北师大版八年级数学下册第6章《平行四边形》单元测试题(含答案)
第6章 平行四边形 单元测试(基础过关)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)

第6章平行四边形单元测试(基础过关)一、单选题1.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【答案】B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2.如图,在平行四边形ABCD中,下列结论中错误的是().A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【答案】D【解析】试题分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选D.3.如图,AB∥CD,AD∥BC,则下列各式中正确的是()A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3大小无法确定【答案】B【解析】【分析】先判定四边形ABCD是平行四边形,再根据平行四边形的对角相等和三角形外角的性质进行判断即可.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠3+∠BCD=180°,∠1+∠2+∠A=180°,∴∠1+∠2=∠3.故选B.【点睛】考查平行四边形的性质和判定.平行四边形的判定方法共有多种,应用时要认真领会它们之间的联系与区别,同时要根据条件,合理、灵活地选择方法.4.某班同学在学完平行四边形的判定后,开展了一次课外活动课,课上探索出如下结论,其中正确的是()A.当四边形的一组邻角相等且一组对角互补时,此四边形一定为平行四边形B.当四边形的一组对角相等且一组对边相等时,此四边形一定为平行四边形C.当四边形的一组邻角相等且一组对边平行时,此四边形一定为平行四边形D.当四边形的一组对角相等且一组邻角互补时,此四边形一定为平行四边形【答案】D【解析】【分析】根据给出的条件,利用平行四边形的判定定理判定即可.A、等腰梯形满足此条件,但不是平行四边形,故此选项错误;B、根据条件“一组对边相等,一组对角相等”证不出是平行四边形,故此选项错误;C、等腰梯形也满足此条件,但不是平行四边形,故此选项错误;D、一组邻角互补,一组对角相等,可得到任意两对邻角互补,那么可得到两组对边分别平行,为平行四边形,故此选项正确;故选D.【点睛】此题主要考查了平行四边形的判定.关键是熟练掌握平行四边形的判定定理.①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.5.如图,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,则△DEF 的面积等于A.4B.5C.6D.7【答案】C【解析】【分析】根据三角形中位线的性质易得所求三角形的三边,判断出形状后可直接求得面积.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC,又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形,∴S△EDF=12DE•DF=12×3×4=6(cm2).故选C.【点睛】本题考查三角形中位线等于第三边的一半的性质;要注意,根据三角形中位线定理解得所求三角形三边的长后要先判断三角形的形状,不要盲目求解.6.如图,在▱ABCD中,O为对角线AC的中点,AC⊥AB,E为AD的中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.143°B.127°C.53°D.37°【答案】A【解析】【分析】首先根据平行四边形的性质得到:∠BAC=∠DCA=90°,然后根据点O为AC的中点,点E 为AD的中点利用中位线定理得到OE∥CD,从而得到∠AOE=∠ACD=90°,然后根据OF⊥BC得到∠FOC=∠B=53°,从而得到∠EOF=∠EOC+∠FOC=90°+53°=143°.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AC⊥AB,∴∠BAC=∠DCA=90°,∵点O为AC的中点,点E为AD的中点,∴OE∥CD,∴∠COE+∠ACD=180°,∴∠COE=90°∵∠D=∠B=53°,OF⊥BC,∴∠FOC=∠B=53°,∴∠EOF=∠EOC+∠FOC=90°+53°=143°,故选A.【点睛】本题考查了平行四边形的性质,三角形中位线,解题的关键是能够根据题意并利用中位线定理确定答案.7.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB 中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°【答案】B【解析】试题分析:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°.∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°.∴∠PDC=90°.∴由折叠的性质得到∠CDE=∠PDE=45°.在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.8.如图,已知▱ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC.若EF=2,FG=GC=5,则AC的长是()A.12B.13C.D.【答案】B【解析】如图,设AC与DF交于M,AC与EH交于N,∵四边形ABCD是平行四边形,▱ABCD的四个内角的平分线分别相交于点E、F、G、H,∴四边形EFGH是矩形,△ABE≌△CDG,△AEN≌△CGM,∴FG=EH=CG=5,EF=GH=2,CH=7,EN=GM,CM=AN,∵EH=FG,∴FM=NH,设GM=EN=x,则HN=FN=5﹣x,∵GM∥HN,∴MG CG HN CH=,∴5 57 xx=-,∴x=25 12,在Rt △CMG 中,CM =AN 6512,在Rt △CNH 中,CN 9112,∴AC =AN +CN =6512+9112=13,故选B .【点睛】本题考查了平行四边形的性质,勾股定理等,能正确地利用勾股定理进行解题是关键.9.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则()A .AHE BGE∠>∠B .AHE BGE ∠=∠C .AHE BGE∠<∠D .AHE ∠与BGE ∠的大小关系不确定【答案】B【解析】【分析】连接BD ,取中点I ,连接IE ,IF ,根据三角形中位线定理得IE =122AD ,且平行AD ,IF =12BC 且平行BC ,再利用AD >BC 和IE ∥AD ,求证∠AHE =∠IEF ,同理可证∠BGE =∠IFE ,再利用IE >IF 和∠AHE =∠IEF ,∠BGE =∠IFE 即可得出结论.连接BD ,取中点I ,连接IE ,IF∵E ,F 分别是AB ,CD 的中点,∴IE,IF分别是△ABD,△BDC的中位线,∴IE=12AD,且平行AD,IF=12BC且平行BC,∵AD=BC,∴IE=IF,∵IE∥AD,∴∠AHE=∠IEF,同理∠BGE=∠IFE,∵在△IEF中,IE=IF,∴∠IFE=∠IEF,∵∠AHE=∠IEF,∠BGE=∠IFE,∴∠BGE=∠AHE.故选:B.【点睛】此题主要考查学生对三角形中位线定理和三角形三边关系等知识点的理解和掌握,有一定的拔高难度,属于难题.10.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是()A.②④B.①②④C.①②③④D.②③④【答案】B【解析】【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF可得这两个三角形的面积相等,再由MC>BE易得S△BEC <2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF DF AFE DFM ⎧⎪⎨⎪=∠=∠=∠⎩∠,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯= ,12BEC S BE CE =⨯ ∴S △BEC <2S △EFC ,故S △BEC =2S △CEF ,故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.二、填空题11.在平行四边形ABCD中,∠B+∠D=200°,则∠A的度数为____.【答案】80°【解析】【分析】利用平行四边形的对角相等、邻角互补可求得答案.详解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°.故答案为:80°.【点睛】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等、邻角互补.12.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.【答案】6【解析】【分析】由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.解:如图:∵△ABC中,D、E分别是AB、AC边上的中点,∴DE是三角形的中位线,∵DE=3cm,∴BC=2DE=6cm.故答案为:6.【点睛】本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.13.若n边形的内角和是它的外角和的2倍,则n=_______.【答案】6【解析】【分析】此题涉及多边形内角和和外角和定理.解:多边形内角和=180(n-2),外角和=360°,所以,由题意可得180(n-2)=2×360,解得:n=6.故答案为:6.14.如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于_______.【答案】【解析】如图,在直角△AOE中,cos AEEAOOA∠=,∴cos2AEOAEAO===∠又∵四边形ABCD是平行四边形,∴2AC OA==15.如图, ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为_____.【答案】15【解析】∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12 CD.∴OE=12 BC.∴△DOE的周长="OD+OE+DE="OD+12(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:15.16.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M有____个.【答案】3.【解析】试题分析:利用一组对边相等且平行的四边形是平行四边形进而得出答案.试题解析:如图所示:当AB平行且等于NM时,四边形ABMN是平行四边形,当AB平行且等于N′M′时,四边形ABN′M′是平行四边形.当AB为对角线时,四边形ABN′M′是平行四边形.故符合题意的有3个点.考点:1.平行四边形的判定;2.坐标与图形性质.17.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P 以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.【答案】2s【解析】【分析】设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.如图,设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6-2t,∵AD∥BC,∴AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,∴t=6-2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合.综上所述,2秒后四边形ABQP是平行四边形.故答案为2s.【点睛】此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.18.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD 的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.【答案】175°【解析】如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠C O5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为175°.三、解答题19.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.【答案】见解析.【解析】【分析】根据题意得出四边形AECD为平行四边形,得到AD=CE,根据角平分线的性质以及平行线的性质得到AB=AD,从而得到AB=CE.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.∵AD∥BC,AE∥CD,∴四边形ADCE为平行四边形,∴AD=CE,∴AB=CE.点睛:本题考查了平行四边形的判定与性质以及等腰三角形的判定.注意“等量代换”在本题中的应用.20.小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由【答案】可以走回到A点,共走100米【解析】【分析】他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m才能回到原地.所以小华能回到点A.当他走回到点A时,共走100m.21.如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.【答案】结论:OE=OF.理由见解析.【解析】试题分析:结论:OE=OF,欲证明OE=OF,只要证明△AOE≌△COF即可.试题解析:结论:OE=OF.理由∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,{OAE OCF AOE COF AO OC∠=∠∠=∠=,∴△AOE≌△COF,∴OE=OF.22.如图,在▱ABCD中,E、F为对角线BD上的两点,且AE⊥BD,CF⊥BD.求证:BE=DF.【答案】证明见解析【解析】试题分析:∵在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵∠BAE=∠DCF,∴△ABE≌△CDF(ASA),∴BE=DF.考点:平行四边形的性质23.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中12BO DOEOB FOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.24.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【答案】(1)见解析,(2)41【解析】【分析】(1)证明△ABN≌△ADN,即可得出结论.(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.(1)证明:∵BN⊥AN于点N,∴ANB AND∠=∠,在△ABN和△ADN中,∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN≌△ADN(ASA).∴BN=DN.(2)∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC中点,∴MN是△BDC的中位线.∴CD=2MN=6.∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.25.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.【答案】(1)证明见解析;(2【解析】(1)如图1中,结论:△BCE 是等腰三角形.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠AEB=∠BEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴==26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D ,E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC ,DC ,DE 分别相交于点I ,F ,G ,过点C 作CH //BG 交DE 于点H .①求证:IBC HCE ≌;②若DF CF =,求DG 的长.(2)如图2,将直线BD 绕点O 逆时针旋转α(90α<︒),与线段AD ,BC 分别交于点P ,Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由.【答案】(1)①见解析;②DE 的长为2(2)不变;四边形ABQP 的面积为12【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可.(1)①证明:∵△DCE 由△ABC 平移得到,∴AC //DE ,BC =CE ,∠ACB =∠E ,∴∠ICB =∠E ,∵CH //BG ,∴∠IBC =∠HCE ,∴△IBC ≌△HCE (ASA );②由①可知,△IBC ≌△HCE ,∴IC =HE ,∵AC //DE ,CH //BG ,∴CI //GH ,CH //GI ,∴四边形ICHG 是平行四边形,∴IC =GH ;∵∠FDG =∠FCI ,∠DFG =∠CFI ,DF =CF ,∴△DFG ≌△CFI ,∴DG =IC ,∴DG =GH =HE ,∵DE =AC =6,∴DG =13DE =13AC =2.(2)不变;由平移可知AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴OA =OC ,∵AD //BC ,∴∠APO =∠CQO ,∵∠AOP =∠COQ ,∴△AOP ≌△COQ (AAS ),∴S △AOP =S △COQ ,AOP COQ ABC ABQP ABQO ABQO S S S S S S 四边形四边形四边形=+=+=,∵在ABC 中,5AB BC ==,6AC =,∴ABC 的面积不变,∴四边形ABQP 的面积不变,∵AB =BC =5,OA =OC =12AC =3,∴OB ⊥AC ,∴∠AOB =90°,∴4OB ===,∴S △ABC =12AC •OB =12×6×4=12,∴12ABQP S 四边形=.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理,熟练掌握全等三角形的判定方法和平行四边形的性质的判定是解题的关键.。
北师大版八年级下数学 第六章平行四边形 单元检测(PDF 含答案解析)

第六章平行四边形满分:100分,限时:60分钟一、选择题1.在平行四边形ABCD 中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2.如图6-5-1所示,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为()图6-5-1A.4B.3C.23D.23.如图6-5-2所示,在平行四边形ABCD 中,AB=3cm,BC=5cm,对角线AC,BD 相交于点O,则OA 的取值范围是()图6-5-2A.2cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm4.下列条件中能判定四边形ABCD 是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD5.如图6-5-3,在平行四边形ABCD 中,DE 是∠ADC 的平分线,点F 是AB 的中点,AB=6,AD=4,则AE∶EF∶BE 为()图6-5-3A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶26.如图6-5-4,P 是平行四边形ABCD 内部任意一点,△ABP、△BCP、△CDP、△ADP 的面积分别为S 1、S 2、S 3、S 4,则一定成立的是()图6-5-5A.55°B.35°C.25°D.30°8.已知多边形中除去一个内角外的其他各内角与同该内角相邻的一个外角之和为600°,则该多边形的边数为()A.5B.6C.5或6D.不存在这样的多边形9.如图6-5-6,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD的中点,OF⊥BC,∠D=53°,则∠FOE的度数是()图6-5-6A.37°B.53°C.127°D.143°10.如图6-5-7,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ长度的最小值为()图6-5-7A.6B.8C.22D.42二、填空题11.如图6-5-8,∠2+∠3+∠4=320°,则∠1=.图6-5-812.如图6-5-9,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=18,BC=6,则△AOD的周长为.图6-5-913.如图6-5-10,▱ABCD的对角线AC,BD相交于点O,若△AOB的面积为6cm2,则▱ABCD的面积为.图6-5-1014.如图6-5-11,∠1+∠2+∠3+∠4+∠5+∠6=度.图6-5-1115.如图6-5-12,平行四边形ABCD中,BC=2AB,点M为AD的中点,则∠BMC=.图6-5-1216.如图6-5-13,平行四边形ABCD中,AE⊥BD,BE∶DE=3∶7,BD=20,AB=10,则AB与CD间的距离为.图6-5-1317.如图6-5-14,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.图6-5-14三、解答题19.(10分)如图6-5-16,在平行四边形ABCD 中,AE、BF 分别平分∠DAB 和∠ABC,交CD 于点E,F,AE、BF 相交于点M.(1)试证明:△BCF 为等腰三角形;(2)若AB=5,DF=1,求EF的长.图6-5-1618.如图6-5-15,直线AE∥BD,点C 在BD 上,若AE=5,BD=8,△ABD 的面积为16,则△ACE 的面积为.图6-5-1520.(10分)如图6-5-17所示的模板,按规定:AB、CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠A=122°,∠C=155°,如果你是质检员,如何知道模板是否合格?为什么?图6-5-1721.(12分)有下列命题:①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知,求证,并完成证明)已知:.求证:.证明:22.(14分)已知:如图6-5-18,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,点G,H 在BD上,且AE=CF,BG=DH.(1)若AC=6,BD=8,试求AD的取值范围;(2)若AC=AD,∠CAD=50°,试求∠ABC的度数;(3)求证:四边形EHFG是平行四边形.图6-5-18第六章平行四边形满分:100分,限时:60分钟一、选择题1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°1.答案D∵四边形ABCD是平行四边形,∴∠D=∠B=60°,故A正确;∵AD∥BC,∴∠C+∠D=180°,故C正确;∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,故选D.2.如图6-5-1所示,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()图6-5-1A.4B.3C.23D.22.答案D∵∠C=90°,∠A=30°,∴BC=12AB=4,∵DE是中位线,∴DE=12BC=2.3.如图6-5-2所示,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()图6-5-2A.2cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm3.答案C在△ABC中,BC-AB<AC<AB+BC,∵AB=3cm,BC=5cm,∴2cm<AC<8cm,∵四边形ABCD是平行四边形,∴OA=12AC,∴1cm<OA<4cm,故选C.4.下列条件中能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD4.答案C 两组对边分别相等的四边形是平行四边形,故选C.5.如图6-5-3,在平行四边形ABCD 中,DE 是∠ADC 的平分线,点F 是AB 的中点,AB=6,AD=4,则AE∶EF∶BE 为()图6-5-3A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶25.答案A ∵DE 平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD 是平行四边形,∴AB∥CD,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=4,EB=AB-AE=2,∵F 为AB 的中点,∴EF=AE-AF=1,∴AE∶EF∶BE=4∶1∶2.6.如图6-5-4,P 是平行四边形ABCD 内部任意一点,△ABP、△BCP、△CDP、△ADP 的面积分别为S 1、S 2、S 3、S 4,则一定成立的是()图6-5-4A.S 1+S 2>S 3+S 4B.S 1+S 2=S 3+S 4C.S 1+S 2<S 3+S 4D.S 1+S 3=S 2+S 46.答案D 如图,过P 点作MN⊥AB 于M,交CD 于N,∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴PN⊥CD,S 1+S 3=12·AB·PM+12CD·PN=12AB·(PM+PN)=12AB·MN=12S ▱ABCD ,∴S 2+S 4=12S ▱ABCD ,∴S 1+S 3=S 2+S 4.7.(2016山东济南长清期末)如图6-5-5所示,在▱ABCD 中,CE⊥AB,E 为垂足,如果∠A=125°,则∠BCE 的度数是()图6-5-5A.55°B.35°C.25°D.30°7.答案B在▱ABCD中,∠A=125°,AD∥BC,∴∠B+∠A=180°,∴∠B=55°.∵CE⊥AB,∴∠B+∠BCE=90°,∴∠BCE=35°.8.已知多边形中除去一个内角外的其他各内角与同该内角相邻的一个外角之和为600°,则该多边形的边数为()A.5B.6C.5或6D.不存在这样的多边形8.答案C设这个多边形边数为n,这个外角的度数为x,则与这个外角相邻的内角为(180°-x),由题意得x+(n-2)×180°-(180°-x)=600°,解得x=570°-90°n.∵0°<x<180°,n为大于或等于3的自然数,∴n=5或n=6.9.如图6-5-6,▱ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD的中点,OF⊥BC,∠D=53°,则∠FOE的度数是()图6-5-6A.37°B.53°C.127°D.143°9.答案D∵四边形ABCD是平行四边形,∴∠B=∠D=53°,AB∥CD.又∵AB⊥AC,OF⊥BC,∴∠BAC=90°,∠B+∠ACB=90°.∠COF+∠ACB=90°,∴∠COF=∠B=53°.∵O为AC的中点,E为AD的中点,∴OE∥CD∥AB.∴∠EOC=∠BAC=90°.∴∠FOE=∠COF+∠COE=53°+90°=143°.10.如图6-5-7,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ长度的最小值为()图6-5-7A.6B.8C.22D.4210.答案D∵四边形APCQ是平行四边形,∴AO=CO,OP=OQ,∴PQ最短时,PO最短,∴过O作OP'⊥AB于P',∵∠BAC=45°,∴△AP'O是等腰直角三角形,∵AO=12AC=4,∴OP'=22,∴PQ长度的最小值为2OP'=42.二、填空题11.如图6-5-8,∠2+∠3+∠4=320°,则∠1=.图6-5-811.答案40°解析∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.12.如图6-5-9,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=18,BC=6,则△AOD的周长为.图6-5-912.答案15解析∵四边形ABCD 是平行四边形,∴OA=12AC,OD=12BD,AD=BC=6,∴OA+OD=12(AC+BD)=9,∴△AOD 的周长=OA+OD+AD=9+6=15.13.如图6-5-10,▱ABCD 的对角线AC,BD 相交于点O,若△AOB 的面积为6cm 2,则▱ABCD 的面积为.图6-5-1013.答案24cm 2解析在▱ABCD 中,OA=OC,OB=OD,AB=CD,∴△AOB≌△COD,∴S △COD =S △AOB =6cm 2.又∵OA=OC,∴S △BOC =S △AOB =6cm 2.同理,S △AOD =6cm 2,∴S ▱ABCD =4×6=24cm 2.14.如图6-5-11,∠1+∠2+∠3+∠4+∠5+∠6=度.图6-5-1114.答案360解析∠1+∠2+∠3+∠4+∠5+∠6=3×180°-180°=360°.15.如图6-5-12,平行四边形ABCD 中,BC=2AB,点M 为AD 的中点,则∠BMC=.图6-5-1215.答案90°解析如图,∵四边形ABCD为平行四边形,∴AD BC,AB CD,∴∠ABC+∠BCD=180°,∵M是AD的中点,∴AM=DM=12AD,又∵BC=2AB,∴AB=AM,DM=DC,∴∠1=∠2,∠3=∠4,又∵AD∥BC,∴∠2=∠5=∠1,∠3=∠6=∠4,∴∠5+∠6=90°,∴∠BMC=90°.16.如图6-5-13,平行四边形ABCD中,AE⊥BD,BE∶DE=3∶7,BD=20,AB=10,则AB与CD间的距离为.图6-5-1316.答案16解析∵BE∶DE=3∶7,BD=20,∴BE=6,DE=14,∵AE⊥BD,AB=10,∴AE= 2-B 2=8,易证△ABD≌△CDB(SSS),∴S▱ABCD=2S△ABD=2×12×8×20=160,设AB与CD间的距离为h,则S▱ABCD=AB·h=160,∴h=16,故答案为16.17.如图6-5-14,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.图6-5-1417.答案5解析当B在x轴上时,对角线OB的长最小.如图所示,设直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCO是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,∵∠AOD=∠CBE,∠ADO=∠CEB,OA=BC,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5.故答案为5.18.如图6-5-15,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为.图6-5-1518.答案10解析如图,过点A作AF⊥BD于点F,∵△ABD的面积为16,BD=8,∴12BD·AF=12×8×AF=16,解得AF=4,∵AE∥BD,∴AF⊥AE,∴S=12·AE·AF=12×5×4=10.△ACE三、解答题19.(10分)如图6-5-16,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E,F,AE、BF相交于点M.(1)试证明:△BCF为等腰三角形;(2)若AB=5,DF=1,求EF的长.图6-5-1619.解析(1)证明:在▱ABCD中,AB∥CD,∴∠ABF=∠CFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠CFB,∴CF=CB,∴△BCF是等腰三角形.(2)∵在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB,又AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴DE=AD,同理可得,CF=BC,又∵AD=BC,∴DE=CF,∴DE-EF=CF-EF,即DF=CE=1,∴EF=3.20.(10分)如图6-5-17所示的模板,按规定:AB、CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠A=122°,∠C=155°,如果你是质检员,如何知道模板是否合格?为什么?图6-5-1720.解析模板不合格.理由:∵∠A+∠E+∠F+∠C=122°+90°+90°+155°=457°,五边形的内角和=(5-2)×180°=540°,540°-457°=83°≠80°,∴模板不合格.21.(12分)有下列命题:①一组对边平行,一组对角相等的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边相等,一组对角相等的四边形是平行四边形.④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.(1)上述四个命题中,是真命题的是(填写序号);(2)请选择一个真命题进行证明.(写出已知,求证,并完成证明)已知:.求证:.证明:21.解析(1)①②④(选对一个得1分,若选入③,则本小题得0分).(2)以命题①为例给出一种证明.已知:如图,AD∥BC,∠B=∠D.求证:四边形ABCD是平行四边形.证明:如图,连接AC.∵AD∥BC,∴∠1=∠2,又∵∠B=∠D,AC=CA,∴△ADC≌△CBA(AAS),∴AD=CB,∴四边形ABCD是平行四边形.22.(14分)已知:如图6-5-18,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,点G,H 在BD上,且AE=CF,BG=DH.(1)若AC=6,BD=8,试求AD的取值范围;(2)若AC=AD,∠CAD=50°,试求∠ABC的度数;(3)求证:四边形EHFG是平行四边形.图6-5-1822.解析(1)在▱ABCD中,OA=OC,OB=OD.∴OA=12AC=3,OD=12BD=4.在△AOD中,4-3<AD<4+3,∴1<AD<7.(2)∵AC=AD,∴∠ACD=∠ADC.又∵∠CAD=50°,∴∠ADC=180°-50°2=65°.在▱ABCD中,∠ABC=∠ADC=65°.(3)证明:在▱ABCD中,OA=OC,OB=OD,∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∵BG=DH,∴OB-BG=OD-DH,即OG=OH.∴四边形EHFG是平行四边形.。
北师大版八年级下册数学 第6章 平行四边形 单元测试卷(含答案)

北师大版八年级下册数学第6章平行四边形单元测试卷一.选择题(共10小题)1.内角和为的多边形是A.三角形B.四边形C.五边形D.六边形2.若经过边形一个顶点的所有对角线可以将该边形分成7个三角形,则的值是A.7B.8C.9D.103.如图,在中,,,的平分线交于,则的长为A.5B.4C.3D.24.如下图所示,在直角坐标系内,原点恰好是对角线的交点,若点坐标为,则点坐标为A.B.C.D.5.在等腰梯形中,,,,,点从点出发,以每秒的速度沿向终点运动,同时点从点出发,以每秒的速度沿向终点运动.在运动期间,当四边形为平行四边形时,运动时间为A.3.6秒B.4秒C.4.4秒D.4.8秒6.在平行四边形中,,,则平行四边形的周长是A.4B.5C.7D.87.如图的对角线交于点,,,则的度数为A.B.C.D.8.在平行四边形中,、分别在、上,若想要使四边形为平行四边形,需添加一个条件,这个条件不能是A.B.C.D.9.一名模型赛车手遥控一辆赛车,先前进,然后,原地逆时针方向旋转角被称为一次操作.若五次操作后,发现赛车回到出发点,则角为A.B.或C.D.或10.如图,的对角线与相交于点,且.若是边的中点,,,则的长为A.1.5B.2C.2.5D.3二.填空题(共6小题)11.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为.12.从多边形的一个顶点出发引对角线,可以把这个多边形分割成6个三角形,则该多边形为边形.13.如图,中,点、在直线上,连接、,不添加任何辅助线,请添加一个条件,使(填一个即可)14.如图,在平行四边形中,.若平分,,则的度数为.15.如图,点为平行四边形内的任意一点连结,,,.设、、、的面积分别为、、、,则、、、之间的等量关系为.16.已知平面上有三个点,点,,,以点,点,点为顶点画平行四边形,则第四个顶点的坐标为.三.解答题(共8小题)17.把一个多边形的边数增加1倍,所得多边形的内角和是,原多边形是几边形?它的内角和是多少度?18.如图,,是四边形的外角,试说明.19.如图,的边,,上的中点分别为,,.(1)求证:四边形是平行四边形;(2)连接,若的周长为15,求的周长.20.如图,,为四边形的对角线,,,.(1)求证:;(2)探求与之间的数量关系,并说明理由.21.如图,在四边形中,,为中点,延长到点,使.(1)求证:;(2)求证:四边形为平行四边形;(3)若,,,求四边形的面积.22.如图,在中,,.分别以直角边和斜边向外作等边、等边.过点,作,垂足为,连结.求证:(1);(2)四边形是平行四边形.23.探索归纳:(1)如图1,已知为直角三角形,,若沿图中虚线剪去,则.(2)如图2,已知中,,剪去后成四边形,则.(3)如图2,根据(1)与(2)的求解过程,你归纳猜想与的关系是.(4)如图3,若没有剪掉,而是把它折成如图3形状,试究与的关系,并说明理由.24.已知点是平行四边形对角线上的一点,分别过点、作的垂线,垂足分别为点、,(1)如图1,若点为中点,,,,求的长;(2)如图2,若点在上,,延长至,使,点在上,连接、、、,若,求证:.参考答案一.选择题(共10小题)1.内角和为的多边形是A.三角形B.四边形C.五边形D.六边形【解答】解:设这个多边形的边数是,则,解得,故选:.2.若经过边形的一个顶点的所有对角线可以将该边形分成7个三角形,则的值是A.7B.8C.9D.10【解答】解:依题意有,解得:.故选:.3.如图,在中,,,的平分线交于点,则的长为A.5B.4C.3D.2【解答】解:四边形是平行四边形,,,,平分,,,,.故选:.4.如下图所示,在直角坐标系内,原点恰好是对角线的交点,若点坐标为,则点坐标为A.B.C.D.【解答】解:原点恰好是对角线的交点,点与点关于原点对称,又关于原点对称的两个点的坐标,横纵坐标互为相反数,点坐标为,点坐标为.故选:.5.在等腰梯形中,,,,,点从点出发,以每秒的速度沿向终点运动,同时点从点出发,以每秒的速度沿向终点运动.在运动期间,当四边形为平行四边形时,运动时间为A.3.6秒B.4秒C.4.4秒D.4.8秒【解答】解:设当四边形为平行四边形时,运动时间为秒,,,,,,,四边形为平行四边形,,即,解得:,运动时间为3.6秒.故选:.6.在平行四边形中,,,则平行四边形的周长是A.4B.5C.7D.8【解答】解:四边形是平行四边形,,,平行四边形的周长,故选:.7.如图的对角线交于点,,,则的度数为A.B.C.D.【解答】解:四边形是平行四边形,,,,,,故选:.8.在平行四边形中,、分别在、上,若想要使四边形为平行四边形,需添加一个条件,这个条件不能是A.B.C.D.【解答】解:、四边形是平行四边形,,,四边形是平行四边形.故选项不符合题意.、根据,所以四边形可能是平行四边形,有可能是等腰梯形,故选项符合题意.、错误.,,,四边形是平行四边形.故选项不符合题意.、由,,可以推出,,,,,四边形是平行四边形.故选项不符合题意.故选:.9.一名模型赛车手遥控一辆赛车,先前进,然后,原地逆时针方向旋转角被称为一次操作.若五次操作后,发现赛车回到出发点,则角为A.B.或C.D.或【解答】解:,.故选:.10.如图,的对角线与相交于点,且.若是边的中点,,,则的长为A.1.5B.2C.2.5D.3【解答】解:,,,,,,,,,是边的中点,,,,故选:.二.填空题(共6小题)11.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为八.【解答】解:设多边形的边数是,根据题意得,,解得,这个多边形为八边形.故答案为:八.12.从多边形的一个顶点出发引对角线,可以把这个多边形分割成6个三角形,则该多边形为八边形.【解答】解:,则该多边形为八边形.13.如图,中,点、在直线上,连接、,不添加任何辅助线,请添加一个条件(答案不唯一),使(填一个即可)【解答】解:,理由如下:四边形是平行四边形,,,,在和中,,,.故答案为:(答案不唯一).14.如图,在平行四边形中,.若平分,,则的度数为.【解答】解:四边形为平行四边形,,..,..在和中,,,,平分(已知),;又,.为等边三角形..,,.故答案为:15.如图,点为平行四边形内的任意一点连结,,,.设、、、的面积分别为、、、,则、、、之间的等量关系为.【解答】解:以为底边,以为底边,,两个三角形、边上的高的和为平行四边形边上的高,平行四边形面积;同理可得,平行四边形面积;;故答案为:.16.已知平面上有三个点,点,,,以点,点,点为顶点画平行四边形,则第四个顶点的坐标为或或.【解答】解:以为对角线,将向上平移2个单位,再向左平移2个单位,点对应的位置为就是第四个顶点;以为对角线,将向下平移4个单位,再向左平移1个单位,点对应的位置为就是第四个顶点;以为对角线,将向上平移4个单位,再向右平移1个单位,点对应的位置为就是第四个顶点;第四个顶点的坐标为:或或,故答案为:或或.三.解答题(共8小题)17.把一个多边形的边数增加1倍,所得多边形的内角和是,原多边形是几边形?它的内角和是多少度?【解答】解:设原来的多边形为边形,则边数增加1倍后为边形,由,解得..即原来的多边形为十边形,内角和为18.如图,,是四边形的外角,试说明.【解答】解:连接,由图可得,,,故可得.19.如图,的边,,上的中点分别为,,.(1)求证:四边形是平行四边形;(2)连接,若的周长为15,求的周长.【解答】(1)证明:,,分别是的边,,上的中点,,分别是的中位线,,,四边形是平行四边形;(2)解:,,分别是的边,,上的中点,,,分别是的中位线,,,,的周长为15,的周长为30.20.如图,,为四边形的对角线,,,.(1)求证:;(2)探求与之间的数量关系,并说明理由.【解答】解:(1)在中,,,在中,,,,即,,.(2);,,,,,,.21.如图,在四边形中,,为中点,延长到点,使.(1)求证:;(2)求证:四边形为平行四边形;(3)若,,,求四边形的面积.【解答】(1)证明:,,为中点,,在和中,,,;(2)证明:由(1)得:,,四边形是平行四边形,,,,,,四边形为平行四边形;(3)解:四边形为平行四边形,,,,,,,,,,,,四边形的面积.22.如图,在中,,.分别以直角边和斜边向外作等边、等边.过点,作,垂足为,连结.求证:(1);(2)四边形是平行四边形.【解答】证明:(1),以直角边向外作等边,,,,,,在和中,,,;(2)以直角边向外作等边,,,,又,,,,,四边形是平行四边形.23.探索归纳:(1)如图1,已知为直角三角形,,若沿图中虚线剪去,则.(2)如图2,已知中,,剪去后成四边形,则.(3)如图2,根据(1)与(2)的求解过程,你归纳猜想与的关系是.(4)如图3,若没有剪掉,而是把它折成如图3形状,试究与的关系,并说明理由.【解答】解:(1):四边形的内角和为,直角三角形中两个锐角和为.等于.故答案为:;(2),故答案是:;(3)与的关系是:;故答案为:;(4)是由折叠得到的,,,又,.24.已知点是平行四边形对角线上的一点,分别过点、作的垂线,垂足分别为点、,(1)如图1,若点为中点,,,,求的长;(2)如图2,若点在上,,延长至,使,点在上,连接、、、,若,求证:.【解答】解:(1)四边形是平行四边形,点为中点在和中在中,的长为3;(2)证明:设与的交点为,连,四边形是平行四边形在和中,为平行四边形又为中点,,共线又。
北师大版八下第六章《平行四边形》单元测试题(含答案)

第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。
北师大版2020八年级数学下册《第6章 平行四边形 》单元练习试题【含答案】

∵AC=8,
∴AO=4,
∵AB=6,AC⊥AB,
∴BO=
=
=2 ,
∴BD=2BO=4 . 19.解:(1)∵四边形 ABCD 是平行四边形,
∴OA=OC, ∵点 E 为 OA 中点,AD=AO,AD=2 ,
∴OE= ,OC=2 ,
∴CE=OE+OC=3 ,
∵DE⊥CD,CD=6,
∴DE=
=3;
(2)证明:取 AD 的中点 F,连接 OF, ∵AD=AO,点 E 为 OA 中点, ∴AE=AF, 在△ADE 和△AOF 中,
三.解答题(共 7 小题) 16.如图,在平行四边形 ABCD 中,点 E 为 AD 的中点,延长 CE 交 BA 的延长线于点 F.
(1)求证:AB=AF; (2)若 BC=2AB,∠BCD=100°,求∠ABE 的度数.
17.已知:如图,在▱ABCD 中,点 E、F 是对角线 AC 上的两点,且 AE=CF.求证: BF∥DE.
8,CD=10,点 F、M、N 分别是 BC、BD、CE 的中点,则 MN 的长为( )
A.
B.6
C.4
D.3
10.如图,正五边形 ABCDE 绕点 A 顺时针旋转后得到正五边形 AB′C′D′E′,旋转角
为 α (0°<α<90°),若 DE⊥B′C′,则∠α 为( )
A.36°
B.54°
C.60°
22.如图,在平行四边形 ABCD 中,点 E 在 AD 上,连接 BE、CE,EB 平分∠AEC. (1)如图 1,判断△BCE 的形状,并说明理由; (2)如图 2,∠A=90°,BC=5,AE=1,求线段 BE 的长.
一.选择题(共 10 小题) 1. D. 2. A. 3. B. 4. D. 5. B. 6. D. 7. D. 8. A. 9. A. 10. B. 二.填空题(共 5 小题) 11. .
北师大版八年级数学下册第六章 平行四边形练习(含答案)

北师大版八年级数学下册第六章 平行四边形练习(含答案)一、单选题1.下列性质中,平行四边形一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直2.如图,将折叠,使点分别落在点处(点都在所在的ABCD D C 、F E 、F E 、AB 直线上),折痕为,若,则等于( )MN 50AMF ∠=︒A ∠A .B .C .D .50︒55︒60︒65︒3.已知四边形的对角线相交于点,则下列条件中不能判定ABCD ,AC BD ,O OB OD =四边为平行四边形的是( )ABCD A .B .C .D .OA OC =//AB CD //AD BCAB CD =4.点A 、B 、C 、D 在一个平面内,若从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD . 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是()A .①②B .①④C .②④D .①③5.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等6.多边形每个外角为45°,则多边形的边数是( )A.8 B.7 C.6 D.57.如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A.180°B.200°C.220°D.240°8.下列图形中,周长不是32 m的图形是( )A.B.C.D.A9.如图,小明从点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转A20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地点时,一共走了()A .80米B .160米C .300米D .640米10.如图,已知四边形中,,,平分,ABCD //AD BC ABC ACD D ∠=∠=∠AE CAD ∠下列说法:①;②;③;④,//AB CD AE CD ⊥AEF BCF S S =△△AFB BAD ABE ∠=∠-∠其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知等边△ABC 的边长为10,P 是△ABC 内一点,PD 平行AC ,PE 平行AD ,PF 平行BC ,点D ,E ,F 分别在AB ,BC ,AC 上,则PD+PE+PF=_______________.12.如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠B =_____,∠AED 的度数为_____.13.D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .14.如图,以正六边形的边为直角边作等腰直角三角形,使点在ABCEDF AB ABG G 其内部,且,连接,则的大小是__________度.90BAG ∠=︒FG EFG Ð三、解答题15.如图,ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.16.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .17.如图,等边的边长是4,,分别为,的中点,延长至点,ABC ∆D E AB AC BC F 使,连接和.12CF BC =CD EF (1)求证:;DE CF =(2)求的长;EF (3)求四边形的面积.DEFC 18.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______.答案1.B 2.D 3.D 4.B5.C6.A7.D8.B9.A10.D11.1012.60°85°13.11.14.4515.(1)∵四边形是平行四边形,ABCD ∴∥ ,∥, ,AD CB AB CD AD BC,AB DC ==∴ ,DAB CBA 180∠∠+= 又∵和分别平分和,AP BP DAB ∠CBA ∠∴ ,()1PAB PBA DAB CBA 902∠∠∠∠+=+= ∴ ;()APB 180PAB PBA 90∠∠∠=-+= (2) ∵平分,∥ ,AP DAB ∠AB CD ∴ ,DAB PAB DPA ∠∠∠==∴ ,同理: ,AD DP 5cm ==PC BC AD 5cm ===∴ ,AB DC DP PC 10cm ==+=在中, , ∴ ,Rt APB AB 10cm,AP 8cm ==()BP 6cm ==∴△的周长.ABP ()681024cm ++=16.解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =DF ==1,CH =DC ==1,12122⨯12122⨯∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+=4×1+=6,1BD CH 2⨯⨯1412⨯⨯故答案为:6.17.(1)在中,ABC ∆、分别为、的中点,D E AB AC 为的中位线,DE ∴ABC ∆,12DE BC ∴=,12CF BC = .DE CF ∴=(2),,AC BC =AD BD =,CD AB ∴⊥,,4BC = 2BD =CD ∴==,,//DE CF DE CF =四边形是平行四边形,∴DEFC.EF CD ∴==(3)过点作于,D DH BC ⊥H ,,90DHC ∠=︒ 30DCB ∠=︒12DH DC ∴==,2DE CF ==.2DEFC S CF DH ∴=⋅==四边形18.(1)如图,延长CO ,交AP 与B ,∵∠AOC=∠A+∠ABO ,∠ABO=∠C+∠P ,∴∠AOC=∠A+∠P+∠C ,故答案为∠AOC=∠A+∠P+∠C ,(2)∵2∠AOC =∠BAO +∠DCO+2∠P ,2∠AOC=∠BAO +∠DCO+∠B+∠D ,∴2∠P=∠B+∠D ,∴∠P=(28°+48°)=38°,12故答案为38°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB=∠PAD ,∠PCB=∠PCE ,∴2∠PAB+∠B=180°-2∠PCB+∠D ,∴180°-2(∠PAB+∠PCB )+∠D=∠B∵∠P=∠PAB+∠B+∠PCB ,∴∠PAB+∠PCB=∠P-∠B ,∴180°-2(∠P-∠B )+∠D=∠B ,即∠P=90°+(∠B+∠D ).12(4)∵直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠FAP=∠PAO ,∠PCE=∠PCB ,在四边形APCB 中,(180°-∠FAP )+∠P+∠PCB+∠B=360°①,在四边形APCD 中,∠PAD+∠P+(180°-∠PCE )+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,12∴∠P=180°-(∠B+∠D)。
八年级数学下册第六章平行四边形单元测试题(北师大含答案)

八年级数学下册第六章平行四边形单元测试题(北师大含答案)第六章平行四边形一、选择题 1.一个多边形每个外角都等于36°,则这个多边形是几边形() A. 7 B. 8 C. 9 D. 10 2.如图,在四边形ABCD中,∠A=65°,∠D=105°,∠B的外角是60°,则么∠C等于( ) A. 110° B. 90° C. 80° D. 70° 3.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A. 1620° B. 1800° C. 1980° D. 2160° 4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为() A. 4 B. 5 C. 6 D. 7 5.已知△ABC 的周长为50cm,中位线DE=8cm,中位线EF=10cm,则另一条中位线DF的长是() A. 5cm B. 7cm C. 9cm D. 10cm 6.下列哪一个角度可以作为一个多边形的内角和( ) A. 2080º B. 1240º C. 1980º D. 1600º 7.如图,平行四边形ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为() A. 8.3 B. 9.6 C. 12.6 D. 13.6 8.如图所示,四边形ABCD的对角线AC , BD相交于点O ,下列判断正确的是() A. 若AO=OC ,则ABCD是平行四边形, B. 若AC=BD ,则ABCD是平行四边形, C. 若AO=BO ,CO=DO ,则ABCD是平行四边形, D. 若AO=OC , BO=OD ,则ABCD 是平行四边形. 9.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为() A. 2cm B. 7cm C. 5cm D. 6cm 10.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是() A. 3 B. 4 C. 5 D. 6 11.A,B,C 是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( ) A. 1个 B. 2个 C. 3个 D. 4个二、填空题 12.已知一个多边形的内角和是540°,则这个多边形是________. 13.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为________ cm. 14.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD=________cm,CD=________cm. 15.如图,▱ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=________度. 16.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2= ________ 17.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是________ (将命题的序号填上即可). 18.在▱ABCD中,∠A+∠C=260°,则∠C=________ ∠B=________ 19. 如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件 ________(只添一个即可),使四边形ABCD是平行四边形. 20.已知平行四边形ABCD 中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________. 21.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.三、解答题 22.一个多边形的外角和是内角和的,求这个多边形的边数.23.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.24. △ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.25.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D 在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.参考答案一、选择题 D C B C B C B D D A C 二、填空题 12. 五边形 13. 21 14. 4;10 15. 25 16. 270° 17. ② 18. 130°;50° 19. BO=DO 20. 3或7 21. 110° 三、解答题 22. 解:设这个多边形的边数为n,依题意得:(n�2)180°=360°,解得n=9.答:这个多边形的边数为9 23. 证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH= AC,HF∥BD,FH= BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,∴∠4=∠3=∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH= AC,FH= BD,∴AC=BD. 24. 证明:连接DE,FG,∵B D、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE= BC,同理:FG∥BC,FG= BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG. 25. (1)证明:∵BE⊥AD,∴∠AEB=90°,在Rt△AEB 中,∵点C为线段BA的中点,∴CE= AB=CB,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD (2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,∴BC=BF,∴BA=BD,∠A=45°.∴当∠A=45°时四边形ACFE为平行四边形.。
北师大版数学八年级下册:第六章 平行四边形 单元测试(附答案)

第六章平行四边形单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,AB=3,AD=2,则CD=()A.3 B.2 C.1 D.5第1题图第3题图2.一个正n边形的每一个外角都是45°,则n=()A.7 B.8 C.9 D.103.如图,等边△ABC的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为()A.1 B.2 C.3 D.44.如图,在▱ABCD中,F是AD上的一点,CF=CD.若∠B=72°,则∠AFC的度数是()A.144°B.108°C.102°D.78°第4题图第5题图5.如图所示,在平面直角坐标系内,原点O恰好是▱ABCD对角线的交点.若A点坐标为(2,3),则C点坐标为()A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)6.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B,C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24B.18C.16D .127.某班同学对《多边形的内角和与外角和》的内容进行激烈地讨论,小丽说:“多边形的边数每增加1,则内角和增加180°”,小钟说:“多边形的边数每增加1,则外角和增加180°”,小刚说:“多边形的内角和不小于其外角和”,小华说:“只要是凸多边形,不管有几边,其外角和都是360°”.你认为正确的是( )A .小丽和小华B .小钟和小刚C .小刚和小华D .以上都不对8.如图,▱ABCD 纸片,∠A =120°,AB =4,BC =5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF =1,HG =2,则这个六边形的周长为( )A .12B .15C .16D .18第8题图 第9题图9.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中能判定四边形DEBF 是平行四边形的有( )A .0个B .1个C .2个D .3个10.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC =10,则PQ 的长为( )A.32 B.52 C .3 D .4二、填空题(每小题4分,共20分)11.在四边形ABCD 中,AB ∥CD ,AD ∥BC.如果∠B =50°,那么∠D = . 12.如图,在△ABC 中,M ,N 分别是AB ,AC 的中点,且∠A +∠B =136°,则∠ANM = .第12题图第13题图13.已知:如图,在▱ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE =8 cm,CE=6 cm,则▱ABCD的周长为cm.14.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于.第14题图第15题图15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D,E分别是BC,AD 的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为.三、解答题(共50分)16.(6分)如果两个多边形的边数之比为1∶2,这两个多边形的内角之和为1 440°,请你确定这两个多边形的边数.17.(8分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.18.(10分)已知:如图,在△ABC中,中线BE,CD交于点O.F,G分别是OB,OC 的中点,连接DF,FG,EG,DE,求证:DF=EG.19.(12分)如图,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.20.(14分)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)参考答案:一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,AB=3,AD=2,则CD=(A)A.3 B.2 C.1 D.5第1题图第3题图2.一个正n边形的每一个外角都是45°,则n=(B)A.7 B.8 C.9 D.103.如图,等边△ABC的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为(C)A.1 B.2 C.3 D.44.如图,在▱ABCD中,F是AD上的一点,CF=CD.若∠B=72°,则∠AFC的度数是(B)A.144°B.108°C.102°D.78°第4题图第5题图5.如图所示,在平面直角坐标系内,原点O恰好是▱ABCD对角线的交点.若A点坐标为(2,3),则C点坐标为(C)A.(-3,-2)B.(-2,3)C.(-2,-3)D.(2,-3)6.如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B,C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是(C)A.24B.18C.16D.127.某班同学对《多边形的内角和与外角和》的内容进行激烈地讨论,小丽说:“多边形的边数每增加1,则内角和增加180°”,小钟说:“多边形的边数每增加1,则外角和增加180°”,小刚说:“多边形的内角和不小于其外角和”,小华说:“只要是凸多边形,不管有几边,其外角和都是360°”.你认为正确的是(A )A .小丽和小华B .小钟和小刚C .小刚和小华D .以上都不对8.如图,▱ABCD 纸片,∠A =120°,AB =4,BC =5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF =1,HG =2,则这个六边形的周长为(B )A .12B .15C .16D .18第8题图 第9题图9.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,E ,F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中能判定四边形DEBF 是平行四边形的有(D )A .0个B .1个C .2个D .3个10.如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC =10,则PQ的长为(C )A.32 B.52 C .3 D .4二、填空题(每小题4分,共20分)11.在四边形ABCD 中,AB ∥CD ,AD ∥BC.如果∠B =50°,那么∠D =50°. 12.如图,在△ABC 中,M ,N 分别是AB ,AC 的中点,且∠A +∠B =136°,则∠ANM =44°.第12题图 第13题图13.已知:如图,在▱ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE =8 cm,CE=6 cm,则▱ABCD的周长为30cm.14.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108°.第14题图第15题图15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D,E分别是BC,AD 的中点,AF∥BC交CE的延长线于点F,则四边形AFBD的面积为12.三、解答题(共50分)16.(6分)如果两个多边形的边数之比为1∶2,这两个多边形的内角之和为1 440°,请你确定这两个多边形的边数.解:设边数较少的多边形的边数为n,则(n-2)·180+(2n-2)·180=1 440.解得n=4,则2n=8.答:这两个多边形的边数分别为4,8.17.(8分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.∴四边形BEDF是平行四边形.∴OE=OF.18.(10分)已知:如图,在△ABC中,中线BE,CD交于点O.F,G分别是OB,OC 的中点,连接DF,FG,EG,DE,求证:DF=EG.证明:由题意,得点E ,D 分别是AC ,AB 的中点, ∴ED 是△ABC 的中位线. ∴ED ∥BC ,ED =12BC.∵F ,G 分别是BO ,CO 的中点, ∴FG 是△OBC 的中位线. ∴FG ∥BC ,FG =12BC.∴ED ∥FG ,ED =FG.∴四边形EDFG 是平行四边形. ∴DF =EG.19.(12分)如图,已知四边形ABCD 是平行四边形,把△ABD 沿对角线BD 翻折180°得到△A′BD.(1)利用尺规作出△A′BD (要求保留作图痕迹,不写作法); (2)设DA′与BC 交于点E ,求证:△BA′E ≌△DCE.解:(1)如图所示,△A ′BD 即为所求. (2)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,∠BAD =∠C.由折叠的性质可得∠BA′D =∠BAD ,A ′B =AB , ∴∠BA ′D =∠C ,A ′B =CD. 在△BA′E 和△DCE 中,⎩⎨⎧∠BA′E =∠C ,∠BEA ′=∠DEC ,A ′B =CD ,∴△BA ′E ≌△DCE (AAS ).20.(14分)在△ABC 中,AB =AC ,点P 为△ABC 所在平面内一点,过点P 分别作PE ∥AC 交AB 于点E ,PF ∥AB 交BC 于点D ,交AC 于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)解:(1)如图2,PD+PE+PF=AB.证明:∵PE∥AC,PF∥AB,∴四边形PEAF是平行四边形.∴PE=AF.∵AB=AC,∴∠B=∠C.∵PF∥AB,∴∠B=∠FDC.∴∠C=∠FDC.∴FD=FC.∴PD+PE+PF=FD+PE=FC+AF=AC=AB.(2)如图3,PE+PF-PD=AB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学下册第6章《平行四边形》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.在▱ABCD中,∠A:∠B:∠C=3:6:3,则∠D的度数为()A.90°B.67.5°C.112.5°D.120°2.从五边形的一个顶点出发可以连接的对角线条数为()A.1B.2C.3D.43.一组对边相等,另一组对边平行的四边形是()A.梯形B.等腰梯形C.平行四边形D.等腰梯形或平行四边形4.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列可添加的条件不正确的是()A.AD=BC B.AB=CD C.AD∥BC D.∠A=∠C5.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°6.如图,在等腰梯形ABCD中,AB∥DC,AC和BD相交于点O,则图中的全等三角形共有()A.1对B.2对C.3对D.4对7.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为()A.2B.4C.6D.88.如图,在▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm9.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转……如此下去,当他第一次回到A点时,发现自己走了60米,θ的度数为()A.28°B.30°C.33°D.36°10.四边形剪去一个角后,内角和将()A.减少180°B.不变C.增加180°D.以上都有可能二.填空题(共6小题,满分24分,每小题4分)11.已知多边形的内角和等于外角和的两倍,则这个多边形的边数为.12.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB=cm.13.如图,在梯形ABCD中,AD∥BC,若再加上一个条件,则可得梯形ABCD是等腰梯形.14.如图,在四边形ABCD中,AD=12,对角线AC,BD交于点O,∠ADB=90°,OD =OB=5,AC=26,则四边形ABCD的面积为.15.在平行四边形ABCD中,AC=12,BD=8,AD=a,那么a的取值范围是.16.如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(4,0),(2,3),则点B的坐标为.三.解答题(共6小题,满分46分)17.如图,在梯形ABCD中AD∥BC,E是BC中点,AE=DE,求证:ABCD是等腰梯形.18.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F.求证:四边形AECF是平行四边形.19.如图,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)若EF=2AE=2,∠ACB=45°,且BE⊥AC,求▱ABCD的面积.20.如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点A、B、C、D、E把原五边形分割成一些三角形(互相不重叠)(1)填写下表:1234……n 五边形ABCDE内点的个数分割成的三579……角形的个数(2)原五边形能否被分割成2019个三角形?若能,求此时五边形ABCDE内部有多少个点?若不能,请说明理由.21.如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)t为何值时,四边形ABQP是平行四边形?(2)四边形ABQP能成为等腰梯形吗?如果能,求出t的值;如果不能,请说明理由.22.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°,∵∠A:∠B=3:6,∴∠B=×180°=120°,∴∠D=∠B=120°.故选:D.2.解:∵n边形(n>3)从一个顶点出发可以引(n﹣3)条对角线,∴从五边形的一个顶点出发可以画出5﹣3=2(条)对角线.故选:B.3.解:A、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故A 不正确;B、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故B不正确;C、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故C不正确;D、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故D正确.故选:D.4.解:D、当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,所以不能证明四边形ABCD为平行四边形;B、AB∥CD,AB=DC,一组对边分别平行且相等,可证明四边形ABCD为平行四边形;C、AB∥CD,AD∥BC,两组对边分别平行,可证明四边形ABCD为平行四边形;D、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形;故选:A.5.解:如图,作AE⊥BC、DF⊥BC,四边形ABCD为等腰梯形,AD∥BC,BC﹣AD=12,AE=6,∵四边形ABCD为等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC﹣AD=BC﹣EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选:B.6.解:∵四边形ABCD为等腰梯形,∴AD=BC、BD=AC,在△ABD和△BAC中∴△ABD≌△BAC(SSS),∴∠DAO=∠CBO,同理可证得△ACD≌△BDC,在△AOD和△BOC中∴△AOD≌△BOC(AAS),∴全等三角形共有3对,故选:C.7.解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵E、F分别是边、AC、BC的中点,∴DF=AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.8.解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.9.解:∵第一次回到出发点A时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:60÷5=12,根据多边形的外角和为360°,∴则他每次转动θ的角度为:360°÷12=30°,故选:B.10.解:如下图所示:观察图形可知,四边形剪掉一个角后,剩下的图形可能是五边形,也可能是四边形,还可能是三角形.则剩下的纸片图形是三角形或四边形或五边形.内角和是:180°或360°或540°.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:根据题意,得(n﹣2)•180=720,解得:n=6.故这个多边形的边数为6.故答案为:6.12.解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.13.解:添加条件是AB=CD,理由是:∵梯形ABCD,AD∥BC,AB=CD,∴梯形ABCD是等腰梯形(有两腰相等的梯形是等腰梯形),故答案为:AB=CD.14.解:∵∠ADB=90°,∴AO===13,∵AC=26,∴CO=AO=13,且DO=BO,∴四边形ABCD是平行四边形,∴四边形ABCD的面积=4S△ADO=4××12×5=120,故答案为120.15.解:∵在平行四边形ABCD中,AC=12,BD=8,∴OA=AC=6,OD=BD=4,∵AD=a,∴a的取值范围是:2<a<10.故答案为:2<a<10.16.解:∵A(4,0),∴OA=4,∵四边形OABC是平行四边形,∴OA=BC=4,∵C(2,3),∴B(6,3),故答案为(6,3).三.解答题(共6小题,满分46分)17.证明:∵AE=DE,∴∠1=∠2,∵AD∥BC,∴∠1=∠3,∠2=∠4,∴∠3=∠4,∵E是BC中点,∴BE=CE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴AB=DC,∴梯形ABCD是等腰梯形.18.证明:∵平行四边形ABCD中AB∥CD,∴∠OAE=∠OCF,又∵OA=OC,∠COF=∠AOE,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AECF是平行四边形.19.(1)证明:连接BD,交AC于O,如图所示:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BFDE是平行四边形;(2)解:∵AE=CF,OE=OF,EF=2AE=2,∴AE=CF=OE=OF=1,AC=4,CE=3,∵∠ACB=45°,BE⊥AC,∴△BCE是等腰直角三角形,∴BE=CE=3,∵四边形ABCD是平行四边形,∴▱ABCD的面积=2△ABC的面积=2××AC×BE=4×3=12.20.解:(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n﹣1)=(2n+3)个三角形;故答案为:11;(3)能.理由如下:由(1)知2n+3=2019,解得n=1008,∴此时五边形ABCDE内部有1008点.21.解:(1)当AP=BQ时,四边形ABQP是平行四边形而AP=t×1=t;BQ=BC﹣CQ=30﹣t×3=30﹣3t∴t=30﹣3t解之得:t=7.5(2)四边形ABQP能成为等腰梯形.∵四边形ABCD为等腰梯形∴AB=CD,∠B=∠C(2分)若四边形ABQP是等腰梯形.则AB=PQ,∠B=∠PQB∴CD=PQ,∠C=∠PQB∴CD∥PQ∴四边形PQCD为平行四边形∴PD=CQ(6分)而PD=AD﹣AP=10﹣t×1=10﹣t;CQ=t×3=3t则10﹣t=3t解之得:t=2.5.22.(1)证明:∵点E是BD的中点,∴BE=DE,∵AD∥BC,∴∠ADE=∠CBE,在△ADE和△CBE中∴△ADE≌△CBE(ASA),∴AE=CE;(2)证明:∵AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵DF=CD,∴DF=AB,即DF=AB,DF∥AB,∴四边形ABDF是平行四边形;(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,∴∠BDC=∠F=30°,∴DQ=DF==1,CH=DC==1,∴四边形ABCF的面积S=S平行四边形BDF A+S△BDC=AF×DQ+=4×1+=6,故答案为:6.。