02 定向井井眼轨迹设计解析
定向井钻井轨迹设计与控制技术分析

21我国的油气资源在不断的勘探开发过程中,生产开采条件日益恶化,在这种情况下断层遮挡、复杂地层油田区块的勘探开发受到了高度重视,在针对上述油田区在进行开发的过程中定向井钻井技术得到了广泛应用,使得油田开采效率得到全面提升,钻井成本也得到有效控制。
一、定向井直井段轨迹控制技术分析在定向井钻井施工过程中井眼轨迹剖面设计是非常关键的一个环节,只有针对井眼轨迹进行不断完善优化才能充分保障井眼轨迹设计的科学性和合理性,从而实现定向井钻井施工目标。
具体针对定向井井眼轨迹剖面进行优化设计的时候必须要坚持以下一些原则。
优化设计要以实现定向井钻井地质目标为基本出发点,在定向井钻井施工过程中涉及到了穿越多个油层提升勘探效果、避开断层开采剩余油储层、实现在目的层中大范围延伸井眼轨迹增加油藏裸露面积等一些地质目标[1],与此同时,在钻井施工过程中一旦发生安全事故会对油井正常开采产生严重影响,充分利用定向井钻井技术可以针对目的性进行侧钻来达到勘探开发目标,而如果在实际开发过程中由于地面存在障碍物而导致正常钻井施工无法正常进行,也可以充分利用定向井来实现勘探开采,为了能够最大程度节约钻井施工成本,可以充分利用丛式定向井钻井平台进行钻井施工,这样就能够最大程度减小平台占地面积;在进行造斜点设计的过程中要保证其尽量避开容易出现坍塌、缩径、漏失等事故的地层,而且要将井斜角严格的控制在15~45°之间,如果井斜角设置过大会进一步增加钻井施工难度,甚至会引发钻井安全事故,而如果井斜角设置过小,又会导致在实际断裂使用过程中钻井方位出现不稳定现象。
2.定向井钻井轨道设计在当前在油田钻井施工过程中定向井可以按照施工目的以及具体用途的不同进一步划分为常规定向井、丛式井以及大位移井等几种类型,通常情况下常规定向井水平位移不会超过1km,而且垂直深度处在3km以内;丛式井在实际应用过程中能够最大程度减小井场面积;大位移井通常情况下采取的都是悬链曲线轨道,井眼轨迹在设计过程中主要采取的是高稳斜看一下角和低造斜率。
定向井第二讲

定向井轨道设计的内容包括: (1)选择轨道类型; (2)确定井眼曲率(包括增斜率、降斜 率、方位变化率); (3)造斜点的确定;
(4)轨道关键参数的计算; (5)轨道节点和分点计算; (6)设计结果输出。 前3项内容需要根据设计条件和要求 进行选择和确定;后3项是重点介绍的内 容,对于不同的轨道类型,这3项内容也 有所不同。
待钻井段是相对于已钻井段而言的,意 思是等待钻进的井段。 待钻轨道是从目前井底出发,钻达某个 目标点的。所以,所有待钻轨道设计都必须 给定两个点的坐标位置:一个是出发点(目前 井底),一个是目标点。除了给定两个点的坐 标位置外,还有两个点处的井眼方向。根据 井眼方向是否给定,可将待钻轨道分为两种 情况:
轨道设计依据的条件有两种:一种是 由地质、采油部门提供的分层地质情况预告 和目标点或目标井段的有关数据,如目标点 的垂深、水平位移以及设计方位等;一种是 由钻井工程部门根据设计原则和钻井的条件 选定的造斜点位置、造斜率的大小等。 将给定和选定的条件汇集于表2—2—1 中。表中各符号的解释如下:
(2)有利于采油工艺的要求。在可能的情况 下,减小井眼曲率以改善油管和抽油杆的工 作条件。进入目的层的井段井斜角应尽量小 些,最好是垂直井段,以利于安装电潜泵、 坐封封隔器及其他井下作业。
(3)尽可能利用地层的自然规律。我们所 钻的沉积岩地层,由于倾斜、可钻性的各向异 性、可钻性的垂向和横向的变化以及其他地质 因素,具有自然造斜和使井跟方位漂移的规律。 充分利用这些规律,可以大大减小使用工具进 行轨迹控制的工作量。 (4)应有利于减小钻井难度。以便安全、 优质、快速、低成本地完成钻井。
(2)绕障或防碰要求。在设计方位线上, 可能存在某种障碍不允许设计轨道穿过,例 如,已经存在的老井,或某种不容易穿过的 地层或地质现象等。要求设计轨道要绕过这 些障碍。防碰要求主要是针对丛式井提出的, 设计结果中要给出防碰设计的有关内容。
第1章 定向井井眼轨迹计算

2 2 A2 N 2 E2
V2 A2 cos( 0 2 )
设计方位角
三、测斜计算方法
4.测斜计算方法——正切法
正切法又称下切点法。 假设:测段为一直线,方向与下 测点井眼方向一致。 所有方法中最简单的,计算误差 最大的。
ΔH
H
H L cos 2 S L sin 2 N L sin 2 cos2 E L sin 2 sin 2 26
d 2H K sin 2 dL d 2N K cos cos K sin sin 2 dL d 2E K cos sin K cos sin 2 dL
2 – 将三式代入并化简即有: K K K2 sin 2
12
二、井眼曲率的计算
et cos1 eH sin 1 cos1 eN sin 1 sin 1 eE
L L2 L1
•
井眼轨迹的其他参数:
– 垂深(H)、N坐标(N)、E坐标(E)
– 水平长度(S)和水平位移(A) – 平移方位角(θ)和视平移(V)
– 井眼曲率(K)
• 由几何关系可得:
CD CC ' / cos 2 CE CC ' / cos1
C ' D CC ' tg 2 C ' E CC ' tg1
• 此四式代入上式可得:
cos cos1 cos 2 sin 1 sin 14 2 cos
二、井眼曲率的计算
N 2 0 N 2 0, E2 0 N 2 0, E2 0 N 2 0
计算测段的坐标增量(ΔH, ΔN,ΔE)、水平长度增量 (ΔS)和井眼曲率(K) 根据测段增量计算测点坐标参数和其他参数,包括: H,N,E,S,A,θ,V,共计七项。
02定向井井眼轨迹设计解析

02定向井井眼轨迹设计解析定向井井眼轨迹设计是一项重要的工作,它对于成功完成定向井任务至关重要。
一个合理的井眼轨迹设计可以确保井眼轨迹在储层目标上的准确位置,有助于实现钻井目标的高效达成,并最大化产出。
井眼轨迹设计的目标是安全、经济、高效地达到钻井目标。
在进行井眼轨迹设计时,需要综合考虑以下因素:1.井位布置:井位的选择是井眼轨迹设计的基础。
在选择井位时,需要充分考虑储层位置、产能分布、地质条件等因素,以确保最佳井位布置。
2.井眼弯曲:井眼轨迹设计中,需要考虑井眼弯曲的角度和半径,以确保钻井设备能够顺利通过管柱并避免钻井事故的发生。
3.接触储层的长度:在确定井眼轨迹的设计时,需要确定接触储层的长度。
根据储层情况,可能需要调整井眼轨迹的角度和位置,以确保最大限度地接触到储层。
4.钻井流程:井眼轨迹的设计需要根据钻井流程来考虑,包括井口钻头运动、钻头下压和旋转等。
通过合理的井眼轨迹设计,可以最大程度地提高钻井效率,减少钻井时间和成本。
5.地震数据和井速数据:井眼轨迹的设计还需要考虑地震数据和井速数据。
通过分析这些数据,可以更好地预测井眼轨迹,减少风险,提高钻井成功率。
在进行井眼轨迹设计时,通常会使用计算机软件进行模拟和优化。
这些软件可以根据输入的数据和条件,生成最佳的井眼轨迹设计方案。
在生成方案后,还需要进行验证和调整,以确保方案的可行性和成功性。
总结起来,定向井井眼轨迹设计是一项综合性、复杂性的工作。
它需要综合考虑多种因素,包括井位布置、井眼弯曲、接触储层长度、钻井流程和地震数据等。
通过合理的井眼轨迹设计,可以提高钻井效率,减少风险,并最大化产出。
2定向井(井眼轨迹)的基本概念

da K dL
K L
斜角变化值(Δα)与二测点间井段长度 (ΔL)的比值来表示井斜变化率的。 求得的乃是该测段的平均井斜变化率:
井斜变化率和井斜方位变化率
井斜方位变化率:是指井斜方位角随井深变 化的程度,以Kφ表示。严格地讲,井斜 方位变化率是井斜方位角φ 对井深L的 一阶导数,可写为:
– 区别东西磁偏角; – 区别在那个象限里;
磁偏角校正(课堂练习)
1. 我国胜利油田的磁偏 3. 西磁偏角5.50,测得方
角大约是西偏5.50。某测 点测得井斜方位角为2.50, 求真方位角=? 2. 我国新疆克拉玛依油 田的磁偏角大约是东偏 4.10。某测点测得井斜方 位角为3580,求真方位 角=?
L
代替公式中的α,
K sin 2 c L L
令:K
L
则:
sin c
2 2 2
井眼曲率及其计算
第一套公式的图解法:
– (1)作水平射线OA; – (2)作∠BOA=αc ; – (3)以一定长度代表单位角 度,量OB=ΔΦ; – (4)自B点向OA作垂线, 垂足为C点; – (5)按步骤(3)中的比例 (以长度代表角度的比例), 量CA=Δα; – (6)连接A、B,并量A、 B长度,按步骤(3)中的比 例换算成角度,• 角度即狗 此 腿角γ。
井眼轨迹的基本参数
– 井斜方位角常以字母φ表示,单位为度(°)。井斜方位角的增 量是下测点的井斜方位角减去上测点的井斜方位角,以Δφ表 示。井斜方位角的值可以在0~360° 范围内变化。 – 注意“方向”与“方位”的区别。方位线则是水平面上的矢 量,而方向线乃是空间的矢量。只要讲到方位,方位线,方 位角,都是在某个水平面上;而方向和方向线则是在三维空 间内(当然也可能在水平面上)。井眼方向线是指井眼轴线上 某一点处井眼前进的方向线。该点的井眼方位线则指该点井 眼方向线在水平面上的投影。在学习扭方位计算时,也要特 别注意这个区别。
定向井轨迹设计计算方法探析

1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。
(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。
1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。
测斜:一口实钻井的井眼轴线乃是一条空间曲线。
为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。
测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。
这些井段被称为“测段”,这些点被称为“测点”。
基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。
这三个参数就是轨迹的基本参数。
井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。
井深是以钻柱或电缆的长度来量测。
井深既是测点的基本参数之一,又是表明测点位置的标志。
井深常以字母L表示,单位为米(m)。
井深的增量称为井段,以ΔL表示。
二测点之间的井段长度称为段长。
一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。
井深的增量总是下测点井深减去上测点井深。
井斜角:井眼轴线上每一点都有自己的井眼前进方向。
过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。
井眼方向线与重力线之间的夹角就是井斜角。
井斜角常以希腊字母α表示,单位为度(°)。
一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。
井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。
井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。
井斜方位角常以字母θ表示,单位为度(°)。
井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。
定向井大井眼轨迹控制技术与应用研究

定向井大井眼轨迹控制技术与应用研究随着石油勘探和开发的深入,油田开采已经从传统的常规井向复杂、多变的非常规油气资源过渡。
在这个过程中,非常规油气资源的开发已经成为石油勘探开发领域的一个重要趋势。
定向井和大井眼轨迹控制技术的研究与应用对于提高油气开采效率和降低成本具有重要意义。
本文将从定向井大井眼轨迹控制技术的基本原理、方法和应用进行详细介绍和分析。
一、定向井大井眼轨迹控制技术的基本原理1. 定向井的定义和特点定向井是指在垂直井的基础上,通过合理的井眼轨迹设计和控制技术,使得井眼轨迹不再垂直,而是朝向目标油田地层,从而提高油气的开采效率。
定向井的特点包括:井眼轨迹复杂、井深较大、井眼弯曲度较大、工程技术难度大等。
2. 大井眼轨迹控制技术的定义和特点大井眼是指井眼的直径超过8.89厘米(3.5英寸)的井眼。
大井眼轨迹控制技术是指通过合理的井眼轨迹设计和控制技术,使得大井眼的井眼轨迹能够达到设计要求,从而满足作业要求。
大井眼轨迹控制技术的特点包括:井眼直径大、井眼轨迹复杂、控制精度高等。
1. 定向井大井眼轨迹设计方法定向井大井眼轨迹设计是指根据地质结构和矿层分布,选择合适的井眼轨迹形式和参数,使得井眼轨迹能够有效地穿过目标地层,实现油气的产量最大化。
定向井大井眼轨迹设计方法包括:平面轨迹设计、垂直井眼深度设计、水平井眼深度设计、井眼弯曲率设计等。
定向井大井眼轨迹控制方法是指通过合适的井眼轨迹控制技术,使得井眼轨迹能够达到设计要求。
定向井大井眼轨迹控制方法包括:钻井液性能控制、地层动力学控制、钻具运输控制等。
随着页岩气开发的深入,定向井大井眼轨迹控制技术在页岩气开发中得到了广泛的应用。
通过合理的井眼轨迹设计和控制技术,能够有效地穿过页岩气层,实现页岩气的连续生产。
定向井大井眼轨迹控制技术在页岩气开发中的应用为页岩气的高效开发提供了重要的技术支撑。
水平井是指井眼的有效水平长度大于井眼垂直长度的特殊井眼形式。
定向井眼轨迹

马达弯角调为1.50,充分保证马达的造斜能力。
井眼轨迹控制技术
井眼轨迹现场控制技术
---有效的定向工艺措施
l 槽口的布置和钻井顺序的制定 严格按照定向井的原则进行槽口的布置和钻井顺序的制定,最大 限度的降低稳斜井段的井斜角,以降低作业难度。
井眼轨迹控制技术
基本公式计算
公式法预测井斜、方位变化:
沙泥金作图法:
例:沙泥金作图法(图解法)扭方位是一种 近似计算工具面的方法,使用简单,求 解迅速,是现场常用的方法。造斜工具 的工具面方向决定使用这种造斜工具钻 出的新井眼是增斜、降斜还是稳斜,是 增方位还是减方位。工具面大小也决定 着造斜工具的造斜能力用于井斜和方位 上的分配比例。工具面对井斜和方位的 影响,如图9-16所示。
井眼轨迹控制技术
井眼轨迹控制技术
由上图可知: 0°<TF<90°时,装置角位于第一象限,增斜,增方位。 90° <TF<180°时,装置角位于第二象限,减斜,增方位。 180° <TF<270°(-90°)时,装置角位于第三象限,减斜,
减方位。 270°<TF<360°时,装置角位于第四象限,增斜,减方位。 图9-16是一个扭方位的示意图。图中,OM所示为原井眼方位
井眼轨迹控制技术
基本概念
闭合方位:闭合距的方位角就叫闭合方位角。 井斜(方位)变化率:指单位长度内井斜角(方位角)
的变化值。 狗腿度:是描述井眼弯曲的情况,一般规定以每钻30米
井眼的角度变化(度/30米)。 高边:过井眼轴线的铅垂面与横截面交线的上倾方向。 装置角:造斜工具弯曲方向的平面与原井斜方向所在平
(六)有效的定向工艺措施
对于70O左右的大斜度井,9 7/8”井眼的造斜没有问题,但是 12 1/4”井眼所遇到的困难却是我们始料未及的,如F16井, 具 体 情 况 如 下 : 直 井 段 钻 至 267m , MWD 测 斜 , BTOTAOL VALUE:56 此时,基本无磁干扰,MWD直接定向,造斜至596 米时,最低钻时几乎降为零,但旋转钻进时,有较高的机械钻速 (70-100m/h),直至造斜结束(其间,钻压加至15吨,几乎无进 尺,旋转2-3米,具有较好的机械钻速时再滑动,如此反复多 次)。其间进行防碰计算防碰结果表明,无防碰危险;检查马达, 正常;估计地层异常或泥浆携砂不好。 造斜时,根据实测数据随时模拟优化设计轨迹,于711米,造斜结 束。造斜井段平均造斜率为4.640/30m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、井眼曲率及其计算方法
O Δα A B αA
对方位不变的情况 垂直平面上某井段的曲率
R
Δl
KH
l
即只有井斜沿轴线的 变化。也叫井斜变化 率。
α
B
K H K
二、井眼曲率及其计算方法
1.定义
水平投影上的方位变化
Δl
N
O
(叫水平投影曲率) 不等于该段井眼的实际方位变化率, 因该段的水平投影长度一般不等于空 间实际长度。(K为空间实际井眼的 方位变化率)
KA
S
ΔS
KA
K sin
二、井眼曲率及其计算方法
2. 空间曲线法求井眼曲率
依据:
根据微分几何原理,一条空间曲 L dN dE
dH
线的曲率K有公式
d 2H 2 d 2N 2 d 2E 2 K ( 2 ) ( 2 ) ( 2 ) dl dl dl
二、井眼曲率及其计算方法
H
井眼能增加的井斜值
B C D O A
增斜率: 降斜率:
单位长度井眼增加的 井斜值 单位长度井眼降低的 井斜值
E
三、定向井井身剖面设计
(一)名词解释
造斜段(增斜段): 降斜段: 稳斜段: 靶点:
增加井斜的井段
B C D O A
降低井斜的井段 控制井斜不变的井段 设计规定的,必须钻达的地
层位置,也称目标点
以 c ( c
1 2
2
)
代替,( 1、2)分别为上下测点井斜角
可得井眼曲率
K
2 sin c l l
2
2
二、井眼曲率及其计算方法
3.鲁宾斯基导出的狗腿严重度公式
假设测段是平面曲线.公式的表达形式为直接求测段的狗腿角γ 。
E
dH dl cos dN dl sin cos dE dl sin sin
dE
A
二、井眼曲率及其计算方法
将上三式再次求导并带入曲率公式化简整理得
d d K , K dl dl
2 K K K2 sin 2
对一个测段来说 K l , K l
垂直剖面上:
O Δα LA A B LB αA
每一点的井深与空
间井眼的井深一样,每
一点的井斜角与与空间
井眼对应的井斜角一致。
α
B
(不是直接投影)
一、定向井的基本概念
N
A' A
B'
B
水平面上:
为空间井眼的水平投
影
E
ΔS
O
一、定向井的基本概念
一、定向井的基本要素
测点———测量仪器所在的点 测段———相邻两测点的井段
O O
一、定向井的基本概念
1、定向井的基本要素
井斜变化率 ———井斜角
对井深的变化率,度/30米.
N
垂深 ———测点的垂直深
O位移———测点至井口所
N
A
在的铅垂线的距离,也称该点 B E
的闭合距,米. 视 平 移———测点水平位移在
设计方位线上的投影,米.
新疆柯 3 井,井喷失控着火,几年后请
美国人来钻定向救援井。
我国自行设计、施工的数口成功的定
向救援井:濮2—151井(中原油田)、 永59井(胜利)、南2—1井(青海)。 均成功地制服了井喷失控事故。
E
三、定向井井身剖面设计
(二)定向井井身剖面设计的原则
1、保证实现钻定向井的目的
根据不同的定向井钻井目的对定向井井身剖面进行合理设计 例如: 裂缝性油藏:横穿裂缝
薄油层:大斜度或水平井
低渗块状油层:多底井
三、定向井井身剖面设计
1、保证实现钻定向井的目的
救援:目标层位、靶区半径、简单
(快速、经济)
N
O
HA
E
具体方法: 在井轴上取一微段dl(因是微段,弦 代替了弧曲线)由左图可知
A α A SA A'
dl
dH
dS
N
C
A'
B'
dN
dH cos B dl αA+dα dN dN ds cos sin ds dl A+d dl dE dE ds sin sin dl ds dl dS
•剖面类型
•设计方法
三、定向井井身剖面设计
目的:
选择满足要求的井身剖面类型 设计剖面结构参数
井身剖面:
所钻井眼达到目标点的井眼
路径或轨迹。
井身剖面是由各种不同类
型的单一形状组成的。
三、定向井井身剖面设计
(一)名词解释
直井段: 井斜为0 造斜点: 开始增加井斜的位置 工具造斜率:造斜工具在单位长度
视平移与水平位移越接近,则该 井井眼方位控制得越好。 N坐标、E坐标和H坐标 ———测 点在以井口为原点的NEHO三维坐 标系里的北(N)、东(E)、垂 深(H)三个坐标分量,米。
O
二、井眼曲率及其计算方法
1.定义:
井眼的曲率K:
井眼切线的倾角对于井深的变化率 r1 r2
L
N O
d K dl
第二节
定向井井眼轨迹设计
定向井是指按照预先设计的井斜方位和井眼的
轴线形状进行钻进的井;
定向井是相对于直井而言,而且是以设计的井
眼轴线形状为根据;
直井的井斜角为零度,没有井斜方位角;
尽管实钻的直井都有一定的井斜角,有的井斜
角甚至很大,但仍然属于直井.
一、定向井的基本概念
井眼曲线的表示方法:
cos cos1 cos2 sin 1 sin 2 cos
狗腿严重度公式: 用上式可先求出狗腿角,再用
K K
L
求出狗腿严重度。
L
注意:狗腿严重度、井眼曲率、全角变化率都是相同的意义
三、定向井井身剖面设计
主要内容:
•基本概念
•井身剖面设计原则
造斜点 井眼曲率 最大井斜角
1.三维坐标图示法 2.投影图法(适于二维设计)
N
垂直投影图与水平投影图
3.柱面图法
O O
垂直剖面(井斜平面)与水 平平面:实钻井眼是一条空间曲线,
设想经过这条曲线上的每一个点作一条 铅垂线,所有这些铅垂线构成一个曲面。 曲面与水平面的交线即为该井的水平投 影图。将曲面展开即为垂直剖面图
一、定向井的基本概念
N
O O
测深———井口至测点处的井眼 实长,也称为该点的斜深,或井 深,米,L.
井斜角———测点处井眼方向线 (切线,指前)与重力线间的夹 角,度,α .
一、定向井的基本概念
1、定向井的基本要素
方位角
N
———测点处正北
方向(按顺时针旋转)至井
眼方向线在水平面上的投影
线间的夹角,度. 方位变化率 ———方位角对 井深的变化率,度/30米.