制造养料,以寄生或腐生方式摄取现成有机物的低等植物独立类群。真菌具有分解或合成许多种有机物的能力,可用于获取维生素、抗菌素、酶等制剂,而有些真菌也可产生毒素,引起动植物中毒生病。由真菌所产生的毒素就称之为真菌毒素。真菌作为病原微生物还能侵入人体和动物,引起毛发、皮肤、神经系统、呼吸系统和其他内脏的病变。如头皮屑和脚气赞同0| 评论2009-3-23 12:03 48680009 | 二级

木霉:通常菌落扩展很快,特别在高温高湿条件下几天内木霉菌落可遍布整个料面。菌丝生长温度4—42℃,25—30℃生长最快,孢子萌发温度10—35℃,15—30℃萌发率最高,25—27℃菌落由白变绿只需4—5昼夜,高温对菌丝生长和萌发有利。孢子萌发要求相对湿度95%以上,但在干燥环境也能生长,菌丝生长pH值为3.5~5.8,在pH值4~5条件下生长最快。

纤维单胞菌:不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜

酵母菌:同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质。象细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。酵母菌能在pH 值为3-7.5 的范围内生长,最适pH 值为pH4.5-5.0。在低于水的冰点或者高于47℃的温度下, 酵母细胞一般不能生长,最适生长温度一般在20℃~30℃之间。酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。

真菌的生物学特性

木霉菌属于半知菌亚门、丝孢纲、丝孢目,粘孢菌类,是一类普遍存在的真菌。绿色木霉是木霉菌中具有重要经济意义的一种,目前在工业、农业和环境科学等方面有着广泛的用途。绿色木霉在自然界分布广泛,常腐生于木材、种子及植物残体上。绿色木霉能产生多种具有生物活性的酶系,如:纤维素酶、几丁质酶、木聚糖酶等。绿色木霉是所产纤维素酶活性最高的菌株之一,所产生的纤维素酶的降解作用,目前日益受到重视,国内外对这方面的研究也很多。同时,绿色木霉又是一种资源丰富的拮抗微生物,在植物病理生物防治中具有重要的作用。它的作用机制有以下几种:产生抗生素;重寄生作用,这是木霉菌作为拮抗菌最重要的机制;溶菌作用;竞争作用。 纤维单胞菌属拉丁学名[Cellulomonas (Bergey et al.,1923),Clark,1952] 在幼龄培养物中细胞为细长的不规则杆菌,0.5~0.6μm×2.0~5.0μm,直到稍弯,有的呈V字状排列,偶见分支但无丝状体。老培养物的杆通常变短,有少数球状细胞出现。革兰氏阳性,但易褪色。常以一根或少数鞭毛运动。不生孢,不抗酸。兼性厌氧,有的菌株在厌氧条件下可生长但很差。在蛋白胨-酵母膏琼脂上的菌落通常凸起,淡黄色。化能异养菌,可呼吸代谢也可发酵代谢。从葡萄糖和其他碳水化合物在好氧和厌氧条件下都产酸。接触酶阳性。能分解纤维素。还原硝酸盐到亚硝酸盐。最适生长温度30℃。广泛分布于土壤和腐败的蔬菜。 康宁木霉菌丝有隔膜,蔓延生长,广铺于固体培养基上,菌外观为浅绿,黄绿或绿色,反面无色,分生孢子.梗为菌丝的短侧枝,其上对生或互生分枝,分枝上又可继续分枝,形成2级,3级分枝,分枝末端即为瓶状梗.分生孢子由小梗相继生出面,靠黏液把它们聚成球形或近球形的孢子头,分生孢子卵形成椭圆形,壁光滑.单个孢子近无色,形成堆状为绿色,与此相似的还有绿色木霉! 此菌有很强的纤维素霉及纤维,二糖淀粉酶等,它能利于农副产品,如麦杆,木材,木屑等纤维素原料,使之转变为糖质原料 佛州侧耳子实体覆瓦状丛生。菌盖直径3~12cm,低温时白色,高温时带青蓝色转黄色至白色,初半球形,边缘完整,后平展成扇形或浅漏斗形,边缘不齐或有深刻。菌肉稍薄,白色。菌褶浅黄白色,干时变淡黄色,稍密集至稍稀疏,延生,常在菌柄上形成脉络状。菌柄侧生(有孢菌株),或偏心生至中央生(无孢菌株),细长,内实,白色,长3~7cm,粗1~2cm,基部有时有白色绒毛。孢子印白色;孢子近柱形,6~9μm×2.5~3μm。 黑曲霉半知菌亚门,丝孢纲,丝孢目,丛梗孢科,曲霉属真菌中的一个常见种。 分生孢子梗自基质中伸出,直径15~20pm,长约1~3mm,壁厚而光滑。顶部形成球形顶囊,其上全面覆盖一层梗基和一层小梗,小梗上长有成串褐黑色的球状分生孢子。孢子直径2.5~4.0μm。分生孢子头球状,直径700~800μm,褐黑色。菌落蔓延迅速,初为白色,后变成鲜黄色直至黑色厚绒状。背面无色或中央略带黄褐色。有时在新分离的菌株中能找到白色、圆形、直径约1mm的菌核。分生孢子头褐黑色放射状,分生孢子梗长短不一。顶囊球形,双层小梗。分生孢子褐色球形。 广泛分布于世界各地的粮食、植物性产品和土壤中。是重要的发酵工业菌种,可生产淀粉酶、酸性蛋白酶、纤维素酶、果胶酶、葡萄糖氧化酶、柠檬酸、葡糖酸和没食子酸等。有的菌株还可将羟基孕甾酮转化为雄烯。生长适温37℃,最低相对湿度为88%,能引致水分较高的粮食霉变和其他工业器材霉变。 侧孢霉是一种嗜热丝状真菌,具有分解纤维素的特性.固体PDA培养条件下进行形态观察表明,所采用的嗜热侧孢霉菌株,菌丝丛枝状、有隔,分生孢子浅褐色,顶生或侧生.利用ITS序列

各种细菌的生物学特性

金黄色葡萄球菌 形态与染色:G+,球形葡萄串状排列,无特殊结构。无鞭毛无芽胞,一般不形成荚膜。 菌落特点:呈圆形,表面光滑、凸起、湿润、边缘整齐、有光泽、不透明的白色或金黄色菌落,周围有β溶血环 培养基:营养要求不高,琼脂平板、血平板均可。 生化反应:β溶血(+),触酶试验(+),能分解葡萄糖、麦芽糖、蔗糖,产酸不产气,分解甘露醇(致病菌)。 a群链球菌(化脓性链球菌) 形态染色:G+,球菌链状排列,可有荚膜,无芽胞,无鞭毛,有菌毛。 菌落特点:在血平板上可形成灰白色、圆形、凸起、有乳光的细小菌落,菌落周围出现透明溶血环。 培养基:营养要求较高,加有血液、血清等成分的培养基。 生化反应:β溶血(+),触酶(-),分解葡萄糖,产酸不产气,不分解菊糖,不被胆汁溶解肺炎链球菌 形态与染色:G+,矛头状尖向外双球菌,有荚膜 ,无鞭毛,无芽胞。 菌落特点:在固体培养基上形成小圆形、隆起、表面光滑、湿润的菌落,菌落周围有草绿色溶血环。随着培养时间延长,细菌产生的自溶酶裂解细菌,使血平板上的菌落中央凹陷,边缘隆起成“脐状” 培养基:营养要求较高,加有血液、血清等成分的培养基。 生化反应:分解葡萄糖、麦芽糖、乳糖、蔗糖等,产酸不产气。对菊糖发酵,大多数新分离株为阳性。肺炎链球菌自溶酶可被胆汁或胆盐激活,使细菌加速溶解,故常用胆汁溶菌试验与甲型链球菌区别。 淋病奈瑟菌 形态与染色:G-,双球菌 ,肾形,似一对咖啡豆,无芽胞,无鞭毛,有菌毛,新分离菌株有荚膜。 菌落特点:菌落凸起、圆形、灰白色或透明、表面光滑的细小菌落。 培养基:专性需氧,营养要求高,多用巧克力培养基 生化反应:氧化酶、触酶试验阳性,对糖类的生化活性最低,只能氧化分解葡萄糖,产酸不产气。 脑膜炎奈瑟菌 形态染色:G-菌,呈肾形或豆形,两菌相对呈双球状,无鞭毛,无芽胞,新分离的菌株有多糖荚膜和菌毛。 菌落特点:无色、圆形、凸起、光滑、透明、似露滴状的小菌落。 培养基:专性需氧,在普通琼脂培养基上不能生长。需在巧克力色血琼脂培养基上。 生化反应:绝大多数菌株能分解葡萄糖和麦芽糖,产酸不产气(因淋病奈瑟菌不分解麦芽糖,借此可与淋球菌区别),不分解乳糖、甘露醇、半乳糖和果糖,触酶试验阳性,氧化酶试验阳性。能产生自容酶。 大肠杆菌(大肠埃希菌) 形态染色:G-菌,短杆状,有周身鞭毛和周身菌毛,无芽胞。 菌落特点:灰白色,圆形,湿润,有的可出现溶血环,中等大小S型菌落。 培养基:无特殊要求,琼脂平板、血平板均可。 生化反应:β溶血+,能发酵葡萄糖、乳糖等多种糖类,产酸并产气。吲哚试验阳性、甲基红反应阳性、VP试验阴性、枸橼酸盐(IMViC)试验阴性。

牛羊生物学特性

牛羊生物学特性 一、对环境的适应性:绵羊最怕湿热,南方分布少;瘤牛耐热性较强 安静的环境有利于牛羊的生长和生产性能的发挥。 二、采食性能:牛羊是草食性家畜,味觉和嗅觉敏感,喜欢青绿的禾本科与豆科牧草,喜欢 采食带甜味的块根饲料与带咸味的饲料(能依靠牧草的外表和气味识别不同的植物)牛:依靠灵活有力的舌卷食饲草,咀嚼后将粉碎的草料混合成食团吞入胃中,牧草矮于5厘米,不易牛的采食。 山羊:靠灵活的上唇采食牧草,喜欢采食牧草幼嫩的尖叶部分与灌木叶。 三、合群性:牛羊的群居家畜,具有合群行为,牛羊通过角斗形成群体等级制度和群体优胜 序列(当不同品种或同一品种不同的个体混群时,打斗较为明显,尤其为公牛、种公牛),育肥群体一般不随意加入陌生个体。 一般羊比牛合群性要强,绵羊比山羊强,粗毛羊最强,长毛羊和肉毛羊较差。 四、抗病力性能:牛羊的抗病力很强,在潮湿且多寄生虫的地方也能很好生存。牛的抗病性 能强于羊的抗病力,牛羊疾病多见于传染病与寄生虫病。 五、爱清洁:牛羊爱清洁,对有异味、受粪便污染的草料及水源拒食(尤其为山羊),所以不 管是放牧还是舍饲,都应搞好舍内外的卫生,舍饲时最好设置草架以方便采食。 牛羊的消化特点:牛羊是典型的反刍动物 一:唾液腺及唾液分泌:牛羊主要是靠腮腺分泌唾液,其唾液中不含淀粉酶,所以牛羊在口腔中对富含淀粉的精饲料消化不充分,但含有大量的碳酸氢盐和磷酸盐,可中和瘤胃发酵产生的有机酸,维持瘤胃内的酸碱平衡。注:牛羊唾液可混合嗳气中的大部分NH3,重返回瘤胃吸收。 成年母牛的腮腺1天可分泌唾液100~150升、高产奶牛1天分泌唾液可达250升 二:反刍和胃的组成 (一)、反刍:牛羊摄食时,饲料不经过充分咀嚼即吞入瘤胃,在瘤胃内浸泡和软化, 在休息时,较粗糙的饲料刺激网胃、瘤胃前庭和食管沟黏膜的感受器,能将这些未经充分咀嚼的饲料逆呕到口腔,经仔细咀嚼后重新混合唾液在吞入胃,这一过程即为反刍。 反刍时,网胃在第一次收缩之前还有一次附加收缩,使胃内食物逆呕到口腔。 反刍的生理意义:把饲料嚼细,并混入适量的唾液,以便更好的消化。 牛的日反刍时间一般为6~8小时,翻出周期14~17次,食后反刍来临时间1~2小时。 犊牛:一般在生后3周出现反刍。 (二)胃 瘤胃:体积最大,是细菌发酵饲料的主要场所,有发酵罐之称。牛的94.6升,羊为23.4升饲料内的可消化干物质的70%-80%,粗纤维约50%经过瘤胃的细菌和原生动物分解,产生挥发性脂肪酸等,同时还可合成蛋白质和B族维生素。 网胃:又称蜂窝胃,靠近瘤胃,功能同瘤胃。网胃是水分的贮存库。同时能帮助食团逆呕和排除胃内的发酵气体。网胃体积最小,成年牛的网胃约占宗伟的5%(金属异物被吞入胃中,易留存在网胃,引起创伤性网胃炎。 瓣胃:也称‘百叶肚或千层肚’,主要起过滤作用,位于瘤胃右侧面,占总胃的7%。 皱胃:也称真胃,胃体部处于静止状态,皱胃运动只在幽门窦处明显,半流体的皱胃内容物随幽门运动而排入十二指肠。 三:食管沟及食管沟反射:食管沟是由两片肥厚的肉唇构成的一个半关闭的沟。 四:瘤胃发酵及嗳气:瘤胃内的饲料发酵和唾液流入产生的大量气体,大部分必须通过嗳气排除体外(嗳气是一种反射动作),当瘤胃气体增多、胃壁张力增加时,就兴奋瘤胃背

茯苓基本生物学特性研究

菌物学报25(3):446~453, 2006 Mycosystema 茯苓基本生物学特性研究 熊杰1林芳灿1* 王克勤2, 3 苏玮2, 3 傅杰2, 3 (1华中农业大学应用真菌研究所, 武汉430070;2北京同仁堂湖北中药材有限责任公司, 武汉430071;3湖北省中医药研究院, 武汉430074) 摘 要:以11个不同来源的茯苓菌株为材料,研究了茯苓菌丝体、子实体和担孢子的形态特征及适宜的生长、发育条件。结果表明,茯苓菌丝体为少分枝、有隔膜、无锁状联合的多核菌丝,茯苓担孢子核相以双核为主,双核孢子,单核孢子和无核孢子分别占87.2%,4.7%和8.1%。配对试验结果表明,同一菌株及不同菌株原生质体分离株间的配对均能融洽生长,同一菌株担孢子间的配对均产生拮抗线,但其中有少数配对在交接区形成扇形区域,拮抗线随后消失,而不同菌株担孢子间的配对则全部形成稳定的栅栏型菌落,暗示茯苓担孢子中的两个细胞核是具遗传互补性,能形成独立个体的异双核,茯苓可能是一种次级同宗结合菌。 关键词:荧光染色, 原生质体, 性模式, 次级同宗结合, 锁状联合 中图分类号:Q939.96 文献标识码:A 文章编号:1672-6472(2006)03-0446-0453 Studies on basic biological characters of Wolfiporia cocos XIONG-Jie1 LIN Fang-Can1* WANG Ke-Qin2, 3 SU Wei2, 3 FU Jie2, 3 (1The Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070; 2Beijing Tongrentang Pharmacy Hubei Chinese Traditional Medicine Co. Ltd, Wuhan 430071; 3Hubei Academy of Traditional Chinese Medicine,Wuhan 430074) ABSTRACT:Morphological characters, optimal growth and development conditions of mycelia, fruit bodies and spores of Wolfiporia cocos were observed. The mycelia of Wolfiporia cocos were confirmed as polykaryotic septate mycelia without clamp connection. The majority of spores were dikaryotic, and the ratio of dikaryotic spores, monokaryotic spores and nuclear-free spores was 87.2%, 4.7% and 8.1% respectively. In the mating test, protoplasts from the same strain or different strains grew harmoniously with each other, all matings of spores from the same strain generated antagonism lines, among them, the minority of matings formed flabelliform region in the junction and the antagonism line disappeared in a short time. All matings of spores between different strains generated barrages. On the basis of the result, it is supposed that the two nuclei in the spores of Wolfporia cocos are heterogeneous and complementary, a single spore could germinate and develop into an individual. Wolfiporia cocos is likely to be a secondary homothallism fungus. KEY WORDS:Fluorescence staining, Protoplast, Secondary homothallism, Clamp connection 茯苓Wolfiporia cocos (Schwein.) Ryvarden & Gilb.是一种高等担子菌,隶属于非褶菌目Aphyllophorales,多孔菌科Polyporaceae,茯苓属Wolfiporia(赵继鼎,1998),一般腐生或 基金项目:科技部国家科技型中小企业技术创新基金资助(编号:03C26214200397) *通讯作者:林芳灿E-mail: linfangcan@https://www.360docs.net/doc/081482415.html, 收原稿日期:2006-01-12,收修改稿日期:2006-04-04

细菌的生物学特性

细菌就是一种具有细胞壁的单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态与结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病与防治原则等都有 重要意义。 第一节细菌大小与形态 一细菌的大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小的单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境的不同生长繁殖阶段,其大小也有差别。 二细菌的形态 细菌的基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌与螺形菌三大 类、 (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时的分裂平面及分裂后排列方式不同,可将球菌分为: 1、双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2、链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。 3葡萄球菌:细菌在多个不规则的平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4、四联球菌:细菌在两个相互垂直的平面上分裂,分裂后四个菌细胞联在一起。 5、八叠球菌:细菌在上下、前后与左右三个相互垂直的平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯的。不同杆菌的大小、长短、粗细差异很大。大杆菌如 炭疽杆菌长3~10μm,中等的如大肠杆菌长2~3μm,小的如流感杆菌长0、7~1、5μm。菌体粗短呈卵园形的称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌就是单个、分散排列的,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1、弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2、螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺 杆菌等。 第二节细菌的结构与化学组成 细菌的基本结构有细胞壁、细胞膜、细胞质与核质四个部分组成。某些细菌除具有其基本结 构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌的最外层,就是一层质地坚韧而略有弹性的膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌与革兰阴性菌两大类。两类细菌细胞壁的共有组分为肽聚糖,但各自还有其特殊组成成分。 1、肽聚糖(peptidoglycan) 细菌细胞壁的基本结构就是肽聚糖,又称粘肽。它就是原核生物细 胞所特有的物质,不同种类的细菌,其组成与连接的方式亦有差别。革兰阳性菌的肽聚糖由聚 糖骨架、四肽侧链与五肽交联桥三部分组成(图11-3,a),革兰阴性菌的肽聚糖由聚糖骨架与四 肽侧链两部分组成(图11-3,b)。

西门塔尔牛的特点 (1)

西门塔尔牛的特点 原产地及分布 西门塔尔牛 西门塔尔牛 世界上许多国家也都引进西门塔尔牛在本国选育或培育,育成了自己的西门塔尔牛,并冠以该国国名而命名。中国于1912年和1917年分别从欧洲引入西门塔尔牛,20世纪50年代末60年代初以来,又从前西德、瑞士、奥地利等国多次引入。中国于1981年成立西门塔尔牛育种委员会,建立健全了纯种繁育及杂交改良体系,开展了良种登记和后裔测定工作。中国西门塔尔牛由于培育地点的生存环境不同,分为平原、草原、山区三个类群,种群规模达100万头。该品种被毛颜色为黄白花或红白花。三个类群牛的体高分别为、和厘米;体长分别为。和厘米。各类群核心群种牛的遗传基础已达到遗传同质化水平。犊牛初生重平均千克,6月龄体重千克,12月龄重324千克,18月龄434千克,24月龄592千克。产奶量平均4300千克,ru脂率baifenzhi 4。屠宰实验结果,屠宰率平均百分之,净肉率百分之50.,眼肌面积平方厘米。早期生长快是该品种的主要特点之一。因此,将成为我国未来牛肉生产的重要利用品种。 西门塔尔牛原产于瑞士西部的阿尔卑斯山区,主要产地为西门塔尔平原和萨能平原。在法、德、奥等国边邻地区也有分布。西门塔尔牛占瑞士全国牛只的百分之50、奥地利占百分之63、前西德占百分之39,现已分布到很多国家,成为世界上分布广,数量多的牛奶、肉、役兼用品种之一。[1] 外貌特征 该牛毛色为黄白花或淡红白花,头、胸、腹下、四肢及尾帚多为白色,皮肢为粉红色,头较长,面宽;角较细而向外上方弯曲,顶端稍向上。颈长中等;体躯长,呈圆筒状,肌肉壮硕;前躯较后躯发育好,胸深,尻宽平,四肢结实,大腿肌肉发达;产奶量高,成年公牛体重乎均为800--1200千克,母牛650——800千克。 生产性能 西门塔尔牛奶、肉用性能均较好,平均产奶量为4070千克,奶脂率。在欧洲良种登记牛中,年产奶4540千克者约占2成。该牛生长速度较快,均日增重可达千克以上,生长速度与别的大型肉用品种相近。胴体肉多,脂肪少而分布均匀,公牛育肥后屠宰率可达成左右。成年母牛难产率低,适应性强,耐粗放管理。总之,该牛是兼具奶牛和rouniu特点的典型品种。西门塔尔牛分布,北在我国东北的森林草原和科尔沁草原,南至中南的南岭山脉和其山区,西到新疆的广大草原和青藏高原等地。各地的自然环境变化极大,夏季平均高气温中南地区的30℃,到东北的0℃,冬季低平均气温从南方的15℃到北方的-20℃,气温则变化更大。各地的年平均降水量,自200mm1500mm不等,海拔zuigao的达3800m,zui低的仅数百米。

微生物学课程复习大纲(2010)

食品微生物学复习大纲(生工专业) 第一章绪论 1.微生物的概念、基本类群及特点。 2.食品微生物学的概念、研究内容与主要任务。 3.了解食品微生物学的发展概况。 4.谈谈列文虎克、路易氏·巴斯德与柯赫对人类的贡献。 5.简述发酵食品倍受青睐的主要原因。 第二章食品中常见的微生物 1. 了解食品中常见的微生物类型,重点掌握细菌、酵母菌和霉菌中主要类型的 生物学特性及生理特征。 2.食品上常见的有益细菌有哪些?它们的生物学特性如何?举出3种利用细菌生产的发酵食品来(生活中你已经接触到的)。 3.食品上常见的革兰氏阴性细菌有哪些?根据它们的生物学特性谈谈其对食品的危害。 4.食品上常见的革兰氏阳性细菌有哪些?根据已有知识谈谈其中的葡萄球菌和微球菌对食品的利与弊。芽孢杆菌对食品的利与弊。 5.食品上常见的酵母菌有哪些?不同属各自具有哪些典型的生理特点? 6.食品上常见的霉菌有哪些?它们有何典型的形态和生理学特征?谈谈它们在食品工业中的利与弊。 第三章食品中微生物的污染及其控制 1.食品污染、食品污染的类型、常见的污染源和污染途径。 2.了解土壤、水及空气中存在的微生物类型。 3.掌握微生物消长的概念,了解食品中微生物消长的一般规律。根据已有知识,结合一个实例分析分析微生物在食品中的消长情况。 4.简述如何控制微生物对食品的污染。 第四章微生物引起食品的腐败变质 1.食品腐败变质概念。食品的腐败、酸败、发酵各指的是什么?举出引起食品发生此类变质的微生物1-2个例子。 2.了解引起食品中蛋白质、脂肪、碳水化合物分解变质的主要微生物? 3.何为食品的水分活性值(A W)?通常食品的A W范围在多少?细菌、酵母菌及霉

细菌的生物学特性

细菌是一种具有细胞壁的单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态和结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病和防治原则等都有重要意义。 第一节细菌大小与形态 一细菌的大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小的单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境的不同生长繁殖阶段,其大小也有差别。 二细菌的形态 细菌的基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌和螺形菌三大类. (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时的分裂平面及分裂后排列方式不同,可将球菌分为: 1.双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2.链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。3葡萄球菌:细菌在多个不规则的平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4.四联球菌:细菌在两个相互垂直的平面上分裂,分裂后四个菌细胞联在一起。 5.八叠球菌:细菌在上下、前后和左右三个相互垂直的平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯的。不同杆菌的大小、长短、粗细差异很大。大杆菌如炭疽杆菌长3~10μm,中等的如大肠杆菌长2~3μm,小的如流感杆菌长0.7~1.5μm。菌体粗短呈卵园形的称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌是单个、分散排列的,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1.弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2.螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺杆菌等。 第二节细菌的结构与化学组成 细菌的基本结构有细胞壁、细胞膜、细胞质和核质四个部分组成。某些细菌除具有其基本结构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌的最外层,是一层质地坚韧而略有弹性的膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌和革兰阴性菌两大类。两类细菌细胞壁的共有组分为肽聚糖,但各自还有其特殊组成成分。 1.肽聚糖(peptidoglycan) 细菌细胞壁的基本结构是肽聚糖,又称粘肽。它是原核生物细胞所特有的物质,不同种类的细菌,其组成与连接的方式亦有差别。革兰阳性菌的肽聚糖由聚糖

微生物

第一章 1什么是微生物?主要特点 微生物的指需借助显微镜才能观察到的一群微小生物的总称,它是一大群种类各异独立的生物体。 特点:(1)微生物的体积微小,比表面积大(2)繁殖快,个体长不大(3)种类繁多,分类广布(4)适应性强,易变异(5)观察和研究的手段特殊 2比较古菌、细菌和真核生物的异同点? 尽管古生菌在菌体大小、结构及基因组结构方面与细菌相似。但其在遗传信息传递和可能标志系统发育的信息物质方面(如基因转录和翻译系统)却更类似于真 核生物。因而目前普遍认为古生菌是细菌的形式,真核生物的内涵。 古生菌细胞具有独特的细胞结构,其细胞壁的组成、结构,细胞膜类脂组分,核糖体的RNA碱基顺序以及生活环境等都与其他生物有很大区别。三个生命域中惟有细菌域具有胞壁质(肽聚糖),其他两个域中都未发现胞壁质;古生菌域中胞壁质的缺乏和多种类型细胞壁和细胞外膜多聚体的存在,成为两个原核生物域之间最早的生物化学区分指标之一。 3何为纯培养?为什么说它对微生物学的发展至关重要?纯培养和混合培养有什么关系? 纯培养—微生物学中把从一个细胞或一群相同的细胞经过培养繁殖而得到的后代,称纯培养. 纯培养是进行生物学研究的基础,使在此之前的繁琐,复杂的细菌分离变的简单 混合培养含有多种微生物,纯培养只含有一种微生物可利用重复结果,但混合培养不可以 4食品微生物学? 食品微生物学(food microbiology),是微生物学的分支学科,主要研究微生物与食品制造、保藏等方面内容的一门科学。该学科涉及病毒、细菌、真菌多种微生物,除研究这些微生物的一般生物学特性外,还探讨它们与食品有关的特性。随着微生物学及生命科学的迅速发展,食品微生物学也从中获得了许多新的知识和新的技术,并应用这些新知识和新技术来生产更多富有营养和安全的食品。第二章 1革兰氏染色法原理及重要性 染色原理是因为革兰氏阳性菌和革兰氏阴性菌在化学组成和生理性质上有很多差别: G+菌:细胞壁厚,肽聚糖网状分子形成一种透性障,当乙醇脱色时,肽聚糖脱水而孔障缩小,故保留结晶紫-碘复合物在细胞膜上。呈紫色。 Gˉ菌:肽聚糖层薄,交联松散,乙醇脱色不能使其结构收缩,其脂含量高,乙醇将脂溶解,缝隙加大,结晶紫-碘复合物溶出细胞壁,沙黄复染后呈红色。 重要性: 微生物的细胞小且透明,在普通光学显微镜下不易识别,所以革兰氏染色法不仅用来观察细菌的形态,而且它是细菌鉴定的重要方法之一。 2 何谓菌落? 以母细胞为中心,肉眼可见的,有一定形态构造的子细胞群体。 3芽孢的抗热机理是什么?芽孢抗热性强的特点在有关微生物的科研中有何意义?

微生物知识点整理

微生物知识点整理 第一章绪论 1、微生物的特点: A. 形体微小,结构简单 B. 种类繁多,分布广泛 C. 代类型多,代能力强 D. 生长繁殖快,培养容易 E. 容易发生变异,适应能力强 2微生物根据进化水平和细胞结构的不同,分为:原核微生物和真核微生物 具有核膜包被的真正细胞核、能进行有丝分裂、细胞质中有线粒体的微小生物,称为真核微生物。 原核微生物:细菌、放线菌、蓝细菌、支原体、立克次氏体、衣 原体和螺旋体。 真核微生物:真菌、单细胞藻类、原生动物 第二章原核微生物 1、细菌的基本形态:球状、杆状和螺旋状 2、细菌的一般结构和特殊结构 一般结构:细胞壁、细胞膜、细胞质及含物、核区和质粒 特殊结构:糖被、鞭毛、菌毛、性毛、芽孢及其他休眠组织、菌鞘、附器 3、革兰氏染色

步骤:A初染:结晶紫B媒染:碘液C脱色:乙醇D复染:番红 原理:革兰氏阳性菌细胞壁厚,肽聚糖含量高,交联度大,网孔小,乙醇脱色时肽聚糖网孔会因脱水而明显收缩,且不含类脂,故不会因为乙醇处理而出现孔壁,结果结晶紫与碘的复合物仍存留在细胞壁,使之呈现紫色;革兰氏阴性菌壁薄,肽聚糖含量低,交联度小,网孔大,乙醇脱色时肽聚糖收缩不明显,且类脂含量高,被乙醇溶解使壁出现较大的孔隙,结晶紫和碘的复合物被洗去,复染时染上番红的红色 4、细菌的繁殖方式:裂殖 5、菌落:单个细菌细胞或一小堆同种细胞迅速生长繁殖形成肉眼可见的、有一定形态的子细胞群 6、放线菌:以孢子进行繁殖,分为基菌丝、气生菌丝和孢子丝为什么属于原核生物? ①放线菌的菌丝体为单细胞,菌丝直径比真菌细,与细菌接近;②无核膜、核仁和线粒体等,核糖体为70S,属原核生物; ③细胞壁含胞壁酸,二氨基庚二酸,不含几丁质,纤维素,革兰氏染色阳性; ④对环境pH值的要近中性或微偏碱,这与细菌相近而不同于真菌 (一般偏酸性);⑤凡能抑制细菌的抗生素也能

微生物的概念及其特点

绪论 第一节微生物及其特点 一、微生物的概念(掌握) 微生物(Microorganism)是广泛存在于自然界中的一群肉眼看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍甚至数万倍才能观察到的微小生物的总称。它们具有体形微小、结构简单、繁殖迅速、容易变异及适应环境能力强等优点。 这些微小的生物包括无细胞结构、不能独立生活的病毒,原核细胞结构的细菌,和有真核细胞结构的真菌(酵母、霉菌等),还包括原生动物和某些藻类。在这些微小的生物体中,大多数是我们用肉眼不可见的,尤其是病毒等生物体,即使在普通的光学显微镜下也不能看到,必须在电子显微镜下才能观察到。但也有例外,有些微生物尤其是真菌——食用真菌等肉眼是可见的。由此可见,微生物是一个微观世界里生物体的总称。它们的大小和特征见表1-1。二、特点: 1体形微小.结构简单 2.代谢旺盛,繁殖迅速 微生物体积虽小,但有极大的比表面积,如大肠杆菌的比表面积可达30万。因而微生物能与环境之间迅速进行物质交换,吸收营养和排泄废物,而且有最大的代谢速率。从单位重量来看,微生物的代谢强度比高等生物大几千倍到几万倍。如在适宜环境下,大肠杆菌每小时可消耗的糖类相当于其自身重量的2000倍。1kg酵母在24h可使几顿糖全部转化为乙醇和二氧化碳。 3.适应性强,容易变异 微生物对外界环境适应能力特强,这都是为了保存自己,是生物进化的结果。有些微生物体外附着一个保护层,如荚膜等,这样一是可以作为营养,二是抵御吞噬细胞对它的吞噬。细菌的休眠芽孢、放线菌的分子孢子等对外界的抵抗力比其繁殖体要强许多倍。有些极端微生物都有相应特殊结构蛋白质、酶和其他物质,使之能适应恶劣环境。 一方面,由于微生物表面积和体积的比值大,与外界环境的接触面大,因而受环境

牛的生物学特性

牛的保护和福利 牛的福利包括良好的环境,符合牛正常生理特性的合理的饲养管理等。 一、牛的生物学特性 (一)耐寒不耐热 牛体型较大,单位体重的体表面积小,皮肤散热比较困难,因此,牛比较怕热,但具有较强的耐寒能力。在-18℃的环境中,乳牛亦能维持正常的体温,但低温时,牛需采食大量的饲料来维持一定的生产力水平。高温时,牛的采食量会大幅度下降,导致肉牛的生长发育速度减慢和乳牛的泌乳量明显下降。高温对牛的繁殖性能也有很大的影响,可使公牛的精液品质和母牛的受胎率降低。因此,生产中必须采取防暑降温措施以减少高温对牛的影响,并避免在盛夏时采精和配种。 (二)反刍与嗳气 牛是反刍动物,有四个胃,即瘤胃、网胃、瓣胃和皱胃。前三个胃没有腺体,又称前胃;只有皱胃能分泌胃液,又称真胃。 牛无门齿和犬齿,靠高度灵活的舌把草卷人口中,并借助头的摆动将草扯断,匆匆咀嚼后即吞咽人瘤胃。休息时,瘤胃中经过浸泡的食团通过逆呕重回到口腔,经过重新咀嚼并混人唾液后再吞咽人瘤胃,这个过程称为反刍。瘤胃寄居着大量的微生物,是饲料进行发酵的主要场所,故有“天然发酵罐”之称。进人瘤胃的饲料在微生物的作用下,不断发酵产生挥发性脂肪酸和各种气体(如CO2,CH4,NH3等),这些气体由食管进人口腔后吐出的过程称为嗳气。当牛采食大量带有露水的豆科牧草和富含淀粉的根茎类饲料时,瘤胃发酵急剧上升,所产生的气体超过暖气负荷时,就会出现臌气,如不及时救治,就会使牛窒息而死。(三)食管沟反射 食管沟始于责门,延伸至网瓣胃口,它是食道的延续,收缩时呈一个中空闭合的管子.使食管直接和瓣胃相通。犊牛哺乳时,引起食管沟闭和,称食管沟反射。这样可防止乳汁进人瘤网胃中由细菌发酵而引起腹泻。 (四)群居性与优势序列 牛喜群居。牛群在长期共处过程中,通过相互交锋,可以形成群体等级制度和优势序列。这种优势序列在规定牛群的放牧游走路线,按时归牧,有条不紊进人挤奶厅以及防御敌害等方面都有重要意义。 (五)食物特性与消化率 牛是草食动物,放牧时喜食高草。在草架上吃草有往后甩的动作,故对饲草的浪费很大。应根据这一采食行为采取合适的饲喂设施和方法。牛喜食青绿饲料和块根饲料,喜食带甜、咸味的饲料,但通过训练能大量采食带酸性成分的饲料。 (六)生殖特性 牛是常年发情的家畜,发育正常的后备母牛在18 月龄时就可进行初配。母牛发情周期为21 天左右,妊娠期为280天。种公牛一般从1.5岁开始利用。 二、牛的行为 牛的祖先是野生原牛,原牛每昼夜活动半径可达50km ,主要食物是牧草和其他纤维类植物,在变幻无常的自然条件下采食,在安全避风的地方休息、反刍。牛的大多数特征行为都源于自然条件或半自然条件下生活的野生原牛、肉牛或杂种牛。 (一)感觉 在野生原牛向牛进化的过程中,为寻找食物以及与牛群之间进行交流的目的,牛的感觉器官都发育得相当完善。 1 .视觉 牛的视力范围在330-360o之间,而双眼的视角范围为25-30o(见图5.2-1 )。牛能够清

人CHG_5胶质瘤细胞裸鼠原位移植模型的建立及其生物学特性分析

文章编号:100025404(2003)0420287204论著人CHG25胶质瘤细胞裸鼠原位移植模型的建立及其生物学特性分析 徐承平,卞修武 (第三军医大学附属西南医院病理学研究所,重庆400038) 提 要:目的 建立人脑胶质瘤裸鼠脑内原位移植动物模型并探讨其生物学特性。方法 采用瘤细胞悬液接种法,将人脑CHG25胶质瘤细胞接种于裸鼠大脑实质内。分别于接种后8、14、19、24和30d处死动物并行病理检查、胶质纤维酸性蛋白免疫组化、染色体核型分析及透射电镜检查。结果 肿瘤移植成瘤率为100%,肿瘤生长稳定,肿瘤病理学检查符合人脑胶质瘤细胞的形态学特征和免疫表型。结论 本移植瘤模型能作为研究胶质瘤发生、生物学特性以及治疗研究的可靠动物模型。接种后14d左右是利用该模型进行实验的最佳时机。 关键词:胶质瘤;动物模型;原位移植;裸鼠 中图法分类号:R2332;R732352;R730.264 文献标识码:A Establishment of orthotopic implantation model of human CHG25glioma cell line in nude mice and analysis of its biological features X U Cheng2ping,BI AN X iu2wu(Institute of Pathology,S outhwest H ospital,Third Military Medical University,Chongqing400038,China) Abstract:Objective T o establish an orthotopic im plantation m odel of human glioma in nude mice and investi2 gate its biological features.Methods The human CHG25glioma cells were inoculated into brains of nude mice.The animals were sacrificed at day8,14,19,24and30after inoculation.The tum ors were examined with light micro2 scope,electron microscope,kary otype analysis and immunohistochemical stain for glial fibrillary acidic protein.Re2 sults G liomas were formed in100%in nude mice,and the growth of tum ors was stable.The tum ors showed the m orphological of human glioma with the immunophenotype.Conclusion The glioma m odel in nude mice is a reliable animal m odel for the study of the tum origenesis and biological characteristics and therapy.The14th day af2 ter inoculation might be suitable for experimental study. K ey w ords:glioma;animal m odel;orthotopic im plantation;nude mice 恶性胶质瘤是最常见的中枢神经系统肿瘤之一,其侵袭性强、发病率高、位置特殊、预后差,严重威胁着人类健康。建立一个可靠的胶质瘤异种移植瘤模型,是研究胶质瘤生物学特性和各种体内实验研究的基础。近年研究表明,肿瘤的原位移植(Orthotopic im2 plantation)动物模型是目前最为理想而可靠的肿瘤模型[1],但在脑部进行胶质瘤的原位移植瘤实验难度较大。为此,我们采用本室已建立的人脑恶性胶质瘤细胞系CHG25细胞接种于免疫缺陷动物裸鼠脑内,建立了一种人脑胶质瘤原位移植动物模型。 1 材料与方法 111 胶质瘤细胞来源及培养 人脑间变性星形细胞瘤细胞系CHG25由本室建立[2],按本 基金项目:国家自然科学基金资助项目(39970268) 作者简介:徐承平(1972-),男,重庆市涪陵人,硕士研究生,医师,主要从事肿瘤诱导分化治疗和血管生成方面的研究。电话:(023)68752246 通信作者:卞修武,E2mail:bianxiu wu@https://www.360docs.net/doc/081482415.html, 收稿日期:2002203212;修回日期:2002208209室常规方法培养,即用含10%小牛血清(河南郑州产品)的RP2 MI1640(Hyclone公司)完全培养基,另添加适量HEPES、双抗(100UΠml青霉素及100μgΠml链霉素)、3%谷氨酰胺,置37℃、5%C O2混合气体孵箱中培养,细胞换液时间为1~2d,每3~5d传代1次,传代前用0125%胰酶消化。 112 瘤细胞悬液的制备 取对数生长期的单层培养CHG25细胞以0125%胰酶消化,收集细胞,离心去上清,用无菌生理盐水离心洗涤2次,将细胞悬浮于生理盐水中,台盼蓝染色细胞活力测定大于90%,并进行细胞记数,调整细胞浓度为2×106Πml,置于冰上备用。接种细胞量1×104Π只。 113 实验动物和接种方法 使用本校实验动物中心引进的近交系雌性BA LBΠc nuΠnu 无胸腺裸小鼠14只,体重15~20g。鼠龄5~7周,饲养于SPF 级无菌净化室内。接种部位为裸鼠右侧大脑尾状核。整个接种过程在层流超净台中进行。裸鼠经1%的戊巴比妥钠腹腔注射麻醉,俯卧位固定头颅,75%酒精消毒头顶部皮肤后,接种部位的确定参照文献[3]并作适当修改,即在裸鼠额部距颅中线右侧215mm,冠状缝前1mm处先用直径为1mm的牙科钻小心钻穿颅骨,然后用吸有5μl瘤细胞悬液的微量进样器经孔垂直进入脑实质中,进针深度为针尖距颅骨表面315mm,注射前 782 第25卷第4期2003年2月 第 三 军 医 大 学 学 报 ACT A AC ADE MI AE ME DICI NAE MI LIT ARIS TERTI AE V ol.25,N o.4 Feb.2003

细菌的生物学特性

细菌就是一种具有细胞壁得单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态与结构相对稳定。掌握细菌形态结构特征,对鉴别细菌,研究致病性,诊断疾病与防治原则等都有重要意义。 第一节细菌大小与形态 一细菌得大小 细菌体积微小,一般要用光学显微镜放大几百倍到一千倍左右才能观察到。通常以微米(μm)为测量其大小得单位。细菌种类不同,大小差异很大,同一种细菌在不同生长环境中,或在同一生长环境得不同生长繁殖阶段,其大小也有差别。 二细菌得形态 细菌得基本形态有球状、杆状及螺旋状,根据形态特征将细菌分为球菌、杆菌与螺形菌三大类、 (一)球菌(coccus) 球菌单个菌细胞基本上呈球状。按细菌生长繁殖时得分裂平面及分裂后排列方式不同,可将球菌分为: 1、双球菌:细菌在一个平面分裂,分裂后两个菌细胞成双排列,如肺炎链球菌。 2、链球菌:细菌由一个平面分裂,分裂后菌细胞连在一起,呈链状,如乙型溶血性链球菌。3葡萄球菌:细菌在多个不规则得平面上分裂,分裂后菌细胞聚集在一起似葡萄串状,如金黄色葡萄球菌。 4、四联球菌:细菌在两个相互垂直得平面上分裂,分裂后四个菌细胞联在一起。 5、八叠球菌:细菌在上下、前后与左右三个相互垂直得平面上分裂,分裂后八个菌细胞联在一起。 (二)杆菌(bacillus) 杆菌呈杆状,多数为直杆状,也有稍弯得。不同杆菌得大小、长短、粗细差异很大。大杆菌如炭疽杆菌长3~10μm,中等得如大肠杆菌长2~3μm,小得如流感杆菌长0、7~1、5μm。菌体粗短呈卵园形得称为球杆菌;菌体末端膨大成棒状,称棒状杆菌;菌体常呈分枝生长趋势,称为分枝杆菌,大多数杆菌就是单个、分散排列得,但有少数杆菌分裂后菌细胞连在一起呈链状,称为链杆菌。 (三)螺形菌(spirillar bacterium) 螺形菌菌细胞呈弯曲或旋转状,可分为两类: 1、弧菌:菌细胞只有一个弯曲呈弧形或逗点状,如霍乱弧菌。 2、螺菌:菌细胞有多个弯曲,如鼠咬热螺菌。弯曲呈“S”或海鸥形者如空肠弯曲菌、幽门螺杆菌等。 第二节细菌得结构与化学组成 细菌得基本结构有细胞壁、细胞膜、细胞质与核质四个部分组成。某些细菌除具有其基本结构外,还有荚膜、鞕毛、菌毛、芽胞等特殊结构。 一、基本结构 (一)细胞壁(cell wall) 细胞壁位于细菌得最外层,就是一层质地坚韧而略有弹性得膜状结构,其化学组成比较复杂,并随不同细菌而异。用革兰染色法可将细菌分为革兰阳性菌与革兰阴性菌两大类。两类细菌细胞壁得共有组分为肽聚糖,但各自还有其特殊组成成分。 1、肽聚糖(peptidoglycan) 细菌细胞壁得基本结构就是肽聚糖,又称粘肽。它就是原核生物细胞所特有得物质,不同种类得细菌,其组成与连接得方式亦有差别。革兰阳性菌得肽聚糖由聚糖骨架、四肽侧链与五肽交联桥三部分组成(图11-3,a),革兰阴性菌得肽聚糖由聚糖骨架与四肽侧链两部分组成(图11-3,b)。

相关文档
最新文档