2019高考数学常见难题大盘点:数列
2019年高考数学题型全归纳:数列高考原创题探讨(含答案)

高考数学精品复习资料2019.5陕西省吴堡县吴堡中学高中数学 第一章 数列高考原创题探讨素材 北师大版必修5【原创题探讨】数 列【原创精典1】如图①,②,③,……是由花盆摆成的图案,① ② ③根据图中花盆摆放的规律,猜想第个图形中花盆的盆数n a = .【解析】通过图形的变化寻求规律,以每行盆数为突破口。
【答案】2331n n -+【原创精典2】已知数列{a n }的前n 项的和S n 满足关系式lg(S n -1)=n ,(n ∈N *),则数列{a n }的通项公式为 .【解析】利用a n =S n -S n -1求通项尤其注意n=1时的情况。
【答案】,110101)1lg(+=⇒=-⇒=-n n n n n S S n S 当n =1时,a 1=S 1=11;当n≥2时,a n =S n -S n -1=10n -10n -1=9·10 n -1.故a n =⎪⎩⎪⎨⎧≥⋅=-)2(109)1(111n n n【原创精典3】将自然数0,1,2,…按照如下形式进行摆列:,根据以上规律判定,从2009到20xx 的箭头方向是( )【解析】利用摆列的规律找到数列通项,从而确定所要箭头方向。
【答案】B新动向前瞻【样题1】计算机是将信息转换成二进制进行处理的. 二进制即“逢二进一”,如2(1101)表示二进制数,将它转换成十进制形式是321012120212⨯+⨯+⨯+⨯= 13,那么将二进制数211611111)(个转换成十进制形式是( ). A .1722- B .1622- C .1621- D .1521-【解析】151********(1111)1212121221=⨯+⨯+⨯+⨯=-【答案】C【样题2】已知数列:1,⎪⎭⎫ ⎝⎛+211,⎪⎭⎫ ⎝⎛++41211,⎪⎭⎫ ⎝⎛+++8141211,…,⎪⎭⎫ ⎝⎛+++-12141211n ,求它的前n 项的和S n .【解析】考查数列的求和。
2019年高考数学考纲解读与热点难点突破专题11数列的求和问题热点难点突破文含解析

数列的求和问题 1.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是方程x 2-b n x +2n =0的两根,则b 10等于( )A .24B .32C .48D .64 答案 D2.已知数列{a n }的前n 项和为S n =2n +1+m ,且a 1,a 4,a 5-2成等差数列,b n =a n a n -1a n +1-1,数列{b n }的前n 项和为T n ,则满足T n >2 0172 018的最小正整数n 的值为( ) A .11 B .10 C .9 D .8答案 B解析 根据S n =2n +1+m 可以求得a n =⎩⎪⎨⎪⎧ m +4,n =1,2n ,n ≥2,所以有a 1=m +4,a 4=16,a 5=32,根据a 1,a 4,a 5-2成等差数列,可得m +4+32-2=32,从而求得m =-2,所以a 1=2满足a n =2n ,从而求得a n =2n (n ∈N *),所以b n =a n a n -1a n +1-1=2n 2n -12n +1-1 =12n -1-12n +1-1, 所以T n =1-13+13-17+17-115+…+12n -1-12n +1-1=1-12n +1-1, 令1-12n +1-1>2 0172 018,整理得2n +1>2 019, 解得n ≥10.3.设S n 为数列{a n }的前n 项和,已知a 1=12,n +1a n +1=n a n+2n (n ∈N *),则S 100等于( ) A .2-492100 B .2-49299 C .2-512100 D .2-51299 答案 D解析 由n +1a n +1=n a n +2n ,得n +1a n +1-n a n =2n , 则n a n -n -1a n -1=2n -1,n -1a n -1-n -2a n -2=2n -2,…,2a 2-1a 1=21, 将各式相加得n a n -1a 1=21+22+…+2n -1=2n -2,又a 1=12,所以a n =n ·12n , 因此S 100=1×12+2×122+…+100×12100, 则12S 100=1×122+2×123+…+99×12100+100×12101, 两式相减得12S 100=12+122+123+…+12100-100×12101, 所以S 100=2-⎝ ⎛⎭⎪⎫1299-100·⎝ ⎛⎭⎪⎫12100=2-51299. 押题依据 数列的通项以及求和是高考重点考查的内容,也是《考试大纲》中明确提出的知识点,年年在考,年年有变,变的是试题的外壳,即在题设的条件上有变革,有创新,但在变中有不变性,即解答问题的常用方法有规律可循.答案 1解析 因为a n =n +22n nn +1=2n +1-n 2n n n +1=12n -1n -12n n +1, 所以S n =⎝⎛⎭⎪⎫120×1-121×2+⎝ ⎛⎭⎪⎫121×2-122×3+…+⎣⎢⎡⎦⎥⎤12n -1n -12n n +1 =1-12n n +1, 由于1-12n n +1<1, 所以M 的最小值为1.9.已知数列{a n },a 1=e(e 是自然对数的底数),a n +1=a 3n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)ln a n ,求数列{b n }的前n 项和T n .解 (1)由a 1=e ,a n +1=a 3n 知,a n >0,所以ln a n +1=3ln a n ,数列{}ln a n 是以1为首项,3为公比的等比数列,所以ln a n =3n -1,a n =e3n -1(n ∈N *).(2)由(1)得b n =(2n -1)ln a n =(2n -1)·3n -1,T n =1×30+3×31+5×32+…+(2n -1)×3n -1,①3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,② ①-②,得-2T n =1+2(31+32+33+…+3n -1)-(2n -1)×3n =1+2×3-3n 1-3-(2n -1)×3n =-2(n -1)×3n -2. 所以T n =(n -1)×3n +1(n ∈N *).10.在等比数列{a n }中,首项a 1=8,数列{b n }满足b n =log 2a n (n ∈N *),且b 1+b 2+b 3=15.(1)求数列{a n }的通项公式;(2)记数列{b n }的前n 项和为S n ,又设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:T n <34. (1)解 由b n =log 2a n 和b 1+b 2+b 3=15,得log 2(a 1a 2a 3)=15,∴a 1a 2a 3=215,设等比数列{a n }的公比为q ,∵a 1=8,∴a n =8qn -1, ∴8·8q ·8q 2=215,解得q =4,∴a n =8·4n -1,即a n =22n +1(n ∈N *). (2)证明 由(1)得b n =2n +1,易知{b n }为等差数列,S n =3+5+…+(2n +1)=n 2+2n ,则1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2, ∴T n <34. 11.在公差不为0的等差数列{a n }中,a 22=a 3+a 6,且a 3为a 1与a 11的等比中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)n n⎝ ⎛⎭⎪⎫a n -12⎝ ⎛⎭⎪⎫a n +1-12(n ∈N *),求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,∵a 22=a 3+a 6,∴(a 1+d )2=a 1+2d +a 1+5d ,①∵a 23=a 1·a 11, 即(a 1+2d )2=a 1·(a 1+10d ),②∵d ≠0,由①②解得a 1=2,d =3.∴数列{a n }的通项公式为a n =3n -1(n ∈N *).(2)由题意知, b n =(-1)n n⎝ ⎛⎭⎪⎫3n -32·⎝ ⎛⎭⎪⎫3n +32=(-1)n ·16·⎝⎛⎭⎪⎪⎫13n -32+13n +32 =(-1)n ·19·⎝ ⎛⎭⎪⎫12n -1+12n +1 T n =19⎣⎢⎡ -⎝ ⎛⎭⎪⎫11+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…⎦⎥⎤+-1n ⎝ ⎛⎭⎪⎫12n -1+12n +1 =19⎣⎢⎡⎦⎥⎤-1+-1n 12n +1. 12.数列{a n }的前n 项和S n 满足:S n =n 2,数列{b n }满足:①b 3=14;②b n >0;③2b 2n +1+b n +1b n -b 2n =0. (1)求数列{a n }与{b n }的通项公式;(2)设c n =a n b n ,求数列{c n }的前n 项和T n .押题依据 错位相减法求和是高考的重点和热点,本题先利用a n ,S n 的关系求a n ,也是高考出题的常见形式. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1(n ∈N *),又a 1=1满足a n =2n -1,∴a n =2n -1(n ∈N *).∵2b 2n +1+b n +1b n -b 2n =0,且b n >0,∴2b n +1=b n ,∴q =12,b 3=b 1q 2=14, ∴b 1=1,b n =⎝ ⎛⎭⎪⎫12n -1(n ∈N *).(2)由(1)得c n =(2n -1)⎝ ⎛⎭⎪⎫12n -1, T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -1)⎝ ⎛⎭⎪⎫12n -1, 12T n =1×12+3×⎝ ⎛⎭⎪⎫122+…+(2n -3)⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n , 两式相减,得12T n =1+2×12+2×⎝ ⎛⎭⎪⎫122+…+2×⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫32+n . ∴T n =6-⎝ ⎛⎭⎪⎫12n -1(2n +3)(n ∈N *). 13.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1,(1)证明数列⎩⎨⎧⎭⎬⎫b n n 为等差数列,并求数列{a n }和{b n }的通项公式; (2)若c n =(-1)n -14n +13+2log 2a n 3+2log 2a n +1,求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·b n ,数列{}d n 的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b n n=1, 从而数列⎩⎨⎧⎭⎬⎫b n n 为首项b 11=1,公差d =1的等差数列, 所以b n n =n (n ∈N *),数列{b n }的通项公式为b n =n 2.当n =1时,S 1=2a 1-1=a 1,所以a 1=1.当n ≥2时,S n =2a n -1,S n -1=2a n -1-1,两式相减得a n =2a n -1,又a 1=1≠0,所以a n a n -1=2, 从而数列{a n }为首项a 1=1,公比q =2的等比数列,从而数列{a n }的通项公式为a n =2n -1(n ∈N *).(3)由(1)得d n =a n b n =n ·2n -1,D n =1×1+2×2+3×22+…+(n -1)·2n -2+n ·2n -1, 2D n =1×2+2×22+3×23+…+(n -1)·2n -1+n ·2n . 两式相减得-D n =1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n , 所以D n =(n -1)·2n +1,由(1)得S n =2a n -1=2n-1,因为对∀n ∈N *,都有D n ≤nS n -a ,即(n -1)·2n +1≤n ()2n -1-a 恒成立, 所以a ≤2n-n -1恒成立,记e n =2n -n -1,所以a ≤()e n min , 因为e n +1-e n =[]2n +1-n +1-1-()2n -n -1=2n -1>0,从而数列{}e n 为递增数列, 所以当n =1时,e n 取最小值e 1=0,于是a ≤0.。
2019高考数学数列:数列的概念与简单表示法

数列的概念与简单表示法【考点梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =,S n -S n -1,n【考点突破】考点一、由a n 与S n 的关系求通项a n【例1】(1)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 [答案] (1) ⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2 (2) A[解析] (1)当n =1时,a 1=S 1=4712,当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3 =12n +512, 经检验a 1=4712不满足上式所以这个数列的通项公式为a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)当n =8时,a 8=S 8-S 7=82-72=15. 【类题通法】 已知S n 求a n 的3步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 【对点训练】1.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. [答案] 4n -5[解析] a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5 D .20[答案] D[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.【例2】(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. [答案] (1) (-2)n -1(2) -1n[解析] (1)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.(2)∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.【类题通法】S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 【对点训练】1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2[答案] A[解析] 由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.2.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A .31 B .42 C .37 D .47 [答案] D[解析] 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.考点二、由递推公式求数列的通项公式【例3】在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. [答案] (1) 32n 2+n 2 (2) 2n +1 (3) 2n +1-3[解析] (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n 2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.【类题通法】1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【对点训练】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________.(3)若a 1=1,a n +1=3a n +2,则数列{a n }的通项公式a n =________. [答案] (1) 4-1n(2) ()122n n - (3) 2·3n -1-1[解析] (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n,故a n =4-1n.(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=()122n n -.又a 1=1适合上式,故a n =()122n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.考点三、数列的性质及应用【例3】已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1B .12 C .1 D .2[答案] D[解析] 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 【类题通法】解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 【对点训练】已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. [答案] 0[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0.。
2019年高考数学考纲解读与热点难点突破专题12数列的综合问题热点难点突破理含解析20190330237

数列的综合问题1.删去正整数数列1,2,3,… 中的所有完全平方数,得到一个新数列,这个数列的第2 018项是( ) A .2 062 B .2 063 C .2 064 D .2 065 答案 B解析 由题意可得,这些数可以写为12,2,3,22,5,6,7,8,32,…,第k 个平方数与第k +1个平方数之间有2k 个正整数,而数列12,2,3,22,5,6,7,8,32,…,452共有2 025项,去掉45个平方数后,还剩余2 025-45=1 980(个)数,所以去掉平方数后第2 018项应在2 025后的第38个数,即是原来数列的第2 063项,即为2 063.2.已知数列{a n }满足0<a n <1,a 41-8a 21+4=0,且数列⎩⎨⎧⎭⎬⎫a 2n +4a 2n 是以8为公差的等差数列,设{a n }的前n 项和为S n ,则满足S n >10的n 的最小值为( ) A .60 B .61 C .121 D .122 答案 B解析 由a 41-8a 21+4=0,得a 21+4a 21=8,所以a 2n +4a 2n=8+8(n -1)=8n ,所以⎝⎛⎭⎪⎫a n +2an2=a 2n +4a 2n+4=8n +4, 所以a n +2a n=22n +1,即a 2n -22n +1a n +2=0,所以a n =22n +1±22n -12=2n +1±2n -1,因为0<a n <1,所以a n =2n +1-2n -1,S n =2n +1-1, 由S n >10得2n +1>11, 所以n >60.∴a n =2n 2+3n ,由题意可知,∴每10项中有4项能被5整除,∴数列{a n }的前100项中,能被5整除的项数为40.7.设x =1是函数f (x )=a n +1x 3-a n x 2-a n +2x +1(n ∈N *)的极值点,数列{a n }满足 a 1=1,a 2=2,b n =log 2a n +1,若[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019等于( )A .2 017B .2 018C .2 019D .2 020 答案 A解析 由题意可得f ′(x )=3a n +1x 2-2a n x -a n +2, ∵x =1是函数f (x )的极值点, ∴f ′(1)=3a n +1-2a n -a n +2=0, 即a n +2-3a n +1+2a n =0. ∴a n +2-a n +1=2()a n +1-a n ,∵a 2-a 1=1,∴a 3-a 2=2×1=2,a 4-a 3=2×2=22,…,a n -a n -1=2n -2,以上各式累加可得a n =2n -1.∴b n =log 2a n +1=log 22n=n . ∴2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 018⎝⎛⎭⎪⎫11×2+12×3+…+12 018×2 019=2 018⎝⎛⎭⎪⎫1-12 019=2 018-2 0182 019=2 017+12 019. ∴⎣⎢⎡⎦⎥⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 017. 8.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a n n为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤73,125 解析 由题意可知a 1+2a 2+…+2n -1a n n=2n +1,∴a 1+2a 2+…+2n -1a n =n ·2n +1,①a 1+2a 2+…+2n -2a n -1=(n -1)·2n ,②由①-②,得2n -1a n =n ·2n +1-(n -1)·2n (n ≥2,n ∈N *),则a n =2n +2(n ≥2),又当n =1时,a 1=4,符合上式,∴a n =2n +2(n ∈N *),∴a n -kn =(2-k )·n +2, 令b n =(2-k )·n +2,∵S n ≤S 5,∴b 5≥0,b 6≤0,解得73≤k ≤125,∴k 的取值范围是⎣⎢⎡⎦⎥⎤73,125.9.已知数列{a n }的前n 项和为S n ,S n =43(a n -1),则(4n -2+1)⎝ ⎛⎭⎪⎫16a n +1的最小值为__________.答案 4解析 ∵S n =43(a n -1),∴S n -1=43(a n -1-1)(n ≥2),∴a n =S n -S n -1=43(a n -a n -1),∴a n =4a n -1,又a 1=S 1=43(a 1-1),∴a 1=4,∴{a n }是首项为4,公比为4的等比数列, ∴a n =4n,∴(4n -2+1)⎝ ⎛⎭⎪⎫16a n +1=⎝ ⎛⎭⎪⎫4n16+1⎝ ⎛⎭⎪⎫164n +1 =2+4n16+164n ≥2+2=4,当且仅当n =2时取“=”.10.已知数列{a n }的首项a 1=a ,其前n 项和为S n ,且满足S n +S n -1=4n 2(n ≥2,n ∈N *),若对任意n ∈N *,a n <a n+1恒成立,则a 的取值范围是______________.答案 (3,5)解析 由条件S n +S n -1=4n 2(n ≥2,n ∈N *), 得S n +1+S n =4(n +1)2, 两式相减,得a n +1+a n =8n +4, 故a n +2+a n +1=8n +12, 两式再相减,得a n +2-a n =8,由n =2,得a 1+a 2+a 1=16⇒a 2=16-2a , 从而a 2n =16-2a +8(n -1)=8n +8-2a ; 由n =3,得a 1+a 2+a 3+a 1+a 2=36⇒a 3=4+2a , 从而a 2n +1=4+2a +8(n -1)=8n -4+2a ,由条件得⎩⎪⎨⎪⎧a <16-2a ,8n +8-2a <8n -4+2a ,8n -4+2an ++8-2a ,解得3<a <5.11.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上. (1)求数列{a n }的通项公式; (2)若函数f (n )=1n +a 1+2n +a 2+3n +a 3+…+n n +a n(n ∈N *,且n >2),求函数f (n )的最小值; (3)设b n =1a n,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的整式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,请说明理由.解 (1)点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,∴数列{a n }是以1为首项,1为公差的等差数列, ∴a n =1+(n -1)·1=n (n ∈N *).(3)∵b n =1n ⇒S n =1+12+13+…+1n ,∴S n -S n -1=1n(n ≥2),即nS n -(n -1)S n -1=S n -1+1,∴(n -1)S n -1-(n -2)S n -2=S n -2+1,…,2S 2-S 1=S 1+1, ∴nS n -S 1=S 1+S 2+…+S n -1+n -1, ∴S 1+S 2+…+S n -1=nS n -n =(S n -1)·n (n ≥2), ∴g (n )=n .12.已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *. (1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(1)解 由已知S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =qn -1.由2a 2,a 3,a 2+2成等差数列, 可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2.所以a n =2n -1(n ∈N *).(2)证明 由(1)可知,a n =qn -1.所以双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+qn -.由e 2=1+q 2=53,解得q =43.因为1+q2(k -1)>q2(k -1), 所以1+qk ->qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1.故e 1+e 2+…+e n >4n-3n3n -1.13.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数. (1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2nb ,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n+3+n +122成立的最小正整数n 的值.解 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3. 又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列. (2)①由条件得⎩⎪⎨⎪⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *).②由①得b n =n -2, 从而c n =1n +n ++n ·2n -2.记C 1=12×3+13×4+…+1n +n +=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =n n +,记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1,两式相减得C 2=(n -1)·2n -1+12, 从而T n =n n ++(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1, 则不等式4n -1T n <S n +3+n +122可化为n +n -n ++2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.14.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *). (1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n . (1)证明 ∵S n -n =2(a n -2),当n ≥2时,S n -1-(n -1)=2(a n -1-2), 两式相减,得a n -1=2a n -2a n -1, ∴a n =2a n -1-1,∴a n -1=2(a n -1-1), ∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2), 得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列. (2)解 由(1)知,a n -1=2×2n -1=2n,∴a n =2n+1,又b n =a n ·log 2(a n -1), ∴b n =n (2n+1), ∴T n =b 1+b 2+b 3+…+b n=(1×2+2×22+3×23+…+n ×2n)+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n, 则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1,两式相减,得-A n =2+22+23+…+2n -n ×2n +1=-2n 1-2-n ×2n +1,∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n n +2,∴T n =(n -1)×2n +1+2+n n +2(n ∈N *).15.已知数列{a n }满足a 1=2,a n +1=2(S n +n +1)(n ∈N *),令b n =a n +1.(1)求证:{b n }是等比数列;(2)记数列{nb n }的前n 项和为T n ,求T n ; (3)求证:12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116. (1)证明 a 1=2,a 2=2(2+2)=8,a n +1=2(S n +n +1)(n ∈N *), a n =2(S n -1+n )(n ≥2),两式相减,得a n +1=3a n +2(n ≥2). 经检验,当n =1时上式也成立, 即a n +1=3a n +2(n ≥1). 所以a n +1+1=3(a n +1), 即b n +1=3b n ,且b 1=3.故{b n }是首项为3,公比为3的等比数列. (2)解 由(1)得b n =3n,nb n =n ·3n.T n =1×3+2×32+3×33+…+n ×3n ,3T n =1×32+2×33+3×34+…+n ×3n +1,两式相减,得-2T n =3+32+33+…+3n -n ×3n +1=-3n 1-3-n ×3n +1,化简得T n =⎝ ⎛⎭⎪⎫32n -34×3n +34.(3)证明 由1a k =13k -1>13k ,得1a 1+1a 2+1a 3+…+1a n >13+13+…+13 =13⎝ ⎛⎭⎪⎫1-13n 1-13=12-12×13n .又1a k =13k -1=3k +1-13k-k +1-<3k +13k-k +1-=32⎝ ⎛⎭⎪⎫13k -1-13k +1-1,所以1a 1+1a 2+1a 3+…+1a n <12+32⎣⎢⎡⎝ ⎛⎭⎪⎫132-1-133-1+⎝ ⎛⎭⎪⎫133-1-134-1+…+⎦⎥⎤⎝ ⎛⎭⎪⎫13-1-13-1 =12+32⎝ ⎛⎭⎪⎫132-1-13n +1-1 =12+316-32×13n +1-1<1116, 故12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116.。
2019届理科数学高考中的数列问题(2021年整理)

2019届理科数学高考中的数列问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届理科数学高考中的数列问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届理科数学高考中的数列问题(word版可编辑修改)的全部内容。
2019届理科数学高考中的数列问题一、选择题(每小题5分,共20分)1.已知等差数列{a n}的公差不为0,前n项和S n满足=9S2,S4=4S2,则a2=()A。
B。
C。
D。
2。
[数学文化题]《九章算术》中有一题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马。
”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟。
羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半。
”打算按此比例偿还,问牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿()A。
斗粟 B。
斗粟 C。
斗粟 D。
斗粟3.已知S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A。
—2或-1 B。
1或2C.±2或—1 D。
±1或±24.已知数列{a n}是公比为2的等比数列,满足a6=a2·a10,设等差数列{b n}的前n项和为S n,若b 9=2a7,则S17=()A。
34 B.39 C。
51 D.68二、填空题(每小题5分,共10分)5.已知数列{a n}满足2a n·a n+1+a n+1—a n=0,且a1=1,则数列{a n}的通项公式为. 6。
2019年高考数学真题专题12 数列

9.【2019 年高考江苏卷】已知数列{an}(n N*) 是等差数列, Sn 是其前 n 项和.若 a2a5 a8 0, S9 27 ,
则 S8 的值是__________.
【答案】16
【解析】由题意可得:
a2a5 S9
a8 a1 d
9a1
98 2
d
a1
27
4d
a1
7d
0
,
解得:
2
1 ( 1)
5. 8
2
【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的
计算,部分考生易出现运算错误.
一题多解:本题在求得数列的公比后,可利用已知计算
S4
S3
a4
S3
a1q3
3 4
(
1 )3 2
5 8
,
避免繁分式计算.
8.【2019 年高考全国 III 卷文数】记 Sn 为等差数列an的前 n 项和,若 a3 5, a7 13 ,则
若公比 q 1 ,则 a1 a2 a3 a4 a1 1 q 1 q2 0, 但 ln a1 a2 a3 ln a1 1 q q2 lna1 0 ,即 a1 a2 a3 a4 0 ln a1 a2 a3 ,不合题意;
因此 1 q 0, q2 0,1 ,a1 a1q2 a3, a2 a2q2 a4 0 ,故选 B.
,
a10
a92
1 2
10
,
故 A 项正确.
(ⅱ)当 b
1 4
时,令
a1=a=0 ,则
a2
1 4
, a3
1 4
2
1 4
1 2
,
所以
a4
2019年高考数学理真题分项解析:专题06 数列

专题六 数列1.【2019高考新课标Ⅰ,理9】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.2.【2019高考新课标Ⅲ,理5】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A. 16B. 8C. 4D. 2【答案】C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列基本量,熟练应用公式是解题的关键。
3.【2019高考浙江卷,10】设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】对于B ,令214x λ-+=0,得λ12=,取112a =,得到当b 14=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0,得1172λ±=,取11172a +=,得到当b =﹣4时,a 10<10;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12na+>11322+=,由此推导出104a a >(32)6,从而a 1072964>>10. 【详解】对于B ,令214x λ-+=0,得λ12=, 取112a =,∴2111022n a a ==L ,,<, ∴当b 14=时,a 10<10,故B 错误;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =﹣2时,a 10<10,故C 错误; 对于D ,令x 2﹣λ﹣4=0,得1172λ±=, 取11172a +=,∴21172a +=,…,1172n a <+=10, ∴当b =﹣4时,a 10<10,故D 错误;对于A ,221122a a =+≥,223113()224a a =++≥, 4224319117()14216216a a a =+++≥+=>,a n +1﹣a n >0,{a n }递增,当n ≥4时,1n na a +=a n 12na +>11322+=, ∴5445109323232a a a a aa ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴104a a >(32)6,∴a 1072964>>10.故A 正确. 故选A .【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4. 【2019高考新课标Ⅰ,理14】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________. 【答案】1213. 【解析】 【分析】本题根据已知条件,列出关于等比数列公比q方程,应用等比数列的求和公式,计算得到5S .题目的难度不大,注重了基础知识、基本计算能力的考查. 【详解】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.5.【2019高考新课标Ⅲ,理14】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.6.【2019高考北京卷,理10】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】 (1). 0. (2). -10. 【解析】 【分析】首先确定公差,然后由通项公式可得5a 的值,进一步研究数列中正项、负项的变化规律,得到和的最小值. 【详解】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.7.【2019高考江苏卷,8】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1,a d 的方程组.8.【2019高考新课标Ⅱ,理19】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+。
2019届高考理科数学专题--高考中的数列问题

理科数学 微专题3:高考中的数列问题
示例2
[2017全国卷Ⅲ,14,5分][理]设等比数列{an}满足a1+a2=-1,a1-a3=-3,
则a4=
.
命题意图
本题主要考查等比数列的通项公式与性质,意在考查考生的数学
运算能力.
解析
设等比数列{an}的公比为q,则a1+a2=a1(1+q)=-1,a1-a3=a1(1-q2)=-3,两
2
两式相减得(2n-1)an=2,所以an=
(n≥2).
2−1
2
又由题设可得a1=2,从而{an}的通项公式为an=
.
2−1
(2)记{
}的前n项和为Sn.
2+1
2
1
1
由(1)知
=
=
,
2+1 (2+1)(2−1) 2−1 2+1
1 1 1 1
1
1
2
则Sn= - + - +…+
【理科数学】微专题3:高考中的数列问题
微专题3
高考中的数列问题
目录
CONTENTS
A考法帮∙考向全扫描
考向1 等差、等比数列的基本运算
考向2 数列的通项与求和
理科数学 微专题3:高考中的数列问题
A考法帮∙考向全扫描
考向1 等差、等比数列的基本运算
考向2 数列的通项与求和
考情揭秘
全国卷中的数列与三角基本上是交涉及一些新情境或与数学文化相交汇命题,主要命题点有:等差、
等比数列的基本运算,数列的通项与求和等.涉及的数学思想主要有:函数与
方程思想、分类讨论思想以及转化与化归思想等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学常见难题大盘点:数列1. 已知函数2()1f x x x =+-,,αβ是方程f (x )=0旳两个根()αβ>,'()f x 是f (x )旳导数;设11a =,1()'()n n n n f a a a f a +=-(n =1,2,……) (1)求,αβ旳值;(2)证明:对任意旳正整数n ,都有na >a ;解析:(1)∵2()1f x x x =+-,,αβ是方程f (x )=0旳两个根()αβ>,∴αβ==; (2)'()21f x x =+,21115(21)(21)12442121n n n nn n n n n n a a a a a a a a a a ++++-+-=-=-++=5114(21)4212n n a a ++-+,∵11a =,∴有基本不等式可知20a ≥>(当且仅当1a =时取等号),∴20a >>同,样3a >,……,n a α>= (n =1,2,……), 2. 已知数列{}n a 旳首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}nb旳首项1b a =,2n a b n n +=(2n ≥)· (1)证明:{}nb 从第2项起是以2为公比旳等比数列;(2)设n S 为数列{}n b 旳前n 项和,且{}nS 是等比数列,求实数a 旳值;(3)当a>0时,求数列{}na 旳最小项·分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由a 旳不同而要分类讨论· 解:(1)∵2na b n n +=∴22211)1(2)1(4)1(2)1(++++-++=++=++n n n a n a b n n nn n b n a 2222=+=(n ≥2)由121a a =+得24a a =,22444b a a =+=+,∵1a ≠-,∴ 20b ≠,即{}nb 从第2项起是以2为公比旳等比数列·(2)1(44)(21)34(22)221n nn a S a a a -+-=+=--++-当n ≥2时,111(22)234342(22)234(1)234n n n n n S a a a S a a a a ---+--+==++--+--∵}{nS 是等比数列, ∴1-n n S S (n ≥2)是常数,∴3a+4=0,即43a =-·(3)由(1)知当2n ≥时,2(44)2(1)2n n n b a a -=+=+,所以221(1)(1)2(2)n n a n a a n n +=⎧=⎨+-≥⎩,所以数列{}na 为2a+1,4a ,8a-1,16a ,32a+7,……显然最小项是前三项中旳一项· 当1(0,)4a ∈时,最小项为8a-1;当14a =时,最小项为4a 或8a-1; 当11(,)42a ∈时,最小项为4a ; 当12a =时,最小项为4a 或2a+1; 当1(,)2a ∈+∞时,最小项为2a+1· 点评:本题考查了用定义证明等比数列,分类讨论旳数学思想,有一定旳综合性· 考点二:求数列旳通项与求和 3. 已知数列{}na 中各项为:12、1122、111222、……、111n ⋅⋅⋅⋅⋅⋅个222n ⋅⋅⋅⋅⋅⋅个……(1)证明这个数列中旳每一项都是两个相邻整数旳积. (2)求这个数列前n 项之和S n .分析:先要通过观察,找出所给旳一列数旳特征,求出数列旳通项,进一步再求和· 解:(1)12(101)10(101)99n n n n a =-⋅+⋅- 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数∴ na= A (A+1) , 得证(2)21121010999n n n a =+-点评:本题难点在于求出数列旳通项,再将这个通项“分成” 两个相邻正数旳积,解决此题需要一定旳观察能力和逻辑推理能力· 4. 已知数列{}na 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (Ⅰ)求数列{}na 旳通项公式n a ;(Ⅱ)设21nn a b =,求数列{}n b 旳前n 项和nS ;(Ⅲ)设2)12(sinπ-=n a c n n ,数列{}n c 旳前n 项和为n T .求证:对任意旳*∈N n ,74<n T . 分析:本题所给旳递推关系式是要分别“取倒”再转化成等比型旳数列,对数列中不等式旳证明通常是放缩通项以利于求和· 解:(Ⅰ)12)1(1---=n n n a a,])1(1)[2()1(111---+-=-+∴n n n n a a ,又3)1(11=-+a ,∴数列()⎭⎬⎫⎩⎨⎧-+n n a 11是首项为3,公比为2-旳等比数列.1)2(3)1(1--=-+n n na , 即123)1(11+⋅-=--n n n a . (Ⅱ)12649)123(1121+⋅+⋅=+⋅=---n n n n b .9264321)21(1641)41(19-+⋅+⋅=+--⋅⋅+--⋅⋅=n n S nn n n n . (Ⅲ)1)1(2)12(sin --=-n n π , 1231)1()2(3)1(111+⋅=----=∴---n n n n n c .当3≥n 时,则12311231123113112+⋅+++⋅++⋅++=-n n T 7484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意旳*∈N n ,74<n T . 点评:本题利用转化思想将递推关系式转化成我们熟悉旳结构求得数列{}na旳通项n a ,第三问不等式旳证明要用到放缩旳办法,这将到下一考点要重点讲到·考点三:数列与不等式旳联系 5. 已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }旳首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 旳表达式; ⑵ 求证:n n a a>+1;分析:本题是借助函数给出递推关系,第(2)问旳不等式利用了函数旳性质,第(3)问是转化成可以裂项旳形式,这是证明数列中旳不等式旳另一种出路· 解:⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角∴42πα=∴1)42sin(=+πα x x x f +=2)(⑵n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0∴02>n a ∴n n a a >+1点评:把复杂旳问题转化成清晰旳问题是数学中旳重要思想,本题中旳第(3)问不等式旳证明更具有一般性· 6. 已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅰ)求数列{}n a 旳通项公式; (Ⅱ)若数列{}n b 满足nnbn b b b b a )1(44441111321+=---- ,证明:{}n b 是等差数列;(Ⅲ)证明:()23111123n n N a a a *++++<∈分析:本例(1)通过把递推关系式转化成等比型旳数列;第(2)关键在于找出连续三项间旳关系;第(3)问关键在如何放缩· 解:(1)121+=+nn a a ,)1(211+=+∴+nn a a故数列}1{+na 是首项为2,公比为2旳等比数列·n n a 21=+∴,12-=n n a(2)n n b n b b b b a )1(44441111321+=---- ,n n nb n b b b 24)(21=∴-+++n n nb n b b b =-+++2)(221 ①1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②②—①得n n n nb b n b-+=-++11)1(22,即1)1(2+-=-n n b n nb ③ 212)1(++=-+∴n n nb b n ④④—③得112-++=n n n nb nb nb,即112-++=n n n b b b所以数列}{nb 是等差数列(3)1111212211211-++=-<-=n n n n a a 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1(21112+-+=n a S a 点评:数列中旳不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样旳题要多探索,多角度旳思考问题· 7. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若1a =则当n ≥2时,!n n b a n >⋅. 分析:第(1)问是和自然数有关旳命题,可考虑用数学归纳法证明;第(2)问可利用函数旳单调性;第(3)问进行放缩·解:(Ⅰ)先用数学归纳法证明01na <<,*n N ∈.(1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011xf x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01na <<对于一切正整数都成立.又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n aa +<<<(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x++-, 0<x<1,由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0.因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +< (Ⅲ) 因为1111,(1)22n n b b n b +=≥+,所以0n b >,1n nb b +12n +≥, 所以1211211!2n n n n n n b bb b b n b b b ---=⋅⋅≥⋅ ————① ,由(Ⅱ)21, 2 nn aa+<知:12n nna aa+<, 所以1naa=31212121222n nna a aa a aa a a--⋅<, 因为1a=, n≥2,10 1.n na a+<<<所以na1121222naa aa-<⋅<112nna-<2122na⋅=12n————② .由①②两式可知: !n nb a n>⋅.点评:本题是数列、超越函数、导数旳学归纳法旳知识交汇题,属于难题,复习时应引起注意·考点四:数列与函数、向量等旳联系8.已知函数f(x)=52168xx+-,设正项数列{}na满足1a=l,()1n na f a+=.(1)写出2a、3a旳值;(2)试比较na与54旳大小,并说明理由;(3)设数列{}nb满足nb=54-na,记S n=1niib=∑.证明:当n≥2时,S n<14(2n-1).分析:比较大小常用旳办法是作差法,而求和式旳不等式常用旳办法是放缩法·解:(1)152168nnnaaa++=-,因为11,a=所以2373,.84a a==(2)因为10,0,n na a+>>所以1680,0 2.n na a-><<15548()52553444168432(2)22n nnnn n na aaaa a a+--+-=-==⋅---,因为20,na->所以154na+-与54na-同号,因为15144a-=-<,250,4a-<350,4a-<…,50,4na-<即5.4na<(3)当2n≥时,1111531531()422422n n n nn nb a a ba a----=-=⋅⋅-=⋅⋅--113125224n nb b--<⋅⋅=-,所以2131212222n nn n nb b b b----<⋅<⋅<<=,所以3121(12)11114(21)422124nnnn nS b b b--⎛⎫=+++<++⋅⋅⋅+==-⎪-⎝⎭点评:本题是函数、不等式旳综合题,是高考旳难点热点·9.在平面直角坐标系中,已知三个点列{A n},{B n},{C n},其中),(),,(nnnnbnBanA)0,1(-nCn,满足向量1+nnAA与向量nnCB共线,且点(B,n)在方向向量为(1,6)旳线上.,11a b a a -==(1)试用a 与n 表示)2(≥n a n;(2)若a 6与a 7两项中至少有一项是a n 旳最小值,试求a 旳取值范围·分析:第(1)问实际上是求数列旳通项;第(2)问利用二次函数中求最小值旳方式来解决· 解:(1),),,1(),,1(1111n a a C B A A b C B a a A A n n n n n n n n n n n n n =-∴--=-=++++共线,与又∵{B n }在方向向量为(1,6)旳直线上,6,6111=-=-+-∴++n n nn b b nn b b 即 (2)∵二次函数a x a x x f 26)9(3)(2+++-=是开口向上,对称轴为69+=a x 旳抛物线又因为在a 6与a 7两项中至少有一项是数列{a n }旳最小项, ∴对称轴3624,21569211]215,211[69≤≤∴≤+≤+=a a a x 内,即应该在点评:本题是向量、二次函数、不等式知识和交汇题,要解决好这类题是要有一定旳数学素养旳·。