多元回归(多重共线,异方差,残差检验eviews,spss)
多元回归模型和多重共线性实验报告

《计量经济学》上机实验报告一题目:多元回归模型和多重共线性实验日期和时间:2013年4月18日班级:学号:姓名:实验室:实验楼104实验环境:Windows XP ; EViews 3.1实验目的:利用相关数据建立多元回归模型,分析在不同的经济条件下一定的要素对某个经济体发展的影响程度并建立一定的关系模型。
检验设定的模型是否存在多重共线性,分析产生多重共线性的原因及作用因素,并对存在多重共线性的模型进行必要的修正。
实验内容:1、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI,根据提供的模型估计参数,判断多重共线性是否存在,表述多重共线性的性质。
2、检验能源消费需求总量Y的影响因素,选取国民总收入X1、国内生产总值X2、工业增加值X3、建筑业增加值X4、交通运输邮电业增加值X5、人均生活电力消费X6和能源加工转换效率X7七个变量,模拟回归,检验修正多重共线性。
3、为什么会产生“农业的发展反而会减少财政收入”的异常结果,如何解决这种异常。
实验步骤:一、中国进出口额Y、国内生产总值GDP、居民消费价格指数CPI(一)建立多元回归模型,估计参数在命令窗口依次键入以下命令:1、建立工作文件:CREATE A 1985 20072:输入统计资料:DATA Y GDP CPI3、生成变量:GENR LNY=LOG(Y)GENR LNGDP=LOG(GDP)GENR LNCPI=LOG(CPI)4、建立回归模型:LS LNY C LNGDP LNCPI得出回归结果为:由此可见,该模型的参数形式为:LNŶt=-3.06+1.66LNGDP t-1.06LNCPI t,其中该模型R2=0.9922,R2=0.9914可决系数很高,F检验值1275.093,明显显著,且T检验的临界概率均非常小,回归效果较好。
(二)检验多重共线性利用简单相关系数法进行检验,输入命令COR LNY LNGDP LNCPI,得到相关系数矩阵:由相关系数矩阵可以看出,各解释变量相互之间的相关系数均很高,说明数据中存在严重的多重共线性。
SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。
本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。
步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。
数据应包含一个或多个自变量和一个因变量,以便进行回归分析。
数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。
步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。
可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。
确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。
步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。
在对话框中,将因变量和自变量移入相应的输入框中。
可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。
步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。
例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。
根据需要,适当调整这些选项。
步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。
结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。
步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。
Eviews处理多元回归分析操作步骤

操作步骤1.建立工作文件(1)建立数据的exel电子表格(2)将电子表格数据导入eviewsFile-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。
2.计算变量间的相关系数在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。
结果表明Coilfuture数列与其他数列存在较好的相关关系。
3.时间序列的平稳性检验(1)观察coilfuture序列趋势图在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。
图形表明序列随时间变化存在上升趋势。
(2)对原序列进行ADF平稳性检验quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。
以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。
(3)时间序列数据的一阶差分的ADF检验quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。
以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均小于临界值,表明各序列一阶差分都是平稳的。
计量经济学多元线性回归多重共线性异方差实验报告

计量经济学实验报告多元线性回归、多重共线性、异方差实验报告一、研究目的和要求:随着经济的发展,人们生活水平的提高,旅游业已经成为中国社会新的经济增长点。
旅游产业是一个关联性很强的综合产业,一次完整的旅游活动包括吃、住、行、游、购、娱六大要素,旅游产业的发展可以直接或者间接推动第三产业、第二产业和第一产业的发展。
尤其是假日旅游,有力刺激了居民消费而拉动内需。
2012年,我国全年国内旅游人数达到亿人次,同比增长%,国内旅游收入万亿元,同比增长%。
旅游业的发展不仅对增加就业和扩大内需起到重要的推动作用,优化产业结构,而且可以增加国家外汇收入,促进国际收支平衡,加强国家、地区间的文化交流。
为了研究影响旅游景区收入增长的主要原因,分析旅游收入增长规律,需要建立计量经济模型。
影响旅游业发展的因素很多,但据分析主要因素可能有国内和国际两个方面,因此在进行旅游景区收入分析模型设定时,引入城镇居民可支配收入和旅游外汇收入为解释变量。
旅游业很大程度上受其产业本身的发展水平和从业人数影响,固定资产和从业人数体现了旅游产业发展规模的内在影响因素,因此引入旅游景区固定资产和旅游业从业人数作为解释变量。
因此选取我国31个省市地区的旅游业相关数据进行定量分析我国旅游业发展的影响因素。
二、模型设定根据以上的分析,建立以下模型Y=β0+β1X1+β2X2+β3X3+β4X4+Ut参数说明:Y ——旅游景区营业收入/万元X1——旅游业从业人员/人X2——旅游景区固定资产/万元X3——旅游外汇收入/万美元X4——城镇居民可支配收入/元收集到的数据如下(见表):表 2011年全国旅游景区营业收入及相关数据(按地区分)数据来源:1.中国统计年鉴2012,2.中国旅游年鉴2012。
三、参数估计利用做多元线性回归分析步骤如下:1、创建工作文件双击图标,进入其主页。
在主菜单中依次点击“File\New\Workfile”,出现对话框“Workfile Range”。
运用SPSS做多元回归分析

结果二:方差分析表
• 表中显著度(Sig)<0.001,表明整个方程是显著的,也 就是说自变量与因变量之间具有显著的线性关系。 • 但这并不意味着每个自变量与因变量都具有显著的线性关 系,具体的结论还需要看后面对每个自变量的回归系数的 检验结果。
结果三:回归系数表
• 表中B栏的非标准化回归系数表明:
FOR EXAMPLE
一个变量的变化直接与另一组变量的变化有关:
人的体重与身高、胸围 血压值与年龄、性别、劳动强度、饮食习惯、吸烟 状况、家族史 糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总 胆固醇、甘油三脂
多元回归分析数据格式
编号 1 2 ┇ i ┇ n
X1
X 11
X2
X 12
┅ ┅ ┅ ┇ ┅ ┇ ┅
多元回归模型必须满足的假定条件
1. 2.
因变量是连续随机变量; 自变量是固定数值型变量,且相互独立;
3.
4. 5. 6.
每一个自变量与因变量呈线性关系;
每一个自变量与随机误差相互独立; 观察个体的随机误差之间相互独立; 残差是随机变量,均值为零。
不良贷款(亿元)各项贷款余额(亿元)本年累计应收贷款(亿元)贷款项目个数(个) 本年固定资产投资额(亿元) 0.9 67.3 6.8 5 51.9 1.1 111.3 19.8 16 90.9 4.8 173 7.7 17 73.7 3.2 80.8 7.2 10 14.5 7.8 199.7 16.5 19 63.2 12.5 185.4 27.1 18 43.8 1 96.1 1.7 10 55.9 2.6 72.8 9.1 14 64.3 0.3 64.2 2.1 11 42.7 4 132.2 11.2 23 76.7 0.8 58.6 6 14 22.8 3.5 174.6 12.7 26 117.1 10.2 263.5 15.6 34 146.7 0.2 14.8 0.6 2 42.1 0.4 73.5 5.9 11 25.3 1 24.7 5 4 13.4 6.8 139.4 7.2 28 64.3 11.6 368.2 16.8 32 163.9 1.6 95.7 3.8 10 44.5 1.2 109.6 10.3 14 67.9 7.2 196.2 15.8 16 39.7
EViews计量经济学实验报告-多重共线性的诊断与修正

时间 地点 实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 19945218.1 9572.7 19480.7 2964.7 11985029242.2550431995 6242.2 12135.8 24950.6 3728.8 121121 36748.2 45821 1996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析是一种常用的统计方法,可以通过分析多个自变量对一个或多个因变量的影响程度,帮助研究者理解变量之间的关系以及预测变量之间的变化情况。
以下是一个关于人们消费意愿的多元回归分析的案例。
假设我们想研究人们的消费意愿受到收入水平、年龄和受教育水平的影响程度。
我们收集了100个参与者的数据,包括他们的收入、年龄、受教育水平以及消费意愿。
下面将介绍如何使用SPSS进行多元回归分析。
首先,在SPSS软件中打开数据文件,并选择"回归"菜单下的"线性回归"选项。
然后将因变量(消费意愿)拉入"因变量"框中,将自变量(收入、年龄、受教育水平)拉入"自变量"框中。
其次,点击"统计"按钮,在弹出的对话框中勾选"无多重共线性检验"、"离群值"和"样本相关矩阵"选项,并点击"确定"按钮。
接下来,点击"模型"按钮,在弹出的对话框中选择"全量"和"因素样本相关系数"选项,并点击"确定"按钮。
然后,点击"保存"按钮,在弹出的对话框中输入保存路径和文件名,并勾选"标准化残差"、"标准化预测值"和"离群值的DFITS"选项,并点击"确定"按钮。
最后,点击"OK"按钮开始进行多元回归分析。
在分析结果中,我们可以查看每个自变量的回归系数、标准误、t值以及显著性水平。
还可以查看整体模型的解释力、统计显著性和调整R 平方。
根据分析结果,我们可以得出结论:收入水平、年龄和受教育水平对消费意愿有显著影响。
收入水平对消费意愿的影响最大,其次是受教育水平,年龄对消费意愿的影响较小。
eviews回归分析结果解读

eviews回归分析结果解读EViews回归分析结果解读:一、模型验证1.残差检验:通过残差的自相关检验来评估模型拟合的效果。
EViews 提供的残差检验的指标主要有自相关系数(AC)、均值偏差(PD)和多元偏差(MD)等,通过综合这三个指标来验证模型的优度。
2.残差的正态性检验:通过对残差的正态检验,来判断模型是否拟合得合适。
EViews绘出的正态性检验图,其上四象限内的残差数据点簇应该尽可能集中在图中心。
3.异方差性检验:这是检验模型拟合优度的另一种用法,主要依靠残差曲线的图形显示。
异方差的判定参考指标主要有自相关(ACF)和偏度(SKEW),此外还可以看“逐步残差图”。
二、系数验证1.系数绝对值:通过检验系数,来确定模型中每个变量的解释力。
系数的绝对值越大,说明该变量对模型影响越大。
2.系数t检验:系数t检验主要用来检验回归分析模型中,系数中存在的显著性关系。
EViews通过给出系数的t值和概率值来做检验,如果概率值小于一定的显著性水平,则该系数的t值就具有统计学显著性,表明变量与目标变量有关系。
3.系数F检验:F检验用来检验模型均方根残差对应回归方程变量对解释能力的贡献程度。
F检验的结果反映了模型在拟合中的效果,当F值较大时,说明模型所用的变量都有较强的解释能力。
三、模型优度1.R平方:R平方指的是回归方程对于平均自变量的拟合程度。
它衡量的是样本内变量和预期值之间的相似程度,R平方越大,模型对数据的拟合度越高。
2.拟合误差:拟合误差指的是拟合出来的模型误差,它反映了独立变量与因变量之间存在的不确定性。
拟合误差越小,说明模型拟合效果越好。
3.解释力:这是一个衡量模型效果的比率,主要反映模型对数据集中变量对解释能力,一般要在0.7以上才有一定的参考价值。
四、回归方程概况回归方程概况意指模型中因变量的各种参数,如常数项a0、斜率a1以及误差项的统计量。
这些参数的准确性和完整度将影响到模型的拟合程度和预测能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据处理: 4.3 模型建立设年末实有耕地面积,有效灌溉率,农用塑料薄膜使用量,农药使用量,农业机械总动力,农业从业人数,农业投资额分别为127,,,X X X ;农业产值为Y 。
在此我们假设上述七个变量都与农业产值有显著影响,在SPSS 中用进入法对其做出预判。
表4-3 回归预判表模型 非标准化系数标准化系数T 显著性 共线性统计 B 标准误差 Bata 允差 VIF(常数) 1.987E-15 .018.000 1.000年末实有耕地面积 .225 .291 .225 .775 .464 .004 239.655 有效灌溉率.208 .116 .208 1.797 .115 .02638.086农用塑料薄膜使用量-.396 .489 -.396 -.810 .445 .001 677.462 农药使用量 -.426 .564 -.426 -.756 .475 .001 899.494 农业机械总动力 .831 .282 .831 2.946 .022 .004 225.582 农业从业人数 .024 .179 .024 .136 .895 .011 90.381 农业投资额.197.140.1971.401.204.01855.747因变量: 农业产值可以从表中得出回归方程:12345670.2250.2080.3960.4260.8310.0240.197Y X X X X X X X =+---++从显著性水平上看,小于0.05的只有一个农业机械动力,显然不能够准确的表达出与农业产值之间的关系。
根据表中的VIF 值均大于10,其中四个大于了100,这说明模型中存在严重的多重共线性。
并且在相关系数表中(附表1-2),我们也能够看出各个自变量之间相关系数较大,有较大的相关性。
为了保证得到的回归模型能较好的反映真实意义,就要解决多重共线性问题。
解决多重共线性我们一般使用逐步回归的方法。
4.3.1 逐步回归将标准化后的数据输入EVIEWS ,首先找出与因变量拟合度最高自变量,的经过回归拟合可以得出7个变量的拟合优度,按降序排列如下表:表4-4 拟合优度表变量 拟合优度 5X 0.984325 3X 0.972272 4X 0.972024 1X 0.906987 7X 0.903033 2X 0.84501 6X0.684597拟合优度的大小也能在一定程度上表现出自变量与因变量的影响大小。
这里5X 是农业机械总动力,说明农业机械总动力对农业产值有较大的影响。
在近年来江苏省整体经济发展迅速,科技水平大大提高,使农业的机械化水平发展迅速,机械设备的使用极大促进了农业产值的提高。
由表44-得,Y 与5X 的拟合优度最高,故Y 5X 作为基本方程。
依次按拟合优度降序排列进入模型,检验新进入的变量是否显著并且拟合优度是否提高。
拟合优度排第二的是变量3X ,所以将3X 进入基础模型。
3X 进入基本方程,结果如下图:图4-1 变量判断图从图41-的运行结果我们可以看出,3X 的估计量对应的0.8094p =大于0.05,不显著,所以3X 不符合回归模型。
3X 是农膜使用量,可以看出其对农业产值的影响不显著。
农膜主要使用在经济作物的种植中,近年来有部分农户利用地膜覆盖技术和塑料大棚进行种植、栽培瓜果蔬菜,获得了可观的收益,但是普及率不是很高,是一个对农业产值的影响不是很大。
所以我们不选择变量3X ,再将4X 进入基本方程。
图4-2 第一步逐步回归图由图42-可以看出,4X 的估计量对应的0.8548p =值大于0.05,所以没有显著性,所以4X 同样不符合回归模型,故删去变量4X 。
4X 为农药使用量,所以农药使用量对农业产值没有显著影响。
再将1726,,,X X X X 依次进入方程判断最优拟合方程,1X ,6X 不显著,7X 显著,2X 也是具有显著性的,表明农业投资额,有效灌溉率对农业产值也有显著影响,但是农业投资额对农业产值的影响大还是有效灌溉率对农业产值的影响大,还需要进一步比较。
表4-5 拟合优度表变量 系数标准差t 值p 值 拟合优度1常数-1.57E-07 0.022013 -7.11E-06 1.0000 0.9937700 5X 0.76519 0.057883 13.21969 0.0000 7X0.246876 0.057883 4.26518 0.0011 2常数8.13E-10 0.03293 2.47E-08 1.0000 0.986058 2X 0.999922 0.0818 1.221544 0.2453 5X0.9012980.081811.018320.0000由表45-可得,但由于模型Y 5X 7X 的拟合优度为0.993770,模型Y 2X 5X 的拟合优度为0.986058,比较他们两个的拟合优度,发现模型Y 5X 7X 的拟合优度较大,故选则Y 5X 7X 作为基本方程。
然后按照第一次逐步回归法的步骤依次添加变量,并根据p 值判断其显著性。
可以得出Y5X 7X 2X 为最终方程,p 值分别为20.0107p =,20.0000p =,20.0001p =,均显著。
经过逐步回归依次得到农业机械总动力,农业投资额,有效灌溉率对农业产值的影响较为显著。
估计结果如下图:图4-3 逐步回归模型结果图从图43-中可以得出系数:702571.5910,0.129540,0.263208,0.263208ββββ-=-⨯===,所以写出对应的估计方程为:72571.59100.1295400.6324180.263208Y X X X -=-⨯+++。
得出估计方程还要进行各项检验,只有通过检验才能说明我们得到的方程有效,才具有实际意义。
4.3.2 F 检验F 检验的原假设和备择假设如下:001:0n H βββ====;1:(0,1,,)i H i n β=不全为零。
从图43-中可以看出F 检验(F-statistic)对应的p 值小于0.05,所以拒绝0H ,所以我们得出的估计方程存在显著的线性关系。
4.3.3 t 检验t 检验的原假设和备择假设为:0:0i H β=; 1:0i H β≠。
由图43-可以看出变量2X 5X 7X 分别对应的20.0107p =,20.0000p =,20.0001p =均小于0.05,拒绝原假设0H 。
同样可以看模型得出的t 值,2573.067362,10.20083, 5.887977t t t ===,通过查找t 分布表得,用t 值与0.052(11) 2.201t =进行比较,如果0.052(11)i t t >,则拒绝原假设所以回归系数显著。
变量5X 7X 2X 对Y 有显著影响。
4.3.4 异方差检验由于异方差的存在使得最小二乘估计量不再是最好线性无偏估计量,会导致模型的残差不再是同方差的,所以要对模型进行异方差检验。
(1)图示法此方法是较为原始的一种检验异方差的方法,可以直观的看出残差平方的散点图是否与样本数据i X 或i Y 有明显的关系,若随着i X 或i Y 的变化而变化,那么就说明存在异方差性。
这里我们可以看出残差平方的散点图呈不规则状,散乱分布,所以我们得出的回归模型不存在异方差性。
图4-4 异方差散点图(2)怀特(white )检验可以看出模型中有三个解释变量,那么模型辅助回归可以写成:2220112233415263712813923t t t t t t t t t t t t t t u x x x x x x x x x x x x ααααααααααε=++++++++++其原假设和备择假设分别为:0:0i H α=,1,,9i =;119:,,H αα中至少一个不为零。
怀特检验的运行图如下:图4-5 怀特检验图给定显著性水平0.05,obs*R -squared 对应的0.5587p =大于0.05,(错了要改正))拒绝原假设,故不存在异方差。
4.3.5 自相关检验误差存在自相关时,模型中的系数用最小二乘估计计算会不准确,往往会算出的系数的真实方差值和误差项的方差值会偏小。
为了检验得到的方程的准确性,我们进行自相关检验。
DW 检验的原假设和备择假设分别为:0:0H ρ=(t u 不存在自相关)1:0H ρ≠(t u 存在一阶自相关)表4-6 DW 检验运行结果图从表中得出,DW 值为1.964452,通过查找DW 表可得,当n =15,k =3时,0.82L d =, 1.75U d =,所以DW 值在区间(1.75,2.25)之间。
这说明所建立的线性回归模型无自相关现象,不需要修正DW 值检验。
4.3.6 残差检验图4-7 残差分析图由于JB对应的0.76874p 大于0.05,所以拒绝原假设。
从残差分析图上也可以直观的看出残差直方图中间高,两边低,基本服从正态分布。
所以我们估计的线性回归模型是有意义的。
4.3.7 组内预测对样本内数据进行组内预测:图4-8 组内预测图由图4-8可知,预测值和真实值几乎完全重合,且残差在零水平线上下波动,说明模型总体上效果较好。