第8章信号完整性分析
信号完整性分析PPT课件

Olica
4
SI简介
• 学习SI的目的 a.什么是典型的信号完整性问题? b.这些问题来自哪里? c.为什么有必要去理解SI问题? d.如何去分析和解决SI问题? e.如何去做SI测试?
30.11.2020
Olica
5
• SI的内容 SI简介
信号完整性它包含两方面的内容,一是 独立信号的质量,另一个是时序。我们 在电子设计的过程中不得不考虑两个问 题:信号有没有按时到达目的地?信号 达到目的地后它的质量如何?所以我们 做信号完整性分析的目的就是确认高频 数字传输的可靠性。
30.11.2020
Olica
10
SI简介
• 数据采样及时序例子
30.11.2020
Olica
11
SI简介
• 数据采样及时序例子 从这个图里面我们可以清楚地看到数据 必须准时到达逻辑门而且在接收端期间 开始锁存前必须确定它们的逻辑状态。 任何数据的延迟或者失真都会导致数据 传输的失败。失败有两种可能:一个是 因为接收端根本就无法识别数据;另一 个是接收端虽然识别了数据,但数据因 为失真而导致错误。
30.11.2020
Olica
3
SI简介
• SI的重要性
随着高频数字电路的不断发展,SI问题变得越来越引 人注目,数字电路的频率越高,出现SI问题的可能性 就越大,对设计工程师来说,他的挑战也就越大。很 多SI问题实际上都是自然界中的电磁现象,所以SI问 题跟EMI/EMC是息息相关的。
30.11.2020
30.11.2020
Olica
7
SI简介
• 理想逻辑电压波形
30.11.2020
Olica
8
SI简介
信号完整性分析

添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:
信号完整性分析(于博士信号完整性研究网).doc

1.信号完整性:PCB走线中途容性负载反射很多时候,PCB走线中途会经过过孔、测试点焊盘、短的stub线等,都存在寄生电容,必然对信号造成影响。
走线中途的电容对信号的影响要从发射端和接受端两个方面分析,对起点和终点都有影响。
首先按看一下对信号发射端的影响。
当一个快速上升的阶跃信号到达电容时,电容快速充电,充电电流和信号电压上升快慢有关,充电电流公式为:I=C*dV/dt。
电容量越大,充电电流越大,信号上升时间越快,dt越小,同样使充电电流越大。
我们知道,信号的反射与信号感受到的阻抗变化有关,因此为了分析,我们看一下,电容引起的阻抗变化。
在电容开始充电的初期,阻抗表示为:这里dV实际上是阶跃信号电压变化,dt为信号上升时间,电容阻抗公式变为:从这个公式中,我们可以得到一个很重要的信息,当阶跃信号施加到电容两端的初期,电容的阻抗与信号上升时间和本身的电容量有关。
通常在电容充电初期,阻抗很小,小于走线的特性阻抗。
信号在电容处发生负反射,这个负电压信号和原信号叠加,使得发射端的信号产生下冲,引起发射端信号的非单调性。
对于接收端,信号到达接收端后,发生正反射,反射回来的信号到达电容位置,那个样发生负反射,反射回接收端的负反射电压同样使接收端信号产生下冲。
转载请注明出处:。
为了使反射噪声小于电压摆幅的5%(这种情况对信号影响可以容忍),阻抗变化必须小于10%。
那么电容阻抗应该控制在多少?电容的阻抗表现为一个并联阻抗,我们可以用并联阻抗公式和反射系数公式来确定它的范围。
对于这种并联阻抗,我们希望电容阻抗越大越好。
假设电容阻抗是PCB走线特性阻抗的k 倍,根据并联阻抗公式得到电容处信号感受到的阻抗为:阻抗变化率为:,即,也就是说,根据这种理想的计算,电容的阻抗至少要是PCB特性阻抗的9倍以上。
实际上,随着电容的充电,电容的阻抗不断增加,并不是一直保持最低阻抗,另外,每一个器件还会有寄生电感,使阻抗增加。
因此这个9倍限制可以放宽。
信号完整性分析

16
信号完整性分析规则设置
1、激励信号规则(Signal Stimulus)规则
设置激励信号的种类,包括3种选项:“Constant Level”表示激励信号 为某个常数电平;“Single Pulse”表示激励信号为单脉冲信号; “Periodic Pulse”表示激励信号为周期性脉冲信号 设置激励信号的初始电 平,仅对“Single Pulse”和“Periodic Pulse”有效,设置初始 电平为低电平选择Low Level,设置初始电平 为高电平选择High Level。
22
信号完整性分析规则设置
7、信号高电平(Signal Top Value)规则:信号高电 平定义了线路上信号在高电平状态下所允许的最小 稳定电压值,即信号上位值的最小电压,系统默认 单位是伏特。
23
信号完整性分析规则设置
8、信号基值(Signal Base Value)规则:信号基值与 信号高电平是相对应的。它定义了线路上信号在低 电平状态下所允许的最大稳定电压值,也即信号的 最大基值,系统默认单位是伏特。
10
常见的信号完整性问题
4、接地反弹
接地反弹是指由于电路中较大的电流涌动,在电源与 接地平面间产生大量噪声的现象。如大量芯片同步切 换时,会产生一个较大的瞬态电流从芯片与电流平面 间流过,芯片封装与电源间的寄生电感、电容和电阻 会引发电流噪声,使得零电位平面上产生较大的电压 波动(可能高达2V),足以造成其他元件误动作。 由于接地平面的分割(分为数字接地、模拟接地和屏 蔽接地等),可能引起数字信号传到模拟接地区域时, 会产生接地平面回流反弹。同样,电源平面分割也可 能出现类似危害。负载容性的增大、阻性的减少、寄 生参数的增大、切换速度的增高,以及同步切换数目 的增加,都可能导致接地反弹的增加。
信号完整性分析概论

11.总结
7.测量无源器件和互连线的电气特性的仪器一般有三种:阻抗分 析仪、网络分析仪和时域反射仪; 8.这些仪器对减小设计风险、提高建模仿真和仿真过程精度的可 信度起着重要作用: 9.理解这些时钟信号完整性问题可以得出消除这些问题的最重要 的方法: 信号质量——信号在经过整个互连线时所感受到的阻抗应相同; 串扰——保持线条见的间隔大于最小值,并使线条与非理想返回 路径的互感最小; 轨道塌陷——使电源/地路径的阻抗和I噪声最小; 电磁干扰——使带宽以及地阻抗最小,采取屏蔽措施。
良好的屏蔽来弥补; 4.I/O接头的阻抗,特别是返回路径连接件的阻抗,会严重影响能产生辐射电流的
噪声电压,使用低阻抗连接的屏蔽电缆线是减小EMI问题的有效办法。
3.信号完整性的两个重要推论
1.随着上升边的减小,这四种问题(网络的信号质量、串扰、轨道塌 陷噪声和电磁干扰)都会变更严重。
前面所有的信号完整性问题都是以电流或电压变化速度来衡量的, 通常指的是dI/dt或dV/dt,上升边越短意味着dI/dt或dV/dt就越大。
单一网络的信号质量与信号路径和返回路径的物理特征都有很大的关系 。主要的表现就是网络中信号传输路径的阻抗发生突变,减小阻抗突变问题 的方法是让整个网络中的信号所感受到的阻抗保持不变。
信号所感受到的阻抗发生变化的情况: 1.线宽变化; 2.层变化; 3.返回路径平面上的间隙; 4.接插件; 5.分支线、T型线和桩线; 6.网络末端。
2.四类特定噪声源
4.电磁干扰EMI
EMI是指电子产品工作会对周边的其他电子产品造成干扰,EMI问题随着时 钟频率的提高而解决难度加大。
电磁干扰问题三个方面:噪声源、辐射传播路径和天线。
最常见电磁干扰源: 1.一部分差分信号转换成共模信号,最终在外部的双绞电缆线上输出; 2.电路板上的地弹在外部单端屏蔽线上产生共模电流,附加的噪声可以由内部
信号完整性分析

人们关注信号完整性问题,该问题源于奇怪的设计失败。
当时,美国硅谷一家著名的图像检测系统制造商早在七年前就成功设计,制造并投放市场,但是最近在生产线上下架的产品存在问题,并且新产品无法正常工作。
这是20MHz的系统设计,似乎没有必要考虑高速设计问题。
使产品设计工程师感到困惑的是,新产品没有任何设计修改,甚至采用的组件模型也与原始设计的要求一致。
唯一的区别是IC制造技术的进步。
新的设备技术使每个新生产的芯片都成为高速设备,而这些高速设备的应用中的信号完整性问题导致系统故障。
随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩短。
无论信号频率如何,该系统都将成为高速系统,并且将出现各种信号完整性问题。
在高速PCB系统的设计中,信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短会减小系统的时序裕度,甚至引起时序问题。
传输线效应导致传输过程中的噪声容忍度,单调性甚至逻辑错误。
信号之间的串扰随着信号边缘时间的减少而增加。
并且,当信号边缘时间接近0.5ns或更小时,电源系统的稳定性降低并且发生电磁干扰。
信号完整性的含义信号完整性(简称SI)是指信号从驱动端沿传输线到达接收端后的波形完整性。
也就是说,信号在电路中以正确的时序和电压响应的能力。
如果电路中的信号能够以所需的时序,持续时间和电压幅度到达IC,则电路具有更好的信号完整性。
相反,当信号无法正常响应时,就会出现信号完整性问题。
广义上,信号完整性问题是指高速产品中互连线引起的所有问题,主要表现在五个方面:(1)延误。
延迟是指当信号以有限的速度在PCB导体上传输时,从驱动端到接收端的传输延迟。
信号延迟将影响系统的时序。
在高速PCB设计中,传输延迟主要取决于导体的长度和导体周围介质的介电常数。
(2)反思。
当传输线的特征阻抗与负载阻抗不匹配时,一部分能量将在信号到达接收端后沿传输线反射回去,从而导致信号波形失真,甚至导致信号过冲和下冲。
如果信号在传输线上来回反射,则会发生振铃和周围振荡。
电子设计中的信号完整性分析
电子设计中的信号完整性分析在电子设计过程中,信号完整性分析是非常重要的一部分。
信号完整性是指在信号传输过程中保持信号的准确性、稳定性和可靠性,确保信号不会失真或受到干扰。
在现代高速电子设备和系统中,信号完整性分析变得尤为关键,因为高速信号传输会受到许多因素的影响,如信号衰减、延迟、串扰和反射等问题。
信号完整性分析最常见的方法之一是使用传输线理论。
在高速信号传输中,信号被视为在传输线上传输的电磁波,传输线上的阻抗、衰减、延迟等参数都会影响信号的传输质量。
因此,通过对传输线的参数进行建模和仿真,可以帮助设计工程师分析和优化信号的传输性能。
另外,时域分析和频域分析也是信号完整性分析的重要工具。
时域分析可以用来研究信号在时间轴上的波形变化,包括上升时间、下降时间、峰值电压等参数;而频域分析则可以用来研究信号在频率域上的频谱信息,包括频率响应、谐波失真等参数。
通过时域分析和频域分析,设计工程师可以更全面地了解信号的特性和传输过程中可能出现的问题。
除了传输线建模和时频域分析,设计工程师还可以通过仿真软件进行信号完整性分析。
仿真软件可以模拟不同信号在设计电路中的传输过程,帮助工程师快速找出潜在的问题并优化设计方案。
通过仿真软件,设计工程师可以对不同参数进行调整,如传输线长度、阻抗匹配、信号的波形和频谱,以达到最佳的信号完整性。
此外,设计工程师在进行信号完整性分析时还需要考虑一些其他因素,如接地设计、功率分配、EMI(电磁干扰)和ESD(静电放电)等。
这些因素都可能会对信号的传输过程造成影响,设计工程师需要综合考虑这些因素,以保证信号的可靠传输和稳定性。
总的来说,在电子设计中的信号完整性分析是保证高速电子系统可靠性和稳定性的关键步骤。
通过传输线建模、时频域分析、仿真软件以及综合考虑其他因素,设计工程师可以找出潜在的问题并优化设计方案,确保信号的准确传输和稳定性,从而提高电子系统的性能和可靠性。
通过不断学习和应用信号完整性分析的方法,设计工程师可以更好地应对日益复杂的电子系统设计挑战,推动电子科技的发展。
信号完整性分析
信号完整性是指在信号线上的信号质量。
当电路中信号能以要求的时序和电压幅度到达接收端时,该电路就有很好的信号完整性;当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题。
板级信号完整性主要表现为延迟、反射、串扰、同步切换噪声、过冲和下冲、地弹、振铃和EMI(Electro Magnetic Interference)即电磁干扰等几方面。
延迟是指信号在PCB板上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。
信号的延迟会对系统的时序产生影响,过长的延迟可导致时序混乱,由于本系统采用多块电路板级联结构设计,信号在单块PCB上的延时可以忽略,但在板级间通过接插件的传输,尤其是顶层板到底层板的信号传输,需要通过中间两块板,信号的走线路程相对很长,时间的延迟不可忽略。
为此,系统选用性能良好尤其电气特性良好的接插件,同时考虑关键控制信号要尽可能减少传输路程,布局布线时优先考虑。
反射是在传输线上的回波,信号经过传输线将一部分功率传给负载的同时,由于阻抗不匹配,有一部分能量反射回源端。
如果阻抗匹配(源端阻抗、传输线阻抗与负载阻抗相等),信号全部传给负载,反射不会发生。
减小和消除反射的方法是根据传输线的特性阻抗在其发送端或接收端进行终端阻抗匹配,从而使源反射系数或负载反射系数为零。
具体做法是在靠近源端的地方串联进去一几十欧姆的电阻,该方法简单有效,消耗功率小。
串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。
过大的串扰可能引发电路的误触发,导致系统无法正常工作。
串扰是由电磁耦合形成的,根据容性耦合和感性耦合的不同,产生的干扰有互容串扰和互感串扰。
互容串扰是信号线间的容性耦合,当信号线在一定长度上靠得比较近的时候就会发生,客服的方法有两种,适当减少两根走线间的并行距离和在两根走线间穿插地线。
互感串扰是由布线时产生的环路引起的,克服的办法是在布线时避免环路的出现。
信号完整性分析范文
信号完整性分析范文信号完整性分析(Signal Integrity Analysis)是指对数字电路、高速信号传输、功耗分布等进行综合考虑的电路设计步骤。
在现代电路设计中,信号完整性的问题日益凸显,尤其是在高速通信和高性能计算中的应用。
信号完整性分析的目的是要确保信号在传输过程中能够保持原有的质量,不受噪声、时钟偏移、时序失真等问题的影响。
信号完整性分析是一个复杂的过程,它涉及到多个方面的考虑和分析。
首先,需要考虑信号的传输线特性。
在高速设计中,传输线会产生反射、衰减和串扰等问题。
因此,必须对传输线的阻抗匹配、终端匹配和信号层次分割等进行精确计算和模拟,以确保传输线上的信号质量达到要求。
其次,信号完整性分析还需要考虑时钟偏移和时序失真等问题。
时钟偏移是指信号的时钟源和接收器之间存在的时间差异,会导致信号的采样时机发生偏移,进而影响到信号的稳定性和可靠性。
时序失真是指信号在传输过程中,由于信号传播速度的有限性而导致的时序错位和失真问题。
这些问题都需要通过精确的电路模拟和时序仿真来进行分析。
此外,信号完整性分析还需要考虑功耗分布和电磁干扰等问题。
功耗分布是指电路中各个模块和子电路的功率分布情况,对功耗密度的分析能够帮助设计师优化电路结构和提高效能。
而电磁干扰是指信号传输过程中由于电磁场的相互作用而产生的干扰问题,需要通过电磁模拟和电磁兼容性分析来解决。
面对复杂的信号完整性问题,现代电路设计通常采用一系列的设计和验证流程来确保信号的完整性。
首先,对电路进行设计规范和约束的制定,包括信号的最大频率、时序要求、电压幅度等。
然后,在设计阶段对电路进行仿真和分析,利用电磁场分析、传输线模型、时钟源校准等手段对信号的完整性进行评估。
最后,在芯片或电路板的制造和调试阶段,需要进行物理测量和分析,对实际的电路性能进行验证。
综上所述,信号完整性分析是现代电路设计中不可或缺的一环。
它不仅需要考虑传输线特性、时序失真等问题,还需要关注功耗分布和电磁干扰等方面的因素。
信号完整性分析
信号完整性分析信号完整性分析是一种信号传输效率的重要部分,尤其是在网络技术发展快速的今天,它越来越受到重视。
信号完整性分析是研究电气、电子、光学、磁学信号完整性状态的过程,可以帮助分辨信号的有效和无效,提高数据传输的可靠性,帮助解决科技发展中存在的一些技术问题。
信号完整性分析通常包括对信号传输效率的质量检测、时延检测和比特误码率检测三种检测项目。
首先,在信号传输效率的质量检测中,一般是检查传输信号的模拟量,电源和电场的强度等,以及收发端的工作状态等,其检测结果可以直接反映出信号传输效率的水平。
其次,在时延检测项目中,通常是检查收发端传输信号之间的时间差和时间关系,以及数据传输周期,其检测结果可以反映出网络中信号传输的延迟情况。
最后,在比特误码率检测项目中,一般是检查网络数据传输中比特误码率的情况,其检测结果可以反映出网络数据传输的质量情况,并帮助提高数据传输的可靠性。
为了实现信号完整性分析,一般常用的技术手段有时域反射技术、频域反射技术和时频域反射技术等。
时域反射技术是以时域为特征参数,使用特定的精密仪器测量信号传输状态,以判断电线是否损坏,其优点是可以在短信号情况下,迅速准确地判断出当前的信号状态,而且安全、快捷、经济。
频域反射技术是以频域为特征参数,使用专业的检测仪器,根据传输信号的频率和幅度,对网络的信号完整性进行检测,其优点是可以检测出高频信号的变化,并且可以迅速地检出信号是否受到破坏。
时频域反射技术是利用时间和频率域上的改变,以及信号传输过程中的调制参数等,进行信号完整性检测,其优点是能够在路径衰减和多径效应影响较大的情况下,也能获得准确的检测结果。
信号完整性分析在网络技术发展中,起到了重要的作用,它不仅有助于提高数据传输的稳定性和可靠性,而且可以帮助解决传输中的一些暂时性问题,让信号传输更加顺畅。
然而,在信号完整性分析领域,也存在一些需要完善的地方。
例如,由于信号的传输深度、速度等因素的影响,仍存在比特误码率较高的情况;此外,也存在着传输过程中存在延时的情况,因此,在信号完整性分析方面仍需要持续改进和完善技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (5)信号下冲的上升沿(Undershoot-Rising Edge)规 则。
• (6)阻抗约束(Impedance)规则。 • (7)信号高电平(Signal Top Value)规则。 • (8)信号基值(Signal Base Value)规则。 • (9)飞升时间的上升沿(Flight Time-Rising Edge)规则。 • (10)飞升时间的下降沿(Flight Time-Falling Edge)规则。
8.1.2 信号完整性分析工具
• Altium Designer 18的信号完整性分析模块的设计特性如下: • 设置简单,可以像在PCB编辑器中定义设计规则一样定义设计参
数。
• 通过运行DRC,可以快速定位不符合设计需求的网络。 • 无需特殊的经验,可以从PCB中直接进行信号完整性分析。 • 提供快速的反射和串扰分析。 • 利用I/O缓冲器宏模型,无需额外的SPICE或模拟仿真知识。 • 信号完整性分析的结果采用示波器形式显示。 • 采用成熟的传输线特性计算和并发仿真算法。 • 用电阻和电容参数值对不同的终止策略进行假设分析,并可对逻辑
第八章 信号完整性分析
完整性分析 器,以及实用的SI专用工具,使Altium Designer 18用户能够在 软件上就能模拟出整个电路板各个网络的工作情况,同时还提 供了多种补偿方案,帮助用户进一步优化自己的电路设计。
学习要点
信号完整性分析概念 信号完整性分析规则 信号完整性分析器
• 信号完整性分析器的界面主要由以下几部分组成。 • 1.Net(网络列表)栏 • 2.Status(状态)栏 • 3.Designator(标识符)栏 • 4.Termination(终端补偿)栏 • 5.Perform Sweep(执行扫描)复选框
• 在Altium Designer 18中包含有13条信号完整性分析的规则, 下面分别介绍。
• (1)激励信号(Signal Stimulus)规则。 • (2)信号过冲的下降沿(Overshoot-Falling Edge)规则。 • (3)信号过冲的上升沿(Overshoot-Rising Edge)规则。 • (4)信号下冲的下降沿(Undershoot-Falling Edge)规则。
8.1 信号完整性分析概述
• 8.1.1 信号完整性分析的概念
• 所谓信号完整性,顾名思义,就是指信号通过信号线传输 后仍能保持完整,即仍能保持其正确的功能而未受到损伤 的一种特性。具体来说,是指信号在电路中以正确的时序 和电压做出响应的能力。当电路中的信号能够以正确的时 序、要求的持续时间和电压幅度进行传送,并到达输出端 时,说明该电路具有良好的信号完整性,而当信号不能正 常响应时,就出现了信号完整性问题。
• (11)上升边沿斜率(Slope-Rising Edge)规则。 • (12)下降边沿斜率(Slope-Falling Edge)规则 • (13)电源网络(Supply Nets)规则。
8.3 信号完整性分析器设置
• 打开某一项目的某一PCB文件,执行“工具”→“Signal Integrity(信号完整性)”菜单命令,系统开始运行信号完整 信分析器。
块进行快速替换。
• 提供IC模型库,包括校验模型。 • 宏模型逼近使得仿真更快、更精确。 • 自动模型连接。 • 支持I/O缓冲器模型的IBIS2工业标准子集。 • 利用信号完整性宏模型可以快速地自定义模型。
8.2 信号完整性分析规则设置
• 执行“设计”→“规则”菜单命令,系统将弹出如图8-1 所示的“PCB Rules and Constraints Editor(PCB规则及 约束编辑器)”对话框。