药物合成反应-缩合反应PPT课件
合集下载
药物合成反应 第五章 缩合反应

NaOH
(CH3)2CHCH2 CH C COCH3 H
含α -活 泼氢的醛、 酮的交错缩合
H2O 30
(CH3)2CHCH2 CH
C COCH3 H
甲醛与含α -活泼氢 的醛、酮交错缩合
(CH3)2C CHO + H C H H
O
K2CO3 14 ~ 20
(CH3)2C
CHO (50%)
CH2OH
COOR
Na
+ X
NaX
第四节 其他缩合 达参反应
1.催化剂
2.α -卤代酸酯的结构 3.羰基化合物的结构
第四节 其他缩合 达参反应
i C4H9
CH3COCl/AlCl3 20 ,3~3.5h
CH3 i C4H9 C O
(95%)
CH3 i C4H9 C O C H COOCH(CH3)2 NaOH/H2O i C4H9
O
H + C2H5O
CH3 C
OC6H5+ H
H (2) HCl O (1)NaNH2 CH3 C C COOC2H5
(2)H
C
OC2H5 (1) EtONa, COOC2H5 回流10h 85 ~ 90 C O C6 H5CH C O H
OC2H5 C O
O C COOC2H5 + C6H5OH
C6H5
反应机 理
O H OO H H RCH2 C C COOC2H5 + C2H5O (1)C H ONa RCH2 C C COOC2H5 + C2H5OH 2 5 RCH2 C OC2H RCH2 C RC COOC2H5+C2H5OH R5 + H C COOC2H5
(CH3)2CHCH2 CH C COCH3 H
含α -活 泼氢的醛、 酮的交错缩合
H2O 30
(CH3)2CHCH2 CH
C COCH3 H
甲醛与含α -活泼氢 的醛、酮交错缩合
(CH3)2C CHO + H C H H
O
K2CO3 14 ~ 20
(CH3)2C
CHO (50%)
CH2OH
COOR
Na
+ X
NaX
第四节 其他缩合 达参反应
1.催化剂
2.α -卤代酸酯的结构 3.羰基化合物的结构
第四节 其他缩合 达参反应
i C4H9
CH3COCl/AlCl3 20 ,3~3.5h
CH3 i C4H9 C O
(95%)
CH3 i C4H9 C O C H COOCH(CH3)2 NaOH/H2O i C4H9
O
H + C2H5O
CH3 C
OC6H5+ H
H (2) HCl O (1)NaNH2 CH3 C C COOC2H5
(2)H
C
OC2H5 (1) EtONa, COOC2H5 回流10h 85 ~ 90 C O C6 H5CH C O H
OC2H5 C O
O C COOC2H5 + C6H5OH
C6H5
反应机 理
O H OO H H RCH2 C C COOC2H5 + C2H5O (1)C H ONa RCH2 C C COOC2H5 + C2H5OH 2 5 RCH2 C OC2H RCH2 C RC COOC2H5+C2H5OH R5 + H C COOC2H5
药物合成反应-缩合反应

●不饱和烃的-羟烷基化反应(Prins反应) p 133
◆在无机酸催化剂存在的条件下,甲醛和烯烃加成得到1,3-二
醇,进一步和甲醛反应生成环状缩醛的反应称为Prins甲醛-烯 加成反应。
RCH2
H CH2 + HCHO H2O R O HO CH HCHO CH2 O HO CH2
R
O HCH + H+
O TMSCl LDA
OTMS
O /TiCl4
O
OH
◆ 苯乙酮先与三甲基氯硅烷反应形成烯醇硅醚,再与丙酮
缩合得醛醇产物; ◆ 常用催化剂:四氯化钛,三氟化硼,四烃基铵氟化物;
◆亚胺法
R
CHO
R'NH2 R R
Li NR' LDA R NR'
R" R'"
O R" R'" N R' O Li
R" R'"
●有机金属化合物的-羟烷基化(Reformatsky反应)
◆醛或酮与 -卤代酸酯在金属锌粉存在下缩合而得到-羟基酸
酯或脱水得,-不饱和酸酯的反应称为Reformatsky反应。
C O + X C COOR5 2) H3O R2 R4 R3 OHR3 R1 H2O R1 C C COOR5 C C COOR5 R2 R2 R
授课人:孙斌 sunbb@
第四章 缩合反应
Condensation Reaction
Contents
α-羟烷基,卤烷基,氨烷基化反应 β-羟烷基, β-羰烷基化反应 亚甲基化反应
α, β-环氧烷基化反应
环加成反应
α-羟烷基化反应
药物合成反应-缩合反应

CH3
60%
定向醇醛(酮)缩合
•醛或酮与具位阻的碱如LDA(二异丙胺 锂)作用,形成烯醇盐再与另一分子醛 或酮作用, •醛、酮转变成烯醇硅醚,在TiCl4催化 下与另一分子醛、酮分子作用, •醛、酮与胺形成亚胺,与LDA形成亚 胺锂盐,再与另一分子醛、酮作用。
LDA/THF C3H7COCH3 C 3H7 C CH2 -78℃ O 1) CH3(CH2)2 C H 2) H3O C 3H7C CH2 CH(CH2)2CH3 O OH
ArCH2OH, ArCH2OR, ArCHO, ArCH2CN, ArCH2NH2(R2)
及延长碳链
CH2Cl KCN
CH2CN
CH2COOH
CH2Cl CH2(COOC 2H5)2/EtO
CH2CH(COOC 2H5)2
CH2CH2COOH
三、-氨烷基化反应
•Mannich反应
•Pictet-Spengler反应 •Strecker反应
OLi
65%
CH3CH2CH2CHO + C 6H5CH2CH CH O Si(CH3)3 1) TiCl4/CH2Cl2, -78℃ 2) H2O TsOH/PhH CH3CH2CH2CH CHCH2C6H5 OH CHO CH3CH2CH2CH CCH2C6H5 78% CHO
Tollens缩合(羟甲基化反应)
62%
C3H7
NaOH CH3CH2CH C CHO CH3CH2CHO + (CH3)2CHCHO 25℃ OH CH3 NaOH (CH3)2CHCH C CHO CH3CH2CHO + (CH3)2CHCHO 80℃ CH3 NaOH H3C CHCH2CH CHCOCH3 CHCH2CHO + CH3COCH3 30℃ H3C H3C H3C
药物合成反应作业PPT课件

03
药物合成反应的实验操作
实验前的准备
01
02
03
04
实验材料准备
根据实验需求,准备所需的试 剂、催化剂、溶剂等,确保其 质量和纯度符合实验要求。
实验设备检查
检查实验所需的所有设备,如 反应釜、冷凝器、温度计等, 确保其完好无损且在有效期内 。
实验安全准备
了解实验中可能存在的安全隐 患,准备好相应的防护措施, 如佩戴实验服、护目镜和化学 防护眼镜等。
实验异常处理
如发现异常情况,如温度过高、压力过大或出现 不正常的颜色变化等,应立即采取措施处理,并 记录实验异常情况。
实验后处理
实验数据整理
实验结果分析
整理实验数据,包括温度、压力、浓度等 参数的变化情况,以及实验结果和产物的 性质等。
根据实验数据和结果,分析实验的成功与 不足之处,总结经验教训。
实验环境控制
确保实验室内的温度、湿度和 通风等条件符合实验要求,保 持实验室的整洁和卫生。
实验操作步骤
实验操作流程
按照实验步骤,逐步进行反应操作,包括投料、 升温、搅拌、回流等过程。
实验过程观察
密切观察反应过程中的现象,如颜色变化、气泡 产生等,记录好实验数据和现象。
实验参数控制
根据实验要求,控制好反应温度、压力、浓度等 参数,确保反应顺利进行。
废弃物处理
80%
废弃物分类
将实验过程中产生的废弃物按照 性质和危害程度进行分类,以便 进行合理的处理。
100%
废弃物处置
根据废弃物的性质和处置要求, 选择合适的处置方式,如焚烧、 填埋、回收等,确保废弃物得到 妥善处理。
80%
废弃物处理记录
建立废弃物处理记录制度,对废 弃物的产生、分类、处置等情况 进行详细记录,以便进行监督和 管理。
第四章_缩合反应-药物合成

慢
R
H2 C
R' C O
+R
H C
快
C O R' R
H2 C C
R' R C H
O
C R'
O
H2O
R
H2 C C
R' R O C C
R ' + OH
B:
-H2O
R
H2 C C
R' R C
O
C R'
产物不稳定
8
OH H
△
机 理 b: 酸催化 H2SO4
R CH2 C R' O H+ R
HCl
CH2 C OH
OH
H2COH
ArH
ArCH2OH
HCl
ArCH2Cl
19
二、环加成反应机理
环加成反应可以看成是两种或两种以上的不饱和化合物通 过π键的断裂,相互以σ键结合成环状化合物的反应。在成 环过程中,既不发生消除,也不发生σ键的断裂,而σ键的 数目有所增加(一般形成两个新的σ键),加成物的组成是 反应物的总和。如果分子中含有合适基团,则可进行分子 内的环加成反应。
C
C 烯醇负离子
C R
O C
烷基化反应
OH O C C C
Aldol-反应 羟醛反应
X-X
亲电取代
-羟基酮
O C C X
卤代反应
5
第一节 缩合反应机理
亲核反应机理 电子反应机理
亲电反应机理
环加成反应机理
6
一、电子反应机理
1. 亲核反应
(1)亲核加成-消除反应
含有α-活性氢的醛或酮间的加成-消除反应 α-卤代酸酯对醛、酮的加成-消除反应
药物合成反应(全) PPT

H2N
COOCH2CH2N(C2H5)2 . HCl
二氢吡啶钙离子拮抗剂的合成
➢ 具有很强的扩血管作用,适用于冠脉痉挛、高血压、 心肌梗死等症。
➢ 本品化学名为1,4-二氢-2,6-二甲基-4-2-硝基苯基)-吡
啶-3,5-二羧酸二乙酯
NO2
➢ 化学结构式为:
CH 3CH 2OOC
COOCH 2CH 3
药物合成反应(全) PPT
药物合成反应教学内容
绪论 第1章 卤化反应 第2章 烃化反应 第3章 缩合反应 第4章 氧化反应 第5章 还原反应 第6章 重排反应 第7章 官能团保护反应 第8章 药物合成反应路线设计
Chapter 1 概论
水杨酰苯胺(Salicylanilide)的合成
➢ 水杨酸类解热镇痛药 ➢ 用于发热、头痛、神经痛、关节痛及活动性风湿症 ➢ 作用较阿司匹林强,副作用小 ➢ 化学名为邻羟基苯甲酰苯胺 ➢ 化学结构式为:
巴比妥(Barbital)的合成
➢ 巴比妥为长时间作用的催眠药。 ➢ 主要用于神经过度兴奋、狂躁或忧虑引起的失眠。 ➢ 学名为5,5-二乙基巴比妥酸,化学结构式为:
O
C2H 5 C2H 5
O
NH O
NH
合成路线如下
H2C
COOC2H5
COOC2H5+C2H5Br
C2H5ONa
C2H5 C2H5
C
CONH
OH
合成路线如下:
OH
OH
COOH
+
PCl3
OH COO
OH COO
NH2
+
CONH OH
苯妥英钠(PHenytoin Sodium)的合成
第八章 缩合反应

2015/4/14
O H H O +
O
稀NaOH
40-42 oC
O
(COOH)2 -H2O OH OH
O R R
1
O + R
2
OH or H R
3
R2 3 R
OH O R R
1
R2 -H2O R3 R
O R1
一、反应机理
在碱或酸条件下的亲核加成-消除反应,亲核加成是一个可逆过程,脱 水过程不可逆。其中亲核加成过程随酸、碱条件的不同而不同。
1. 碱催化机理
醛或酮羰基π键与α-C-H σ键之间存在的σ-π超共轭作用,使其易于烯醇 化而导致α-氢具有弱酸性。
2. 酸催化机理
含有活性α-氢的醛或酮的羰基在酸性条件下质子化后,极易转化为烯醇 式,烯醇作为亲核试剂进攻另一个被质子化的羰基碳原子发生亲核加成, 随后脱去羰基氧上的质子获得β-羟基醛或酮。在酸性条件下,β-羟基被 质子化后脱去一分子水,最后生成α,β-不饱醛或酮。
二、影响反应主要的因素
1. 酸碱催化剂的影响 a) Aldol缩合反应可在酸性和碱性条件下进行,并且以碱性条件下进行的居多。 b) 常用的碱包括乙酸钠、碳酸钠(钾)、醇钠、叔丁醇铝、氢化钠和氨 基钠等。常用的酸包括盐酸、硫酸、对甲苯磺酸以及BF3等路易斯酸。 2. 醛或酮结构的影响 进行Aldol缩合时,通常醛的活性高于酮,空间位阻小的醛或酮活性高 于空间位阻大的醛或酮。催化剂的选择通常依赖与反应物的活性、立体 位阻等因素。 3. 反应温度的影响 反应温度对缩合反应的速率及产物类型均有一定影响。一般,反应温度 高有利于消除脱水。
d) 含有活性α-氢的酮的自身缩合比醛慢很多,反应平衡强烈地偏向左边。 为使平衡向生成产物的方向移动,通常需用强碱或弱酸性阳离子交换树 脂催化,或在Soxhlet提取器中进行。 e) 对称酮的自身缩合产物较单纯,若为不对称酮时,反应产物依赖与催 化剂,但大多数情况下得到的是混合物。
O H H O +
O
稀NaOH
40-42 oC
O
(COOH)2 -H2O OH OH
O R R
1
O + R
2
OH or H R
3
R2 3 R
OH O R R
1
R2 -H2O R3 R
O R1
一、反应机理
在碱或酸条件下的亲核加成-消除反应,亲核加成是一个可逆过程,脱 水过程不可逆。其中亲核加成过程随酸、碱条件的不同而不同。
1. 碱催化机理
醛或酮羰基π键与α-C-H σ键之间存在的σ-π超共轭作用,使其易于烯醇 化而导致α-氢具有弱酸性。
2. 酸催化机理
含有活性α-氢的醛或酮的羰基在酸性条件下质子化后,极易转化为烯醇 式,烯醇作为亲核试剂进攻另一个被质子化的羰基碳原子发生亲核加成, 随后脱去羰基氧上的质子获得β-羟基醛或酮。在酸性条件下,β-羟基被 质子化后脱去一分子水,最后生成α,β-不饱醛或酮。
二、影响反应主要的因素
1. 酸碱催化剂的影响 a) Aldol缩合反应可在酸性和碱性条件下进行,并且以碱性条件下进行的居多。 b) 常用的碱包括乙酸钠、碳酸钠(钾)、醇钠、叔丁醇铝、氢化钠和氨 基钠等。常用的酸包括盐酸、硫酸、对甲苯磺酸以及BF3等路易斯酸。 2. 醛或酮结构的影响 进行Aldol缩合时,通常醛的活性高于酮,空间位阻小的醛或酮活性高 于空间位阻大的醛或酮。催化剂的选择通常依赖与反应物的活性、立体 位阻等因素。 3. 反应温度的影响 反应温度对缩合反应的速率及产物类型均有一定影响。一般,反应温度 高有利于消除脱水。
d) 含有活性α-氢的酮的自身缩合比醛慢很多,反应平衡强烈地偏向左边。 为使平衡向生成产物的方向移动,通常需用强碱或弱酸性阳离子交换树 脂催化,或在Soxhlet提取器中进行。 e) 对称酮的自身缩合产物较单纯,若为不对称酮时,反应产物依赖与催 化剂,但大多数情况下得到的是混合物。
第四章 缩合反应

80%
Ph Ph
Ph
CHO + CH CHO CH 3COCH 2CH 3 3 CHO 3COCH 2CH CH COCH CH ++
3 2 3
O O O Ph Ph Ph
O O O
(动力学控制) ( (动力学控制) 动力学控制)
HCl HCl HCl 85% 85% 85%
(热力学控制) (热力学控制) (热力学控制)
R R
OO O
O O
O
OO O O
OO
催化剂是稀硫酸,还可采用磷酸、强酸性离子交 换树脂及ZnCl2, BF3等路易斯酸;
23
(四) 有机金属化合物的a-羟烷基 化反应
(1).Grignard反应 格氏试剂与甲醛、醛和酮加成后再水解可分别得 到伯、仲、叔醇:
O O H C C H H H O O R C C H H R
一、α-羟烷基化反应 羟醛缩合反应: 含有α-氢的醛或酮,在酸或碱的催化下发生自身 缩合,或与另一分子的醛或酮发生缩合,生成β羟基醛(酮),或进一步脱水生成α,β-不饱和醛 (酮)的反应。
3
催化剂的选择
催化剂:弱碱或强碱; 强碱:一般用于活性差、位阻较大的羰基化合 物之间的缩合,且在非质子性溶剂中进行。
18
CN Ar Ar C C H H O O
CN CN H H Ar Ar C C OH OH
+ +
CN CN
-
Ar
C
O
H
CN CN Ar Ar CC
OH OH
O O H H C C Ar' Ar'
H CN H CN Ar Ar
CC
H
Ar' C C Ar'
Ph Ph
Ph
CHO + CH CHO CH 3COCH 2CH 3 3 CHO 3COCH 2CH CH COCH CH ++
3 2 3
O O O Ph Ph Ph
O O O
(动力学控制) ( (动力学控制) 动力学控制)
HCl HCl HCl 85% 85% 85%
(热力学控制) (热力学控制) (热力学控制)
R R
OO O
O O
O
OO O O
OO
催化剂是稀硫酸,还可采用磷酸、强酸性离子交 换树脂及ZnCl2, BF3等路易斯酸;
23
(四) 有机金属化合物的a-羟烷基 化反应
(1).Grignard反应 格氏试剂与甲醛、醛和酮加成后再水解可分别得 到伯、仲、叔醇:
O O H C C H H H O O R C C H H R
一、α-羟烷基化反应 羟醛缩合反应: 含有α-氢的醛或酮,在酸或碱的催化下发生自身 缩合,或与另一分子的醛或酮发生缩合,生成β羟基醛(酮),或进一步脱水生成α,β-不饱和醛 (酮)的反应。
3
催化剂的选择
催化剂:弱碱或强碱; 强碱:一般用于活性差、位阻较大的羰基化合 物之间的缩合,且在非质子性溶剂中进行。
18
CN Ar Ar C C H H O O
CN CN H H Ar Ar C C OH OH
+ +
CN CN
-
Ar
C
O
H
CN CN Ar Ar CC
OH OH
O O H H C C Ar' Ar'
H CN H CN Ar Ar
CC
H
Ar' C C Ar'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H OH- Ph
Ph
H
OHC
H
OH
OHC
(1)
H OH-
Ph
Ph
H
H
CHO
OH
H
(2)
H 不稳定
H
H 稳定
CHO
◆反式消除,离去基团与氢原子处于反式共平面,保持尽量远 的距离,构象中成对位交叉式能量最低。
◆制备手性羟基醛(酮)
O
O H O
R
R
C H O + 聚 硅 烷 负 载 的 手 性 胺
n
◆制备手性羟基醛(酮)
O CH3 C H + OH
O 慢 CH2 C H
O
O
快
+O
CH3 CH CH2 C H
CH3 C H
+ H2O
快
OH
O
CH3 CH CH2 C H + OH
H2O
O
CH3CH CH2 CH
◆迅速与另一分子的醛酮羰基发生亲核加成,生成碱性氧负离 子,获得一个氢原子,得到-羟基醛(或酮)化合物;
◆ -羟基醛(或酮)化合物中位氢原子具有弱酸性,在碱作用下, 容易和位羟基发生脱水消除,生成更稳定的, -不饱和醛酮
●影响因素-醛酮结构的影响
O
O
Ba(OH)2
CH3 C + H2C C CH3
CH3 H
H3C
CH3 C CH2
O C
CH3
I2或H3PO4
OH CH3 O
H3C C CH C CH3
CHO
◆ 反应活O性H:C 酮(<C醛H2)3
CH
CHO
H2O 115℃
◆ 丙酮自身缩合反应平衡C时3H,7缩合物浓度为0.01%,抽去反应生
●定向醇醛(酮)缩合
◆烯醇盐法
正丁醛
6-羟基-4-壬酮
2-戊酮
◆烯醇硅醚法
O T M S C l L D A
O T M SO /T iC l4
OO H
◆ 苯乙酮先与三甲基氯硅烷反应形成烯醇硅醚,再与丙酮 缩合得醛醇产物; ◆ 常用催化剂:四氯化钛,三氟化硼,四烃基铵氟化物;
◆亚胺法;N H 2 R
Li
N R' LDA R
NR'
R"
R
R '"
O R"
N R'
R '" O L i
R" R CHO
R '"
●
◆ 反应先生成中间产物-羟基芳丙醛(酮),不稳定,在强 碱/强酸催化下脱水生成稳定的芳丙烯醛(酮); ◆ 产物构型一般是反式;
为了避免含α–氢的醛或酮的自身缩合,常采取下列措施: ◆先将等摩尔的芳醛与另一种醛或酮混合均匀,然后均匀地滴 加到碱的水溶液中; ◆或先将芳醛与碱的水溶液混合后,再慢慢加入另一种醛或酮。 并控制在低温(0~6℃)下反应。
◆在稀酸或稀碱催化下(通常为稀碱),一分子醛(或酮)的-氢
原子加到另一分子醛(或酮)的氧原子上,其余部分加到羰基
碳上,生成-羟基醛(或酮),这个增长碳链的反应称为Aldol
缩合反应。
O
O
CH3
C
H + CH2
C
H
10% NaOH 5℃
H
OH
O
CH3 CH CH2 C H
◆ 属于亲核加成-消除反应机理; ◆Aldol缩合反应生成-羟基醛(或酮),进而发生消除形成,
◆ 苯甲醛与甲基脂肪酮缩合时,碱催化下,1位比3位较易形成
碳负离子;酸性催化下,取代基多的烯醇式比较稳定
●应用特点
◆制备反式芳丙醛(Claisen-Schmidt)
◆消除过程中的稳定性
PhCHO + CH3CHO
PhCH CH CHO OH H
PhCHO + CH3CHO
PhCH CH CHO OH H
( 9 8 % e e )n
◆芳醛与脂环酮在无溶剂的条件下,经聚硅烷负载的手性胺 催化,可直接制备手性β-羟基醛酮
O N a O H / H 2 O / E t O H O 2 N C H O + P h o r H 2 S O 4 / H O A c O 2 N C H C H C O P h
O N a O H / H 2 O / E t O H O 2 N C H O + P h o r H 2 S O 4 / H O A c O 2 N C H C H C O P h
NaOH 30℃
H3C H3C
CHCH2CH
CHCOCH3
60%
◆ 活性醛的反应温度较高或者催化剂的碱性较强的情况下,有利于 打破平衡,进而消除脱水得到α,β不饱和醛酮
●影响因素-催化剂的影响
◆ 硫酸,盐酸,对甲苯磺酸,阳离子交换树脂,三氟化硼
●应用特点-制备长链醇 p131
K 2 C O 3
C H 2 O H
不饱和醛酮;
●反应机理
O
O 慢
CH3 C H + OH
CH2 C H
O
O
快
+O
CH3 CH CH2 C H
CH3 C H
+
OH
O
H2O 快 CH3 CH CH2 C H + OH
H2O
O
CH3CH CH2 CH
◆ 醛酮羰基的吸电子效应使其位氢原子具有弱酸性,在碱性条件下 易失去一个氢质子形成一个电子离域的稳定负离子; ◆迅速与另一分子的醛酮羰基发生亲核加成,生成碱性氧负离子
2 H C H O + C H 3 C H 2 C H 2 C H O 1 4 - 2 0 0 C , 3 hC H 3 C H 2 C C H O ( 9 0 % )
C H 2 O H
◆ 正丁醛与甲醛在碳酸钾水溶液中反应生成2,2-二羟甲基丁醛
◆ 含α-活性氢的不同醛酮分子之间的缩合,由于生成产物复 杂,应用意义不大; ◆ 区域选择及立体选择的醛醇缩合已经成为一种新的方法;
◆ 芳香醛与不对称酮缩合,若不对称酮仅一个α位有活性
氢原子,产物单纯;酸碱催化均得到相同产物
N a O H
O C H O + 13
H 3 C C H 2 C H 3
C H C H C O C H 2 C H 3
H C l
C H C C C H O 3 C H 3
◆ 酮上两个α位均有活性氢原子,可以得到两种不同的产物;
授课人:孙斌 sunbb@
-
1
第四章 缩合反应
Condensation Reaction
-
2
-
3
Contents
α-羟烷基,卤烷基,氨烷基化反应 β-羟烷基, β-羰烷基化反应 亚甲基化反应 α, β-环氧烷基化反应
环加成反应
α-羟烷基化反应
● 羰基α位碳原子的α-羟烷基化 (Aldol缩合)
成水提高收率
C3H7
●影响因素-反应温度的影响
NaOH
CH3
CH3CH2CHO + (CH3)2CHCHO 25℃ CH3CH2CH C CHO
OH CH3
NaOH CH3CH2CHO + (CH3)2CHCHO 80℃ (CH3)2CHCH C CHO
CH3
H3C H3C
CHCH2CHO
+ CH3COCH3