高中数学知识点思维导图

合集下载

人教A版高中数学必修1第三章《函数的应用》思维导图

人教A版高中数学必修1第三章《函数的应用》思维导图

人教A版高中数学必修1第三章《函数
的应用》思维导图
用思维导图复习,一天顶一个月。

高中数学必修和选修课本共计13本,通常两年内学完,平均一年6本,每学期3本。

每本平均三到四章,每学期5个月,大约半月学完一章。

而高考总复习的时间则更为宝贵,如果高考一轮复习的时候,在基础知识模块,大家还需要消耗大量时间去翻看教材显然得不偿失。

当然,我们并不是说教材不重要,相反,教材非常重要。

而是希望大家在平时的学习过程中,养成总结梳理的习惯,尤其是在高一高二的时候。

只要大家学会使用思维导图梳理,这样在高三的时候就可以快人一步,将更多的宝贵时间拿来突破自己的弱项,争取取得更好的成绩。

已经进入高三的同学,也不用担心,后续我们会持续更新,大家关注我们的文章即可,我们会帮大家梳理好,大家可以通过文章末尾留言免费获取。

本文,我们主要梳理了人教版A版高中数学必修1(也就是高一数学)第三章《函数的应用》。

主要内容大纲如下:
其中重点在于零点问题、函数模型及函数的应用。

下面我们逐一展开回忆下。

一、函数与方程
二、函数模型及其应用
到本文为止,有关人教版A版高中数学必修一(也就是高一数学必修1)的内容,我们就在前面三篇文章给大家梳理完了,至于第一章《集合与函数的概念》及第二章《基本初等函数(I)》,请大家查阅我们前面两天的文章即可。

大家如果觉得这种方式好,可以自己下载思维导图软件尝试下。

时间紧迫,需要x mind 思维导图原图进行复习的同学,可以在评论区联系我们获取。

人教版高中数学必修一章节思维导图全套

人教版高中数学必修一章节思维导图全套
质》思维导图
《3.3 幂函数》思维导图
《4.1 指数的运算》思维导图
《4.2指数函数》思维导图
《4.3 对数的运算》思维导图
《4.4 对数函数》思维导图
《4.5 函数的应用(二)》思维导图
《5.1 任意角和弧度制》思维导图
《5.2 三角函数的概念》思维导图
《5.3 诱导公式》思维导图
《5.4 三角函数的图象与性质》思维导图
《5.5 三角恒等变换》思维导图
《5.6 函数 》思维导图
《5.7 三角函数的应用》思维导图
人教版高中数学必修一章节思维导图全套11集合的概念及特征思维导图12集合间的关系思维导图13集合的基本运算思维导图14充分必要条件思维导图15全称量词与存在量词思维导图21等式与不等式的性质思维导图22基本不等式思维导图23二次函数与一元二次方程不等式思维导图31函数的概念思维导图32函数的性质思维导图33幂函数思维导图41指数的运算思维导图42指数函数思维导图43对数的运算思维导图44对数函数思维导图45函数的应用二思维导图51任意角和弧度制思维导图52三角函数的概念思维导图53诱导公式思维导图54三角函数的图象与性质思维导图55三角恒等变换思维导图56函数思维导图57三角函数的应用思维导图
人教版高中数学必修一章节思维导图全套
《1.1集合的概念及特征》思维导图
《1.2 集合间的关系》思维导图
《1.3 集合的基本运算》思维导图
《1.4 充分、必要条件》思维导图
《1.5 全称量词与存在量词》思维导图
《2.1 等式与不等式的性质》思维导图
《2.2 基本不等式》思维导图
《2.3 二次函数与一元二次方程、不等式》思维导图

高中数学思维导图

高中数学思维导图

高中数学思维导图高中数学思维导图一、基础数学思维1. 数学思想的基础:公理与定义2. 数学的证明方法:归纳法、反证法、直接证明法等3. 数学符号的运用:数学符号的含义、符号的运算法则等4. 数学运算:四则运算、幂运算、根号运算等5. 基础数学工具:比例、百分数、坐标系、三角函数等二、代数思维1. 代数基础:代数式、方程、函数等2. 函数的性质:奇偶性、周期性、单调性等3. 多项式函数:求极限、图像、导数、零点等4. 三角函数:定义、性质、公式、图像等5. 指数与对数:定义、性质、公式、应用等三、几何思维1. 几何基础:点、线、面、角等基本概念2. 几何证明:直线、三角形、四边形等几何图形的证明方法3. 圆与圆周角:圆的性质、圆心角、圆周角等4. 圆锥曲线:椭圆、双曲线、抛物线等5. 空间几何:立体图形、体积、表面积等四、数据思维1. 统计学基础:数据的收集、整理、描述等2. 统计学方法:中心极限定理、样本误差、置信区间等3. 概率学基础:试验、随机事件、概率等4. 概率学应用:概率分布、期望、方差等5. 统计学计算:统计量、协方差、相关系数等五、应用思维1. 数学建模:基础模型、优化模型、决策模型等2. 实际应用:金融、物流、航空、生物等实际问题的数学分析3. 数学思维应用:思维方法的应用于科学、技术、文化、艺术等领域4. 跨学科思维:数学与其他学科的融合,如数理化、数理生等交叉学科5. 数学思维与未来:数学思维在新时代的重要性和应用前景六、总结与展望1. 数学思维的学习方法2. 数学思维的培养和提升3. 数学思维在求学与职场中的应用4. 数学思维的发展趋势和未来展望5. 数学思维对人类文明进步的贡献。

一张思维导图搞定高中数学《点、直线、平面之间的位置关系》

一张思维导图搞定高中数学《点、直线、平面之间的位置关系》

一张思维导图搞定高中数学《点、直线、平面之间的位置关系》高一数学《点、线、平面之间的位置关系》这一张,很多同学学完后,脑袋一团浆糊,要么感觉什么都没学,要么感觉东西太多了。

本文,我们通过一张思维导图帮助大家搞定。

首先,一起来看下总体内容,如下图。

简单说就是位置关系的考查,重点在于线面平行的判定和性质以及线面垂直的判定和性质。

线面垂直部分,注意二面角相关内容,因为在高考立体几何中几乎属于必考内容。

一、位置关系担心图文看不清晰,我们将重要内容摘录如下,需要xmind思维导图原图复习的同学,记得文末留言即可。

平面的基本性质(三大公理):①A∈l,B∈l,且A∈α,B∈α→l包含于α。

直线上两点在平面内,直线在此平面内。

②过不在同一条直线上的三点有且仅有一个平面。

不共线的三点确定一个平面。

③如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理②有三条推论:推论一:经过一条直线和直线外一点,有且只有一个平面。

推论二:经过两条相交直线,有且只有一个平面。

推论三:经过两条平行直线,有且只有一个平面。

二、线面平行1.线面平行判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

证明方法:①利用定义:证明直线与平面无公共点;②利用直线与平面平行的判定定理;③利用平面与平面平行的定义:两个平面平行,则一个平面内的所有直线都平行于两一个平面。

2.面面平行判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

性质:如果两个平行平面同时和第三个平面相交,那么,他们的交线平行。

证明方法:①利用平面与平面平行的定义,此法一般与反证法相结合;②利用平面与平面平行的判定定理;③证明两个平面垂直于同一条直线;④证明两个平面同时平行于第三个平面。

三、线面垂直1.线面垂直的证明①利用直线与平面垂直的定义(可以用反证法);②利用直线与平面垂直的判定定理;③利用平面与平面垂直的性质定理;④结合平行关系:A:a//b,a⊥α→b⊥α;B:a⊥α,α//β,a⊥β2.面面垂直的证明①利用定义判断(证明)二面角的平面角是直角;②利用平面与平面垂直的判定定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档