人教版平行四边形单元自检题学能测试
人教版小学数学四年级上册第5单元《平行四边形和梯形》单元测试(含答案)

第5单元平行四边形和梯形(单元测试)-2024-2025学年四年级上册数学人教版一、单选题(共5题;共15分)1.(3分)如图,图中共有()组平行线段。
A.1B.2C.3D.42.(3分)用长度分别是3厘米、3厘米、8厘米、8厘米的四根小棒可以搭成()个形状不同的平行四边形。
A.1B.2C.3D.无数个3.(3分)下面说法错误的是()A.正方形是特殊的长方形B.长方形是特殊的平行四边形C.平行四边形和梯形都有无数条高D.平行四边形具有稳定性4.(3分)左下图中的长方形与右边四张图形随意交叉摆放,摆出重叠部分是四边形。
当这个四边形一定是梯形时,应选择的图形是()。
A.①B.②C.③D.④5.(3分)把一张长方形纸片上下对折一次,再左右对折一次,打开后,折痕()。
A.互相平行B.互相垂直C.永不相交D.无法判断二、判断题(共5题;共15分)6.(3分)从平行四边形的一个顶点出发可以画2条不同的高。
()7.(3分)同一平面内,两条直线不互相垂直就一定互相平行。
()8.(3分)正方形中相邻的边都是互相垂直的。
()9.(3分)两条直线相交,它们的交点叫做垂足。
()10.(3分)平行四边形四条边的长度确定了,它的形状就确定了。
()三、填空题(共6题;共24分)11.(4分)两条平行线之间可以画条垂线段,所有的垂线段的长度。
12.(4分)如图,数一数有个平行四边形,个梯形。
13.(4分)长方形的长和宽互相,长方形的两条长互相。
14.(2分)一个平行四边形的周长是26厘米,其中一条边的长度是5厘米,与它相邻的一条边的长度是厘米。
15.(6分)如图,四边形ABCD是一个梯形,它的高是cm;如果把点D向平移格,这个梯形就变成一个平行四边形。
16.(4分)同一平面上不重合的两条直线一般有和两种情况。
四、解决问题(共6题;共46分)17.(7分)在同一平面内,把两根小棒都摆成和第三根小棒平行,看一看,这两根小棒平行吗?18.(7分)一个平行四边形的一条边是12厘米,它的邻边比它长2厘米。
人教版初二数学8年级下册 第18章(平行四边形)单元测试卷3(含答案)

人教版八年级下册第18章《平行四边形》单元测试卷一、选择题(每小题3分,共30分)1.如图,四边形ABCD是平行四边形,将BC延长至点E,若∠A=100°,则∠1等于( )A. 110°B. 35°C. 80°D. 55°2.如图,在四边形ABCD中,AB//CD,添加下列一个条件后,定能判定四边形ABCD是平行四边形的是( )A. AB=BCB. AC=BDC. ∠A=∠CD. ∠A=∠B3.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是( )A. 5B. 5.5C. 6D. 6.54.如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是( )A. 32B. 2 C. 52D. 35.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=4,AB=6.BD=m,那么m的取值范围是( )A. 4<m<8B. 4<m<10C. 6<m<14D. 8<m<166.矩形ABCD中,点M在对角线AC上,过M作AB的平行线交AD于E,交BC于F,连接DM和BM,已知,DE=2,ME=4,则图中阴影部分的面积是( )A. 12B. 10C. 8D. 67.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是( )A. 2B. 52C. 3D. 48.如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,AB,连接OE.下列结论:①S平行四边形ABCD=AD⋅BD;②DB平∠BCD=60°,AD=12分∠CDE;③AO=DE;④OE垂直平分BD.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个9.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A(−3,0),B(2,b),则b的值为( )A. 3B. 2C. −3D. −210.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为6和8,若S△APC=15,那么点P到对角线BD的长是( )A. 65B. 95C. 125D. 245二、填空题(每小题3分,共18分)11.在▱ABCD中,如果∠A+∠C=140°,那么∠C等于______ .12.一个三角形的周长是12cm,则这个三角形各边中点围成的三角形的周长为______.13.如图,在长方形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,AB=2,OA=OB,则CO的长为______.14.如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为______cm.15.如图,在平面直角坐标系中,已知OA=3,OB=1,菱形ABCD的顶点C在x轴的正半轴上,则对角线BD的长为______.16.如图,在平面直角坐标系中,已知正方形ABCD的边长为8,与y轴交于点M(0,5),顶点C(6,−3),将一条长为2020个单位长度且没有弹性的细绳一端固定在点M处,从点M 出发将细绳紧绕在正方形ABCD的边上,则细绳的另一端到达的位置点N的坐标为______ .三、解答题(每小题8分,共64分)17.如图,平行四边形ABCD,E、F是直线DB上两点,且DF=BE.求证:四边形AECF是平行四边形.18.在平行四边形ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交边AD、BC于点E、F.求证:DE=BF.19.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.(1)求证:EF=AE+CF;(2)当AE=1时,求EF的长.20.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)OE______ AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.21.在▱ABCD中,E为BC边上一点,F为对角线AC上一点,连接DE、BF,若∠ADE与∠CBF的平分线DG、BG交于AC上一点G,连接EG.(1)如图1,点B、G、D在同一直线上,若∠CBF=90°,CD=3,EG=2,求CE的长;(2)如图2,若AG=AB,∠DEG=∠BCD,求证:AD=BF+DE.22.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.(1)当点B′恰好落在边CD上时,线段BM的长为______cm;(2)点M从点A运动到点B的过程中,若边MB′与边CD交于点E,求点E相应运动的路径长度.(3)当点A与点B′距离最短时,求AM的长.23.如图,在四边形ABCD中,∠A=∠B=∠BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=______;(2)当t=______时,点P运动到∠B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.24.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点,6).E、D,且D点坐标是(52(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.答案和解析1.【答案】C【解析】解:∵平行四边形ABCD中,∠A=100°,∴∠BCD=∠A=100°,∴∠1=180°−∠BCD=180°−100°=80°.故选:C.根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.2.【答案】C【解析】解:如图所示:∵AB//CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD//BC,则四边形ABCD是平行四边形.故选:C.利用平行线的判定与性质结合平行四边形的判定得出即可.此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD//BC是解题关键.3.【答案】C【解析】【分析】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB =2DE =10,∵AE =8,∴由勾股定理得:BE =AB 2−AE 2=6.故选C .4.【答案】B【解析】解:∵四边形ABCD 为平行四边形,∴AB//CD ,CD =AB =6,∴∠ABE =∠CEB ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠CBE =∠CEB ,∴CE =BC =4,∴DE =CD−CE =6−4=2.故选:B .根据四边形ABCD 为平行四边形可得AB//CD ,根据平行线的性质和角平分线的性质可得出∠CBE =∠CEB ,可得CE =BC =4,即可求得DE 的长度本题考查了平行四边形的性质、等腰三角形的判定以及角平分线定义等知识,解答本题的关键是根据平行线的性质和角平分线的性质得出∠CBE =∠CEB .5.【答案】D【解析】解:∵四边形ABCD 是平行四边形,AC =4,BD =m ,∴AO =12AC =2,OB =OD =12m ,在△AOB 中,AB−AO <BO <AB +AO ,即4<BO <8,∴8<2BO <16.即8<m <16.故选:D .根据平行四边形的性质,在△AOB 中,可根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边进行求解.本题主要考查平行四边形的性质和三角形三边关系的运用,属于基础题,注意掌握三角形的两边之和大于第三边,两边之差小于第三边.6.【答案】C【解析】解:过M 作MP ⊥AB 于P ,交DC 于Q ,如图所示:则四边形DEMQ ,四边形QMFC ,四边形AEMP ,四边形MPBF 都是矩形,∴S △DEM =S △DQM ,S △QCM =S △MFC ,S △AEM =S △APM ,S △MPB =S △MFB ,S △ABC =S △ADC ,∴S △ABC −S △AMP −S △MCF =S △ADC −S △AEM −S △MQC ,∴S 四边形DEMQ =S 四边形MPBF ,∵DE =CF =2,∴S △DEM =S △MFB =12×2×4=4,∴S 阴=4+4=8,故选:C .根据矩形的性质和三角形面积关系可证明S △DEM =S △BFM ,即可求解.本题考查了矩形的判定与性质、三角形的面积等知识,解题的关键是证明S 四边形DEMQ =S 四边形MPBF .7.【答案】B【解析】解:∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴OB =12BD =12×6=3,OA =OC =12AC =12×8=4,AC ⊥BD ,由勾股定理得,BC =OB 2+OC 2=32+42=5,∴AD =5,∵OE =CE ,∴∠DCA =∠EOC ,∵四边形ABCD 是菱形,∴∠DCA =∠DAC ,∴∠DAC =∠EOC ,∴OE//AD ,∵AO =OC ,∴OE是△ADC的中位线,AD=2.5,∴OE=12故选:B.根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记性质与定理是解题的关键.8.【答案】C【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,AB,∴AD=AE=12∴E是AB的中点,∴DE=BE,∠AED=30°,∴∠BDE=12∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,∴OE//AD,∵∠ADB=90°,∴∠EOB=90°,∴EO⊥DB,∴OE垂直平分BD.故④正确.故选:C.AB,求得∠ADB=90°,证得△ADE是等边三角形,由等边三角形的性质得出AD=AE=12即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;由三角形的中位线定理可得出OE//AD,则可得出EO⊥BD,则可得出结论.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及三角形的中位线定理的综合运用,熟练掌握性质定理和判定定理是解题的关键.9.【答案】C【解析】解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,在△DAO和△ABM中,∠DAO=∠ABM∠AOD=∠AMB=90°,AD=AB∴△DAO≌△ABM(AAS),∴BM=OA,∵A(−3,0),B(2,b),∴BM=OA=3,∴b=−3.故选:C.作BM⊥x轴于M.只要证明△DAO≌△ABM,推出OA=BM,AM=OD,由A(−3,0),B(2,b),推出OA=3,可得b=−3.本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质,解题的关键是学会添加常用辅助线构造全等三角形解决问题.10.【答案】B【解析】解:连接OP ,作PE ⊥AC ,PF ⊥BD 于点E ,F ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB ⋅BC =48,OA =OC ,OB =OD ,AC =BD =AB 2+BC 2=10,∴OA =OD =5,∴S △ACD =12S 矩形ABCD =24,∴S △AOD =12S △ACD =12,∵S △AOD =S △AOP +S △DOP =12OA ⋅PE +12OD ⋅PF =12×5×PE +12×5×PF =52(PE +PF)=12,解得:PE +PF =245,∵S △APC =12AC ⋅PE =12×10×PE =15,∴PE =3,∴PF =245−PE =245−3=95.故选:B .首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA =OD =5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =12OA ⋅PE +12OD ⋅PF 求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.【答案】70°【解析】解:∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A +∠C =140°,∴∠C =70°.故答案为:70°.由四边形ABCD 是平行四边形,根据平行四边形的对角相等,可得:∠A =∠C ,又由∠A +∠C =140°,即可求得答案.此题考查了平行四边形的性质.注意熟记定理是解此题的关键.12.【答案】6cm【解析】解:根据题意,画出图形如图示,∵点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE 、DF 、EF 都是△ABC 的中位线,∴DE =12BC ,DF =12AC ,EF =12AB ,∵△ABC 的周长是12cm ,∴AB +CB +AC =12cm ,∴DE +DF +FE =24÷2=6(cm).故答案是:6cm .先画出图形,由三角形的中位线定理可知:DE =12BC ,DF =12AC ,EF =12AB ,则以三角形三边中点为顶点的三角形的周长是原三角形周长的一半.本题主要考查了三角形的中位线定理以及三角形周长,解决问题的关键是熟练掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.13.【答案】2【解析】解:在矩形ABCD 中,对角线AC ,BD 交于点O ,∴AO =BO =CO =DO .∵∠AOD =120°,∴∠AOB =60°.∴△AOB 是等边三角形.∴AO =AB =2,∴CO =2,故答案为:2.依据矩形的性质可知△AOB 是等边三角形,所以AO =AB =2,则OC =AO =2.本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.14.【答案】12【解析】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=6cm,∴AB=2CD=12cm.故答案是:12.根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.15.【答案】23【解析】解:如图,连接AC,BD,∵OA=3,OB=1,∴AB=OA2+OB2=3+1=2,∵四边形ABCD是菱形,∴AB=BC=2,AC⊥BD,∴OC=1,∴AC=OA2+OC2=3+1=2,×AC×BD=BC×AO,∵S菱形ABCD=12=23,∴BD=2×2×32故答案为:23.由勾股定理可求AB,AC的长,由菱形的面积公式可求解.本题考查了菱形的性质,坐标与图形的性质,勾股定理等知识,掌握菱形的性质是解决问题的关键.16.【答案】(−2,3)或(4,5)【解析】解:∵正方形ABCD的边长为8,∴CD=DA=BC=AB=8,∵M(0,5),C(6,−3),∴A(−2,5),B(6,5),D(−2,−3),∴AM=2,BM=6,∴绕正方形ABCD一周的细线长度为8×4=32,∵2020÷32=63…4,∴细线另一端在绕正方形第63圈的第4个单位长度的位置,即在AB边或在AD边上,∴点N的坐标为(−2,3)或(4,5).故答案为:(−2,3)或(4,5).根据题意求出各点的坐标和正方形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.本题利用点的坐标考查了数字变化规律,根据点的坐标和正方形ABCD一周的长度,从而确定2020个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17.【答案】证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵DF=BE,∴OD+DF=OB+BE,即OF=OE,又∵OA=OC,∴四边形AECF是平行四边形.【解析】连接AC交BD于O,由平行四边形的性质得OA=OC,OB=OD,再证OF=OE,即可得出四边形AECF是平行四边形.本题考查了平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AD//BC,OB=OD,∴∠ODE=∠OBF,在△DOE和△BOF中,∠ODE=∠OBFOB=OD,∠DOE=∠BOF∴△△DOE≌△BOF(ASA),∴DE=BF.【解析】由四边形ABCD是平行四边形,可得AD//BC,OB=OD,继而可利用ASA,判定△DOE≌△BOF,继而证得DE=BF.本题主要考查平行四边形的性质及全等三角形的判定,应熟练掌握.19.【答案】解:(1)证明:延长BC至H,使CH=AE,连接DH,如图,∵四边形ABCD是正方形,∴AD=CD,∠A=∠DCE=90°.∴△DAE≌△DCH(SAS).∴DE=DH,∠ADE=∠CDH.∵∠ADC=90°,∠EDF=45°,∴∠ADE+∠FDC=45°.∴∠FDC+∠CDH=45°.即∠FDH=45°.∴∠EDF=∠FDH=45°.在△EDF和△HDF中,DE=DH∠EDF=∠HDF.DF=DF∴△EDF≌△HDF(SAS).∴EF=FH.∵FH=FC+CH=FC+AE,∴EF=AE+FC.(2)设EF=x,则FH=x.∵正方形ABCD的边长为3,∴AB=BC=3.∵AE=1,∴BE=2,CH=1.∴FC=x−1.∴BF=BC−CF=3−(x−1)=4−x.在Rt△BEF中,∵BE2+BF2=EF2,∴22+(4−x)2=x2..解得:x=52∴EF=5.2【解析】(1)延长BC至H,使CH=AE,连接DH,可得△DAE≌△DCH,则DE=DH,∠ADE=∠CDH;由于∠ADE+∠FDC=45°,所以∠FDC+∠HCD=45°,可得∠EDF=∠HDF,这样△EDF≌△HDF,可得EF=FH,结论得证;(2)设EF=x,由(1)的结论可知CF=x−1,BF=4−x,在Rt△BEF中,由勾股定理列出方程,解方程即可求解.本题主要考查了正方形的性质,三角形的全等的判定与性质,勾股定理.证明一条线段等于两条线段的和的题目一般采用补短法或截长法,通过构造三角形的全等来解决.20.【答案】=【解析】(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,AD=AE,∴OE=12故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,AD=5;∴OE=AE=12由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=AE2−EF2=52−42=3,∴BG=AB−AF−FG=10−3−5=2.(1)由菱形的性质得AC⊥BD,再由直角三角形的性质即可得出答案;(2)先证OE是三角形ABD的中位线,得到推出OE//FG,再证四边形OEFG是平行四边形,然后由矩形的判定定理即可得到结论;(3)先由菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=5;再由菱形的性质得FG=OE=5,然后由勾股定理得到AF=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,平行四边形的判定与性质,勾股定理,直角三角形的性质等知识;熟练掌握矩形的判定与性质是解题的关键.21.【答案】解:(1)∵∠CBF=90°,BD平分∠CBF,∴∠DBC=∠DBF=45°,∵四边形ABCD是平行四边形,∴AD//BC,BG=DG,∴∠ADB=∠DBC=45°,∵BD平分∠ADE,∴∠BDE=45°=∠DBC,∴△BDE是等腰直角三角形,∴BE=DE,∠BED=90°,BD=2DE,∵EG=2,BG=DG,∴DB=4,∴DE=22,在Rt△DEC中,CE=DC2−DE2=9−8=1;(2)如图2,在AD上截取MD=DE,连接MG,在△DGM和△DGE中,MD=DE∠ADG=∠EDG,DG=DG∴△DGM≌△DGE(SAS),∴∠DEG=∠DMG,∵∠DEG=∠BCD=∠BAD,∴∠DMG=∠BAD,∴AB//MG,∴∠BAF=∠AGM,∵AG=AB,∴∠ABG=∠AGB,∵∠ABG=∠ABF+∠FBG,∠AGB=∠GBC+∠GCB,∴∠ABF=∠BCG,又∵AD//BC,∴∠DAC=∠ACB=∠ABF,在△BAF和△AGM中,∠BAF=∠AGMAB=AG,∠ABF=∠MAG∴△BAF≌△AGM(ASA),∴AM=BF,∴AD=AM+DM=BF+DE.【解析】(1)由角平分线的性质和平行线的性质可证△BDE是等腰直角三角形,可求DE=22,在Rt△DEC中,利用勾股定理可求CE的长;(2)在AD上截取MD=DE,连接MG,由“SAS”可证△DGM≌△DGE,可得∠DEG=∠DMG,由“ASA”可证△DGM≌△DGE,可得AM=FB,可得结论.本题考查了平行四边形的性质,全等三角形的判定和性质,角平分线的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.22.【答案】5【解析】解:(1)如图1中,∵四边形ABCD是矩形,∴AB//CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′=B′C′2+C′N2=22+12=5(cm),∴BM=NB′=5(cm).故答案为:5;(2)如图1中,点B′恰好落在边CD上时,BM=NB′=5(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=x cm,在Rt△ADE中,则有x2=22+(4−x)2,解得x=52,∴DE=4−52=32(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5−1−2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5−1−5=(4−5)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2−32+2−(4−5)=(5−32)(cm).(3)如图5中,连接AN,当点B′落在AN上时,AB′的值最小,此时MN平分∠ANB.过点M 作MP ⊥AN 于点P ,MQ ⊥BN 于点Q .在Rt △ADN 中,AN =AD 2+DN 2=22+42=25,∵S △AMNS △MNB =AM BM =12⋅AN ⋅MP 12⋅BN ⋅MQ =255=2,∴AM =23AB =103.(1)运用矩形性质和翻折性质得出:MB′=NB′,再利用勾股定理即可求得答案;(2)探究点E 的运动轨迹,寻找特殊位置解决问题即可.(3)如图5中,连接AN ,当点B′落在AN 上时,AB′的值最小,此时MN 平分∠ANB.利用面积法求出AM :BM =2,可得结论.本题属于四边形综合题,考查了矩形的性质,翻折变换,勾股定理,轨迹等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型.23.【答案】6 8【解析】解:(1)BP =2t =2×3=6,故答案为:6;(2)作∠B 的角平分线交AD 于F ,∴∠ABF =∠FBC ,∵∠A =∠ABC =∠BCD =90°,∴四边形ABCD 是矩形,∵AD//BC ,∴∠AFB =∠FBC ,∴∠ABF =∠AFB ,∴AF=AB=4,∴DF=AD−AF=8−4=4,∴BC+CD+DF=8+4+4=16,∴2t=16,解得t=8.∴当t=8时,点P运动到∠ABC的角平分线上;故答案为:8;(3)根据题意分3种情况讨论:①当点P在BC上运动时,S△ABP=12×BP×AB=12×2t×4=4t;(0<t<4);②当点P在CD上运动时,S△ABP=12×AB×BC=12×4×8=16;(4≤t≤6);③当点P在AD上运动时,S△ABP=12×AB×AP=12×4×(20−2t)=−4t+40;(6<t≤10);(4)当0<t<6时,点P在BC、CD边上运动,根据题意分情况讨论:①当点P在BC上,点P到四边形ABED相邻两边距离相等,∴点P到AD边的距离为4,∴点P到AB边的距离也为4,即BP=4,∴2t=4,解得t=2s;②当点P在BC上,点P到AD边的距离为4,∴点P到DE边的距离也为4,∴PE=DE=5,∴PC=PE−CE=2,∴8−2t=2,解得t=3s;③当点P在CD上,如图,过点P作PH⊥DE于点H,点P到DE、BE边的距离相等,即PC=PH,∵PC=2t−8,∴PD =DC−PC =12−2t ,∴2t−812−2t =35,解得t =194.综上所述:t =2s 或t =3s 或t =194s 时,点P 到四边形ABED 相邻两边距离相等.(1)根据题意可得BP =2t ,进而可得结果;(2)根据∠A =∠B =∠BCD =90°,可得四边形ABCD 是矩形,根据角平分线定义可得AF =AB =4,得DF =4,进而可得t 的值;(3)根据题意分3种情况讨论:①当点P 在BC 上运动时,②当点P 在CD 上运动时,③当点P 在AD 上运动时,分别用含t 的代数式表示△ABP 的面积S 即可;(4)当0<t <6时,点P 在BC 、CD 边上运动,根据题意分情况讨论:①当点P 在BC 上,点P 到AD 边的距离为4,点P 到AB 边的距离也为4,②当点P 在BC 上,点P 到AD 边的距离为4,点P 到DE 边的距离也为4,③当点P 在CD 上,点P 到AB 边的距离为8,但点P 到AB 、BC 边的距离都小于8,进而可得当t =2s 或t =3s 时,点P 到四边形ABED 相邻两边距离相等.本题考查了平行四边形的性质、角平分线定义、三角形的面积、全等三角形的判定与性质,解决本题的关键是综合运用以上知识.24.【答案】解:(1)∵点D 坐标是(52,6),B 点的坐标是(4,6),四边形OABC 为矩形,∴BC =AO =4,OC =AB =6,CD =52,BD =BC−CD =32,∵将矩形沿直线DE 折叠,∴DF =CD =52,∴BF =DF 2−DB 2=254−94=2,∴AF =6−2=4,∴点F(4,4).(2)如图2中,连接PF 交DE 于J .当四边形EFDP 是矩形时,△PDE≌△FED≌△CED ,∵C(0,6),F(4,4),∴直线CF 的解析式为y =−12x +6,∵DE 垂直平分线段CF ,∴直线DE 的解析式为y =2x +1,∴E(0,1),D(52,6),∵DJ =JE ,∴J(54,72),∵PJ =JF ,∴P(−32,3).(3)如图3中,连接FN ,以FN 为对角线构造正方形NMFM′,连接MM′交FN 于K .设N(m,2m +1),则K(m +42,2m +52),M(7−m 2,3m +12),M′(3m +12,m +92),当点M 落在x 轴上时,3m +12=0,解得m =−13,当点M′落在X 轴上时,m +92=0,解得m =−9,∴满足条件的点N 的坐标为(−13,13)或(−9,−17).【解析】(1)由折叠的性质可得DF =CD =52,由勾股定理可求BF 的长,即可求解;(2)如图2中,连接PF 交DE 于J.当四边形EFDP 是矩形时,△PDE≌△FED≌△CED ,构建一次函数求出点E ,点D 坐标,求出点J 的坐标即可解决问题.(3)如图3中,连接FN ,以FN 为对角线构造正方形NMFM′,连接MM′交FN 于K.用m 的代数式表示出点M,M′的坐标,根据点M,M′在x轴上时,纵坐标为0构建方程求解即可.本题属于四边形综合题,考查了矩形的性质,翻折变换,一次函数的应用等知识,解题的关键是学会构建一次函数解决问题,学会利用参数解决问题,属于中考压轴题.。
人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题一、选择题(30分)1.甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等2.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( )A .20B .24C .30D .483.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( )A .120°B .60°C .30°D .15°4.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,H 为CD 边中点,正方形ABCD 的周长为8,则OH 的长为( )A .4B .3C .2D .15.如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm 6.如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则()ABCD 6AB =BD BED BC =A.8B.10C.12D.147.将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形B.菱形C.正方形D.梯形8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的一侧取一点C,连接CA并延长至点D,连接CB并延长至点E,使A、B分别是CD、CE的中点,若DE=16m,则线段AB的长度是( )A.12m B.10m C.9m D.8m9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.如图,在平行四边形ABCD 中,,,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于的长为半径画弧,两弧相交于点N,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .1B .2C .3D .4二、填空题(15分)11.已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.13.如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则等于______.14.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.15.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.①;②;③.上述结论正确的是__________.4AB =5BC =12PQ PE PF +BG CE =CE BG ⊥120AME ∠=︒三、解答题(75分)16.如图,点O 是△ABC 外一点,连接OB 、OC ,线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,连接DE 、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM =2,∠OBC 和∠OCB 互余,求线段DG 的长.17. 如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC .(2)当∠DAB =60°时,四边形BECD 为菱形吗?请说明理由.18.如图,四边形是平行四边形.求:(1)和的度数;(2)和的长度.19.如图,在矩形ABCD 中,已知AB =4,∠DBC =30°,求AC的长.ABCD ADC ∠BCD ∠AB BC20.如图,在中,点E ,H ,F ,G 分别在边上,,,与相交于点O ,图中共有多少个平行四边形?21.如图,A ,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A ,B 间的距离:先在外选一点C ,然后步测出的中点M ,N ,并测出的长,如果M ,N 两点之间还有阻隔,你有什么解决办法?说明你的理由.22.如图,在平行四边形中,过点作于点,点在边上,且,连接、.(1)求证:四边形是矩形;(2)若平分,,,求的长.23.如图,在四边形ABCD 中,,,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作交AB 的延长线于点E.ABCD ,,,AB BC CD DA //AD EF //CD GH EFGH AB ,AC BCMN ABCD D DE AB ⊥E F CD FC A E =AFBF DEBF AF DAB ∠6FC =10DF =BF AB DC ∥AB AD =CE AB⊥(1)求证:四边形ABCD 是菱形;(2)若,,求CE 的长.【参考答案】1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.D 9.B 10.A11.412.513.814.15.①②16.解:(1)四边形DEFG 是平行四边形,理由是:∵线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,∴EF ∥BC ,EF=BC ,DG ∥BC ,DG =BC ,∴EF ∥DG ,EF =DG ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =180°﹣90°=90°,∴∠EOF =90°,△EOF 为直角三角形,∵M 为EF 的中点,OM =2,∴EF =2OM =4,∵EF =DG ,∴DG =4.17.(1)证明:四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD ,∴四边形BECD 是平行四边形,∴BD =EC ;(2)解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,8AC =6BD =6+1212∴AD =AB ,∵∠DAB =60°,∴△ADB ,△DCB 都是等边三角形,∴DC =DB ,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.18.解:(1)∵四边形ABCD 是平行四边形∴ ,∵∴(2)∵四边形ABCD 是平行四边形∴∵∴19.解:∵四边形ABCD 是矩形,∴CD =AB =4,AC =BD ,∠BCD =90°,又∵∠DBC =30°,∴BD =2CD =2×4=8,∴AC =8.20.四边形是平行四边形,,,,平行四边形有:ABCD ,ABHG ,CDGH ,BCFE ,ADFE ,AGOE ,BEOH ,OFCH ,OGDF 共9个,共有9个平行四边形.21.解:用步测出CM ,CN 中点D 、E , 只要测量出DE 长便可求出AB ,∵点D 、E 分别为CM ,CN 的中点,∴DE =(三角形的中位线平行于第三边,并且等于第三边的一半),又∵点M ,N 分别为的中点,∴MN =(三角形的中位线平行于第三边,并且等于第三边的一半),∴AB =2MN =4DE .∴只要测量出DE 长便可求AB .=ADC B ∠∠180B BCD ∠+∠=56B =∠5618056124ADC BCD ∠=∠=-=,=,AB DC BC AD=25,30DC AD ==25,30AB BC == ABCD ∴//,//AB CD AD BC //AD EF //CD GH //,//AB GH BC EF∴∴ ∴12MN ,AC BC 12AB22.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,即,∴四边形是平行四边形,又∵,∴,∴平行四边形是矩形;(2)∵平分,∴,∵,∴,∴,∴,在中,,由勾股定理得:,由(1)得四边形是矩形,∴.23.(1)证明:∵,∴,∵AC 平分∠BAD ,∴,∴,∴,∵AB=AD ,∴,∵,ABCD //CD AB CD AB =FC A E =CD FC AB AE -=-DF BE =DEBF DE AB ⊥90DEB ∠=︒DEBF AF DAB ∠DAF BAF ∠=∠//CD AB DFA BAF ∠=∠DFA DAF ∠=∠10AD DF ==Rt AED △6AE FC ==8DE ===DEBF 8BF DE ==//AB DC OAB DCA ∠=∠OAB DAC ∠=∠DAC DCA ∠=∠CD AD =AB CD =//AB DC∴四边形ABCD 是平行四边形,又∵,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =6,AC =8,∴,,,∴,在中,根据勾股定理可知,,∴菱形的面积,∵,∴菱形面积,∴AB AD =118422OA OC AC ===⨯=BD AC ⊥116322OB OD BD ===⨯=90AOB ∠=︒Rt AOB△5AB ===11862422S AC BD ==⨯⨯= CE AB ⊥524S AB CE CE === 245CE =。
部编人教版初二数学上册第18章《平行四边形》单元测试5

平行四边形的判定单元检测卷一、选择题(每题3分,共36分)1.下列条件能判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角互补C.一组对边平行,一组对角相等 D.两条对角线互相垂直2.用两个边长均为a的等边三角形纸片拼成的四边形是()A.等腰梯形 B.矩形 C.正方形 D.菱形3.如图,线段AC,BD相交于点O,欲使四边形ABCD成为等腰梯形,•需满足的条件是() A.AO=CO,BO=DO B.AO=CO,BO=DO,∠AOB=90°C.AO=DO<BO=CO D.AO=DO,∠AOD=90°图1 图2 图34.四边形ABCD中,若(1)∠A+∠B=180°,∠C+∠D=180°;(2)∠A+∠D=180°, ∠B+∠C=180°;(3)∠A+∠B=180°,∠B+∠C=180°;(4)∠A+∠C=180°,∠B+∠D= 180°.其中能判定四边形ABCD是平行四边形的有()A.0个 B.1个 C.2个 D.3个5.下列说法中,不正确的是()A.既是矩形,又是菱形的四边形是正方形 B.正方形是对角线相等的菱形C.正方形是对角线互相垂直的矩形 D.正方形是对角线互相平分的平行四边形6.下列命题中正确的是()A.对角线相等的四边形是矩形 B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形 D.对角线互相垂直且相等的四边形是正方形7.在下列性质中:①对角线互相平分;②对边相等;③对角线互相垂直且相等;④对角相等.矩形和菱形都具有的性质是()A.①②③ B.①②④ C.①③ D.③④8.如图2所示,□ABCD中,下列结论不一定正确的是()A.AB=CD B.AC=BDC.当AC⊥BD时,它是菱形 D.当∠ABC=90°时,它是矩形9.如图3所示,四边形ABCD的对角线AC,BD交于点O.下列条件中,•可判定四边形ABCD 为矩形的是()A.AC=BD B.△AOB是等边三角形C.AO=CO=BO=DO D.∠ABC+∠BCD+∠CDA+∠DAB=360°10.如图4所示,下列矩形中按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是()图411.如图5所示,四边形ABCD的对角线AC,BD相交于点O.能说明四边形ABCD•是菱形的有()①BD⊥AC;②OA=OC,OB=OD,AB=BC;③AC=BD;④AB∥CD,AB=BC.A.① B.①③ C.② D.③④图5 图6 图712.四边形ABCD中,∠A,∠B,∠C,∠D的度数比是1:2:2:3,则这个四边形是() A.平行四边形 B.等腰梯形 C.菱形 D.直角梯形二、填空题(每题3分,共12分)13.如图6所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO 于G,•若AB=10厘米,则四边形EGOF的周长是_______厘米.14.如图7所示,在△ABC中,AD⊥BC于点D,E,F分别是AB,AC边的中点,连结DE,EF,FD.当△ABC满足条件_________时,四边形AEDF是菱形(•填一个你认为恰当的条件即可).15.如图8所示,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分的面积为______cm2.D A CB图8 图916.如图9所示,若将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,•并使其面积为矩形木框的一半,•则这个平行四边形木框的最小的一个内角为________.(提示:在直角三角形中,30°的角所对的直角边等于斜边的一半)三、解答题(21题12分,其余每题10分,共52分)17.如图所示,菱形ABCD的对角线相交于点O,AE∥BD,BE∥AC,AE,BE相交于点E,那么四边形OAEB是矩形吗?说明理由.18.如图所示,O为□ABCD对角线AC的中点,EF经过点O交AD于点E,交BC于点F,连结BE,DF,试说明四边形BEDF为平行四边形.19.如图所示,在□ABCD中,延长DC到点E,使BE=BC;(1)四边形ABED是否为等腰梯形,请说明理由;(2)若∠D=60°,AB=3,过点C作CF⊥BE,垂足为F,且CF=3,求DE的长及□ABCD 的面积.参考答案一、1.C2.D 点拨:因为等边三角形的每个内角都为60°,故不能拼成矩形和正方形,又因为梯形的上,下底不相等,故也不能拼成等腰梯形,所以应选D.3.C 点拨:因为AO=DO,BO=CO,∠AOB=∠DOC,所以△AOB≌△DOC,所以AB=DC,•又易求得四边形ABCD是梯形,所以四边形ABCD是等腰梯形.4.B 点拨:只有(3)才能判定四边形ABCD为平行四边形.5.D 点拨:熟练把握矩形,菱形,正方形以及平行四边形四者之间的关系是解此题的关键.6.B7.B 点拨:矩形和菱形都具有平行四边形的性质.8.B 点拨:平行四边形的对角线互相平分,但不一定相等.9.C 点拨:OA=OC,OB=OD,所以四边形ABCD是平行四边形,•又因为AC=•BD,•所以ABCD 是矩形.10.B 点拨:找矩形纸按题目要求剪切,然后再拼一拼,只有B符合要求.11.C12.D 点拨:设∠A=x°,则∠B=2x°,∠C=2x°,∠D=3x°,因为∠A+∠B+∠C+∠D=360°,即x°+2x°+2x°+3x°=360°,所以x°=45°,即∠A=45°,∠B=90°,∠C=90°,∠D=135°,该四边形是直角梯形.二、13.102点拨:因为EF=BF,EG=FO,所以四边形EGOF的周长等于正方形的对角线长.14.AB=AC(或∠B=∠C,或BD=DC)点拨:因为AB=AC,AD⊥BC,所以BD=DC.又因为AE=BE,所以DE∥AC.同理可得DF ∥AB,所以四边形AEDF是平行四边形.又因为AE=12AB,AF=12AC,AB=AC,•所以AE=AF,•所以□AEDF是菱形.15.30 点拨:因为AB=DC=8cm,CE=3cm,所以DE=5cm,由对称知识可知EF=DE=5cm,则在Rt△ECF中,FC=4cm.设AD=xcm,则AF=xcm.BF=BC-FC=(x-4)cm.在Rt△ABF中,AF2=AB2+BF2,即x2=82+(x-4)2.解得x=10.所以BF=6cm,所以S阴影=S Rt△ABF+S Rt△ECF=12AB·BF+12FC·CE=12×8×6+12×4×3=30(cm2).16.30° 点拨:由题意知平行四边形木框的高为AD的一半,•由直角三角形中30°角所对的直角边等于斜边的一半可得,∠DAB=30°.三、17.解:四边形OAEB是矩形,理由:因为AE∥BO,BE∥AO,所以四边形OAEB是平行四边形,又因为四边形ABCD是菱形,故AC⊥DB.所以∠AOB=90 °,•所以平行四边形OAEB是矩形.点拨:此题综合考查了菱形的性质与矩形的判定方法.18.解法一:在□ABCD中,AD//CB,OA=OC,所以∠EAO=∠FCO,又∠AOE=∠COF,•所以△AOE≌△COF,所以AE=CF,因为AD//BC,所以(AD-AE)//(BC-CF),•即DE//BF,•所以四边形BEDF为平行四边形.解法二:连结BD,如答图20-1所示,则AC,BD互相平分,BD必过点O.同解法一得,△AOE≌△COF,所以OE=OF,所以四边形BEDF为平行四边形.点拨:本题的两种解法或用一组对边平行且相等,或用对角线互相平分,•但是无论哪种解法,都要利用三角形全等来得到相等20.解:(1)四边形ABED是等腰梯形,理由:因为四边形ABCD•是平行四边形,• 所以AB∥CD,AD=BC,又AD与BE不平行,所以四边形ABED是梯形,因为BC=BE,所以AD=BE,•所以四边形ABED是等腰梯形;(2)因为∠D=60°,所以∠BCE=60°,所以△BCE 是等边三角形.在Rt△BCF中,设BC=x,则BF=12x,(12x)2+(3)2=x2,x2=4,x=2,所以DE=DC+CE=3+2=5.过B作BH⊥DE于H(如答图20-3),则BH=CF=3,且BH也是ABCD的高,所以S ABCD =AB·BH=33.点拨:•本题中巧妙利用等边三角形的高都相等,这是关键一步.21.解:李颖折出的菱形的面积为:12×12×5=30(cm2).设张丰折出的菱形的边长为xcm,则有(12-x)2=x2-52,解得x=169 24,所以张丰折出的菱形的面积为16924×5=84524≈35.21(cm2),因为35.21>30,所以张丰所折的菱形面积较大.点拨:•分别利用菱形面积公式求出各自折叠的菱形面积,然后进行比较即可。
人教版数学四年级上册 平行四边形和梯形 单元测试(含答案)

人教版数学四年级上册-5.平行四边形和梯形-单元测试一、单选题(本大题共8小题,共40分)1.将一个平行四边形沿高剪开,不可能得到().A. 一个三角形和一个梯形B. 一个平行四边形和一个梯形C. 两个三角形D. 两个梯形2.下图中两个三角形的( )相等.A. 底B. 高C. 面积3.数一数,如图中有()组线段是互相平行的.A. 5B. 4C. 34.在同一平面内,如果a⊥b,b∥c,那么a()c.A. 平行B. 垂直C. 相交D. 无法判断5.一个平行四边形的周长是38cm,其中一条边的长是13cm,则相邻的另一条边的长是()A. 25cmB. 12.5 cmC. 12cmD. 6cm6.图()中的两条直线是互相垂直的.A. B. C.D.7.用木条钉成一个长方形框,沿对角线拉成一个平行四边形.这个平行四边形与原来的长方形相比周长()A. 不变B. 变大C. 变小D. 无法判断8.如图,两条平行线之间有3条垂直线段,这3条垂直线段的关系是()A. 互相平行B. 长度相等C. 互相平行且长度相等D. 没有关系二、填空题(本大题共5小题,共25分)9.同一平面内的两条直线相交成(________)时,这两条直线叫做互相垂直;其中一条直线叫做另一条直线的(________),这两条直线的交点叫(________)。
10.已知一个平行四边形的两条边分别长12厘米、9厘米,那么,它的周长是____厘米.11.如图几组直线中互相垂直的是____,互相平行的是____.12.在纸上画1个点,经过这个点能画____条直线;在纸上任意画2个点,经过这两个点能画____条直线;在纸上任意画3个点.每次经过其中的两个点,最多能画____条直线.13.如图中有____组线段互相垂直.三、解答题(本大题共5小题,共25分)14.如图是一块三角形土地,请你画出从A地到BC道路的最短距离.15.画出一个梯形,上底3厘米,下底4厘米,高2厘米,且两条腰相等.16.(1)过A点画已知角两边的垂线段.(2)用三角板去验一验,已知角的度数是____度.(3)观察图中两个形成的三角形,你发现了____.17.用画平行线的方法,画一个相邻的边分别是4厘米和3厘米且有两个角是60°的平行四边形.18.要画出直线AB的垂线,这样画对吗?为什么?答案和解析1.【答案】B;【解析】故答案为B2.【答案】B;【解析】略3.【答案】C;【解析】解:观察图形可知,三角形内部的三条线段分别与三角形的三条边分别平行,所以一共有3组互相平行的线段;故选:C.4.【答案】B;【解析】解:在同一平面内,如果a⊥b,b∥c,那么a⊥c.故选:B.5.【答案】D;【解析】解:(38-2×13)÷2=12÷2=6(厘米)答:和它相邻的另一条边长6厘米.故选:D.6.【答案】C;【解析】解:由分析可知:只有C中的两条直线互相垂直.故答案为:C.7.【答案】A;【解析】解:用木条钉成一个长方形框,沿对角线拉成一个平行四边形.这个平行四边形与原来的长方形相比周长不变;故选:A.8.【答案】C;【解析】解:两条平行线之间有3条垂直线段,这3条垂直线段的关系是平行且相等;故选:C.9.【答案】直角;垂线;垂足;【解析】根据垂直、垂线、垂足的定义解答即可。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
人教版-八下数学第十八章《平行四边形》单元测试题及答案

进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.
人教版八年级下册数学 第十八章 平行四边形 单元测试题

人教版八年级下册数学第十八章平行四边形单元测试题一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)▱ABCD的顶点坐标分别是为A(2,8),B(5,2),C(10,4),则点D的坐标是()A.(6,10)B.(10,7)C.(7,10)D.(10,8)2.(4分)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.OA=OC,OB=OD D.AB∥DC,AD=BC3.(3分)菱形具有而矩形不一定具有的性质是()A.对角线相等 B.对角线平分对角 C.对角线互相平分 D.对角相等4.(3分)如图,▱ABCD中,点O是对角线AC、BD的交点,过点O的直线分别交AD、BC于点M、N,若△CON的面积为3,△DOM的面积为5,则▱ABCD的面积是()A.16 B.24 C.32 D.405.(3分)如图,在▱ABCD中,∠A=110°,则∠1的度数为()A.70°B.65°C.60°D.110°6.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°7.(3分)如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 长为( )A .8B .10C .12D .148.(3分)如图,将矩形ABCD 沿EF 折叠后点D 与B 重合.若原矩形的长宽之比为3:1,则AE BF 的值为( )A .12B .13C .34D .45 9.(3分)如图,矩形ABCD 的周长为1,连接矩形ABCD 四条边中点得到四边形A 1B 1C 1D 1,再连接四边形A 1B 1C 1D 1四条边中点得到四边形A 2B 2C 2D 2,如此继续下去,…,则四边形A 10B 10C 10D 10的周长为( )A .(12)5B .(12)10C .(14)5D .(14)1010.(3分)如图,点E 为正方形ABCD 内一点,∠AEB =90°,将Rt △ABE 绕点B 按顺时针方向旋转90°,得到△CBG .延长AE 交CG 于点F ,连接DE .下列结论:①AF ⊥CG ,②四边形BEFG 是正方形,③若DA =DE ,则CF =FG ;其中正确的结论是( )A .①②③B .①②C .②③D .①③二.填空题(共6小题,每小题3分,共18分)11.(3分)如图,平行四边形ABCD中,AC,BD交于点O,且AC+BD=36,AB=11,则△AOB的周长是.12.(3分)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF;把纸片展平,再折一次纸片,使得折痕经过点B,得到折痕BM,同时使得点A的对称点N落在EF上,如果AB=2√3,则AM=.13.(3分)一个平行四边形的一条边长是9,两条对角线的长分别是12和6√5,这个平行四边形的周长是.14.(3分)如图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为.15.(3分)如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,过D作AE的垂线,垂足为点.H,连接BH并延长,交CD于点F,连接DE交BF于点O,则下列结论:①△ABE≌△AHD;②∠AED=∠CED;③BH=FH;④CD=FH;⑤BC﹣CF=HE,其中正确的是.(填序号)16.(3分)如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是BC边上的任意一点,过点E分别向BD,AC作垂线,垂足分别为F,G,则四边形OFEG的周长是.三.解答题(共9题,共72分)17.(6分)如图,在▱ABCD中,E,F分别为AD,BC边上的点,AF⊥BC,DE=BF.(1)求证:四边形AFCE是矩形;(2)若∠B=60°,AB=2,四边形AFCE是正方形,直接写出BC的长.18.(6分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE,CF,求证:四边形AECF是平行四边形.19.(6分)无刻度直尺作图:(1)直接写出四边形ABCD的形状.(2)在图1中,先过E点画一条直线平分四边形ABCD的面积,再在AB上画点F,使得AF=AE.(3)在图2中,先在AD上画一点G,使得∠DCG=45°;连接AC,再在AC上画点H,使得GH=GA.20.(6分)如图,在正方形ABCD中,AB=4,E是BC的中点,F是CD上一点,且DF=3CF.(1)求证:AE⊥EF;(2)求四边形AEFD的面积.21.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AE是折痕.(1)如图1,若AB=4,AD=5,求折痕AE的长;(2)如图2,若AE=√5,且EC:FC=3:4,求矩形ABCD的周长.22.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.23.(10分)如图1,在平面直角坐标系中,四边形AOCB为正方形.(1)点E、F分别在边OC、BC上,若OE=BF,∠EAF=60°,①若AE=2,求EC的长;②点G在线段FC上,∠AGC=120°,求证:AG=EG+FG;(2)如图2,在平面直角坐标系中,OC=3,点E、F分别是边OC、BC上的动点,且OE=CF,AE与OF 相交于点P.若点M为边OC的中点,点N为边BC上任意一点,则MN+PN的最小值等于.24.(10分)在菱形ABCD中,∠ABC=60°,E为动点.(1)如图1,当点E在线段AB上,且∠CEN=60°时,求证:CE=EN;(2)如图2,当E在对角线BD的延长线上,且△AEN为等边三角形时,求证:CN⊥AD.25.(12分)在▱ABCD中,点E是AB的中点,点P是BC上一点,连接DE,交AP于点M.N是AP上一点,且AM=MN,连接BN并延长交DC于点F.(1)如图1,求证:四边形EBFD是平行四边形;(2)如图2,连接MC交BF于点H,过点A作AG∥MC交DE于点G.①求证:MC=2AG;AB2=a2+4b2,直接写出▱ABCD的面积(用含a,b ②当点P为BC中点时,若BF=a,AP=b,且254的式子表示).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=12AB;②图中与△EGD 全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④ S四边形ODGF= S△ABF.其中正确的结论是()A.①③B.①③④C.①②③D.②②④2.如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤22PD=EC.其中有正确有()个.A.2 B.3 C.4 D.53.如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为()A.2 B.3 C.23D.434.如图,已知直线l//AB,l与AB之间的距离为2.C、D是直线l上两个动点(点C在D 点的左侧),且AB=CD=5.连接AC、BC、BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D 不重合时,连接A′、D,则∠CA′D+∠BC A′=180°;④若以A′、C、B、D为顶点的四边形为矩形,则此矩形相邻两边之和为57.其中正确的是( )A .①②③④B .①③④C .①②④D .①②③5.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .22D .236. 如图,平行四边形ABCD 对角线AC 、BD 交于点O ,∠ADB=20°,∠ACB=50°,过点O 的直线交AD 于点E ,交BC 于点F 当点E 从点A 向点D 移动过程中(点E 与点A 、点D 不重合),四边形AFCE 的形状变化依次是( )A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→矩形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形7.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A.1 B.2 C.3 D.49.如图,在ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,M为EF中点,则AM的最小值为()A.6013B.3013C.2413D.121310.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②△APD一定是等腰三角形;③AP⊥EF;④2PD=EF.其中正确结论的番号是()A.①③④B.①②③C.①③D.①②④二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.12.如图所示,菱形ABCD,在边AB上有一动点E,过菱形对角线交点O作射线EO与CD 边交于点F,线段EF的垂直平分线分别交BC、AD边于点G、H,得到四边形EGFH,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH;②可以得到无数个矩形EGFH;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.13.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.15.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.16.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.17.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.18.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,19.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.22.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.23.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.①当点Q与点C重合时,(如图2),求菱形BFEP的边长;②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.26.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.27.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC 上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.如图,在矩形ABCD 中,AD =nAB ,E ,F 分别在AB ,BC 上.(1)若n =1,AF ⊥DE .①如图1,求证:AE =BF ;②如图2,点G 为CB 延长线上一点,DE 的延长线交AG 于H ,若AH =AD ,求证:AE +BG =AG ;(2)如图3,若E 为AB 的中点,∠ADE =∠EDF .则CF BF的值是_____________(结果用含n 的式子表示).30.如图,矩形ABCD 中,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)若四边形DEBF 是菱形,则需要增加一个条件是_________________,试说明理由; (3)在(2)的条件下,若AB=8,AD=6,求EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12 CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°, ∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。