第六章 细胞骨架

合集下载

《细胞生物学》教学课件:第六章 细胞骨架-微管

《细胞生物学》教学课件:第六章 细胞骨架-微管

Dynamic instability is an intrinsic property of microtubules
cytoskeleton
活细胞中微管的 踏车现象
3.微管的体内装配
✓微管组织中心-(快速渡过成核期,快速 装配) ✓微管相关蛋白 ✓具有与功能匹配的动力学不稳定性 ✓药物可影响装配
7

98
15nm 25nm
极 性
cytoskeleton
Arrangement of protofilaments in singlet, double, and triplet MTs
单管
二联管 A
三联管 A
B
B
纤毛和鞭毛
C
中心粒和基体
cytoskeleton
•Nucleus and Microtubles •细胞核(兰色),微管网(浅兰色)
Floppy logic model [Non-equivalent steps] Twisting model [Equivalent steps]
(四)微管功能
✓ 维持细胞形态 ✓ 细胞内物质的运输 ✓ 细胞器的定位 ✓ 鞭毛和纤毛的运动 ✓ 纺锤体与染色体运动
cytoskeleton
4.1 细胞形态的维持
The extensive distribution of microtubules can really be appreciated in the light microscope after immunolabeling for tubulin with fluoresceinlabeled antibodies. This micrograph shows cells in culture labeled for tubulin. The labeling is so fine, the small microtubules can be delineated.

第六章细胞骨架

第六章细胞骨架
第六章 细胞骨架 (Cytoskeleton)
细胞骨架是指存在于真核 细胞中的蛋白纤维网架结构, 包括微丝、微管和中间纤维。
广义细胞骨架是指核骨架、
核纤层与中间纤维在结构上相互 连接,贯穿于细胞核、细胞质和 细胞膜的网架体系。
微管结构与化学组成
微管可装配成单管,二联管(纤毛 和鞭毛中), 三联管(中心粒和基体中)。
微丝特异性药物
细胞松弛素B:阻断微丝的装配
鬼笔环肽:稳定肌动蛋白纤维,抑制解聚、 促进微丝聚合。
微丝功能
维持细胞形态,赋予质膜机械强度 细胞运动 微绒毛 应力纤维 :具有收缩功能,但不产生运动 胞质分裂 肌肉收缩
中间纤维
10nm纤维,因其直径介于 微丝和微管之间,故被命名为 中间纤维。
中间纤维几乎分布于所有动 物细胞,往往形成一个网络结构, 特别是在需要承受机械压力的细 胞中含量相当丰富。如上皮细胞 中。除了胞质中,在核膜下的核 纤层也属于中间纤维。
微管的主要化学成分是微管蛋白 (tubulin),包括α -微管蛋白和β 微管蛋白,可结合形成异二聚体。含 有GTP或GDP及秋水仙素(colchicine) 和长春花碱的结合位点。
微管装配
α-微管蛋白和β-微管蛋白形成αβ 二聚体,αβ二聚体先形成环状核心 (ring),经过侧面增加二聚体而扩 展为螺旋带,αβ二聚体平行于长轴 重复排列形成原纤维 (protofilament)。当螺旋带加宽至 13根原纤维时,即合拢形成一段微 管。内径15nm,外径25nm。
中间纤维的成分与分布
中间纤维成分比微丝和微管复杂, 具有组织特异性。中间纤维在形态上 相似,而化学组成有明显的差别。 中间纤维类型:角蛋白纤维、波形纤维、 结蛋白纤维、神经原纤维、神经胶质 纤维。 中间纤维蛋白的表达具有严格的组织特 异性。

细胞生物学课件 细胞骨架

细胞生物学课件     细胞骨架

鞭毛的结构
运动产生:由微管滑动引起
化学能转变为机械能(动力蛋白)
滑动转变为弯曲运动 (辐射丝,连接蛋白)
B 中心粒(centriole)和基体(basal body)
组成 : 9组三联管 9+0
中心粒:成对存在,互相垂直
•间期:形成微管, 构成细胞骨架系统 的主要纤维系统,
•一方面参与物质运输 •另一方面维持细胞形状
单体 超螺旋 (平行对齐) 原纤丝 (反向平行) 原纤维
中间纤维
动态调节
通过特殊氨基酸残基 (Ser,Thr)的磷 酸化完成
5.功能
(1)为细胞提供机械支持
(2)维持细胞和组织的完整性
细胞完整性:
核纤层 核外周
组织完整性:
细胞-细胞 细胞-基质
(3)参与DNA复制 (4)与细胞分化及生存有关
movie
(3)微丝结合蛋白
与肌动蛋白纤维结合,调节其性质和功能,影 响微丝长度,稳定性和构形。 分类:
单体隔离蛋白(monomer-sequenstering protein) 交联蛋白(cross-link protein) 末端阻断蛋白(end blocking protein) 纤维切割蛋白(filament-severing protein) 去聚合蛋白(actin filament depolymerization
微管的聚合从特异性的核心形成位点开始,这些核心 形成位点主要是中心体和纤毛的基体,称为微管组织 中心
功能:帮助大多数细胞微管装配过程中成核
中心体(centrosome)是动物细胞中决定微管形成 的一种细胞器
组成:
中心粒(centriole) 中心粒旁物质(pericetriolar material)

细胞生物学第六章 细胞骨架

细胞生物学第六章 细胞骨架

• 5.微丝解聚蛋白:使微丝去组装,cofilin
• 6.交联蛋白:fimbrin • 7.纤维切断蛋白:将微丝切断,gelsolin • 8.膜结合蛋白:vinculin
核化蛋白
三、肌肉的组成
• 由肌原纤维组成,肌原纤维包括粗肌丝和细肌丝,粗肌丝
主要成分是肌球蛋白,细肌丝的主要成分是肌动蛋白、原
式有两种:游离的球形肌动蛋白(G-actin)和存在于微丝上的纤维状
肌动蛋白(F-actin)。
一、肌动蛋白单体的分子结构
• 根据等电点分为3类:α分布于肌肉细胞;β和γ分布于肌细胞
和非肌细胞。
• actin单体外观呈哑铃形,称球形肌动蛋白G-actin;多聚体
称为纤维形肌动蛋白F-actin。
微管是由微管蛋白组成的管状结构,对低温、高压和秋水
仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
一、分子结构
• 微管是由13条原纤维构成的中空管状结构,直径22~25nm。
• 属于马达蛋白,趋向微丝的(+)极。
• 已知15类(myosin I-XV)。
• Myosin II构成粗肌丝。由2个重链和4个轻链组成,外观具 有两个球形的头和一个螺旋化的干,头部有ATP酶活性。 • Myosin V结构类似myosin II,但重链有球形尾部。 • Myosin I 由一个重链和两个轻链组成。
Ca2+离子对原肌球蛋白与 肌动蛋白结合的影响
四、微丝的功能
• 微丝除参与形成肌原纤维外还具有以下功能:

细胞生物学-细胞骨架

细胞生物学-细胞骨架
28
29
6 形成应力纤维(stress fiber)
应力纤维是由微丝与肌球蛋白-II组装的一种不稳定性收 缩束,结构类似肌原纤维,使细胞具有抗剪切力。
30
培养的上皮细胞中的应力纤维(微丝红色、微管绿色)
31
7 参与肌肉收缩
基本结构:肌纤维是圆柱形的肌细胞(长度可达40mm, 宽为10100μm), 并且含有许多核(可多达100个核)。
性,既正极与负极之别。
微丝纤维的负染电镜照片
10
三、微丝的装配过程
微丝(F-actin)由G-actin聚合而成,单体具有极性,装配时 首尾相接。在适宜的条件下,肌动蛋白单体可自组装为纤维。 微丝的组装过程分三个步骤:即成核期、延长期、平衡期。
11
影响装配的因素
微丝的装配同样受肌动蛋白临界浓度的影响,还受一些 离子浓度的影响:在含有ATP和Mg2+, 以及很低的Na+、K+ 等阳离子的溶液中,微丝趋向于解聚成G-肌动蛋白。
32
33
骨骼肌收缩的基本结构单位——肌小节
肌小节的主要成分是肌原纤维,电镜下可见肌原纤维是由两种 类型的长纤维构成, 一种是细肌丝,直径为6nm;另一种是粗 肌丝,直径为15nm。
34
粗肌丝: 组成肌节的肌球蛋白丝。 细肌丝: 组成肌节的肌动蛋白丝。
35
粗肌丝的构成---肌球蛋白(myosin)
12
踏车现象(treadmilling)
在微丝装配时,若G-肌动蛋白分子添加到F-肌动蛋白丝 上的速率正好等于G-肌动蛋白分子从F-肌动蛋白上失去的速 率时, 微丝净长度没有改变, 这种过程称为肌动蛋白的踏车 现象.
13
永久性微丝结构
在体内, 有些微丝是永久性结构, 如肌肉中的细丝及上皮 细胞微绒毛中的轴心微丝等。有些微丝是暂时性结构, 如 胞质分裂环中的微丝。

细胞骨架-医学课件

细胞骨架-医学课件

要点三
细胞骨架与干细胞治 疗
细胞骨架可以影响干细胞的迁移和黏 附,在干细胞治疗中具有潜在的应用 价值。同时,对干细胞中细胞骨架的 研究也将有助于深入探讨其生物学特 性及潜在应用前景。
THANKS
谢谢您的观看
物质运输
细胞骨架参与细胞内物质的运输,如微管和微丝 参与细胞器的移动和运输,中间纤维连接细胞膜 和细胞器,参与物质的跨膜运输。
参与细胞运动
细胞骨架参与细胞的移动和运动,如微管和微丝 参与细胞器的移动,中间纤维参与细胞的连接和 牵引。
信号转导
细胞骨架可以感受外界刺激,参与信号转导过程 ,如微丝和中间纤维在细胞内形成应力纤维,感 受力学信号刺激并参与信号转导。
细胞骨架在药物研发中的重要性
药物筛选
细胞骨架成分的异常表达与多种 疾病的发生有关,因此可作为药 物筛选的靶点。
药物传输
细胞骨架在药物传输中发挥重要 作用,可帮助药物在体内定向传 输,提高药物治疗效果。
药物作用机制
一些药物可通过影响细胞骨架的 成分和组装来发挥治疗作用,如 紫杉醇等抗癌药物可通过影响微 管蛋白的组装来抑制癌细胞的增 殖。
细胞骨架与细胞内信 息传递
细胞骨架通过与细胞内信息分子和信 号转导途径的相互作用,调节细胞增 殖、分化和凋亡等生物学过程。
细胞骨架在干细胞研究中的应用
要点一
细胞骨架与干细胞自 我更新
细胞骨架对干细胞的自我更新具有重 要作用,可以调节干细胞的增殖和分 化过程。
要点二
细胞骨架与干细胞分 化
细胞骨架可以影响干细胞的分化方向 和分化速度,通过调节细胞骨架的组 装和分布,可以诱导干细胞的定向分 化。
微丝与肌肉收缩
肌肉收缩
微丝是肌肉收缩的主要参与者之一。在肌肉收缩过程中,微丝通过与粗肌丝 的相互作用,产生力量并调节肌肉的收缩强度。

第六章 细胞骨架

第六章 细胞骨架

5
(2)Actin has polarity: ) : plus end; ; minus end: :
6
3、存在方式:monomers and polymer 、存在方式:
ATP、 ATP、 Ca++ 、low conc.Na+、K+ G-actin - Mg++、high conc.K+、Na+ F-actin -
+
9
3、 Actin 、
filaments are often inside the plasma membrane
10
Ⅲ .Assemble of MF
1、 Assemble of MF in vitro 、 (1)Steps )
①Nucleation ②Elongation: : ③Steady state: :
① ATP-actin对微丝末端的亲和性大,易在其末端结合。ADP-actin对微丝末端的亲和 对微丝末端的亲和性大,易在其末端结合。 对微丝末端的亲和 对微丝末端的亲和性大 力小,易从微丝末端解聚。 力小,易从微丝末端解聚。 ② ATP-actin的聚合与其浓度有关,当ATP-actin的浓度高时,其在末端聚合的速度快, 的聚合与其浓度有关, 的浓度高时, 的聚合与其浓度有关 的浓度高时 其在末端聚合的速度快, 使微丝延长。 使微丝延长。 在末端聚合后, 水解为ADP, ATP-actin的聚合速度大于 的聚合速度大于ATP的水 ③ 当ATP-actin在末端聚合后,ATP水解为 在末端聚合后 水解为 , 的聚合速度大于 的水 解速度时,在微丝末端形成一 解速度时,在微丝末端形成一ATP-帽,使微丝能稳定的延长。 帽 使微丝能稳定的延长。 随着ATP-actin的浓度的下降,微丝末端聚合速度下降, 的浓度的下降, ④ 随着 的浓度的下降 微丝末端聚合速度下降, ATP-actin的聚合速度小于 的聚合速度小于ATP的水解速度时,其ATP-帽不断缩小,以至消失,暴露 的水解速度时, 帽不断缩小, 的聚合速度小于 的水解速度时 帽不断缩小 以至消失, ADP-actin ,引起微丝的不稳定迅速解聚而缩短,表现出动力学不稳定性。 引起微丝的不稳定迅速解聚而缩短,表现出动力学不稳定性。

《医学生物学》-第六章线粒体、细胞骨架-2010

《医学生物学》-第六章线粒体、细胞骨架-2010

琥珀酸脱氢酶和细胞色素氧化酶是内膜的标志酶。
3. 基质腔:有三羧酸循环酶系(琥珀酸脱氢酶除外)、脂 肪酸氧化酶系以及蛋白质和核酸合成酶系等。 苹果酸脱氢酶为其标志酶。 4. 膜间隙:含少数几种酶,如腺苷酸激酶、二磷酸核苷激 酶等。 腺苷酸激酶为其标志酶。
三、Mi的功能
葡萄糖
细胞氧化的概念
光镜下显示细胞骨架:
红色显示微丝,绿色显示微管
15nm 24-26nm
一.微管(microtuble)的形态结构与化学组成 中空的圆柱状结构。 微管的形态结构: 横断面上看: 它是由13根原纤维纵向围绕而成。 微管的化学组成: 微 管 蛋 白 微管蛋白
(55KD 450aa)
5-9nm

Mi
在相差显微镜下观察的 活的成纤维细胞中的Mi
精子细胞中的Mi
(二) Mi 的超微结构
外膜 内膜
膜间隙
基质腔
核糖体
DNA

ATP合成 酶颗粒
1. 外膜 (Outer membrane)
外膜
膜厚约6nm,平整,光 滑。磷钨酸负染时,外膜 有排列整齐贯穿磷脂双分 子层的桶状体,中央有小 孔,孔 径2~3nm,称为孔 蛋白(Porin)。
Twisting model
[Equivalent steps]
Alternate-sides model [Non-equivalent steps]
This electron micrograph shows microtubules in cross section with the MAP bridge. The arrows point to bridges between microtubules. The star points to a MAP bridge to the vesicle. In summary, MAPs accelerate polymerization, serve as "motors" for vesicles and granules, and essentially control cell compartmentation.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

肌动蛋白结合蛋白
肌球蛋白、原肌球蛋白、肌钙蛋 白。 肌细胞的细肌丝是由肌动蛋白、 原肌球蛋白和肌钙蛋白组成,原 肌球蛋白和肌钙蛋白本身并不参 与肌肉收缩,但是参与了对肌肉 收缩的调节。
ቤተ መጻሕፍቲ ባይዱ


微丝是由 G-actin 单体形成的多聚体, 肌动蛋白单体具有极性,装配时呈头尾相接, 故微丝具有极性,既有正极与负极之别。微 丝正极与负极都能生长,生长快的一端为正 极,慢的一端为负极;去装配时,负极比正 极快。由于 G-actin 在正极装配,负极去装 配,从而表现为踏车行为。体内装配时,微 丝 呈 现 出 动 态 不 稳 定 性 , 主 要 取 决 于 Factin结合的 ATP水解速度与游离的G-actin 单体浓度之间的关系。
微丝特异性药物
细胞松弛素B:阻断微丝的装配
鬼笔环肽:稳定肌动蛋白纤维,抑制解聚、 促进微丝聚合。
微丝功能
维持细胞形态,赋予质膜机械强度 细胞运动 微绒毛 应力纤维 :具有收缩功能,但不产生运动 胞质分裂 肌肉收缩
中间纤维
10nm纤维,因其直径介于 微丝和微管之间,故被命名为 中间纤维。
中间纤维几乎分布于所有动 物细胞,往往形成一个网络结构, 特别是在需要承受机械压力的细 胞中含量相当丰富。如上皮细胞 中。除了胞质中,在核膜下的核 纤层也属于中间纤维。
微管特异性药物
秋水仙素(colchicine)和长春花碱阻断微 管蛋白组装成微管,可破坏纺锤体结构。 紫杉酚(taxol)能促进微管的装配,并使 已形成的微管稳定。
微管组织中心(MTOC)
微管在生理状态或实验处理 解聚后重新装配的发生处称为微 管 组 织 中 心 (microtubule organizing center,MTOC)。
中间纤维的功能
中间纤维在细胞质内形成一个完 整的网架支持系统,它与细胞膜和 细胞外基质直接联系,并与微管、 微丝及其他细胞器联系。
所有的微管都有确定的极性
微管两端具有不同的装配速度, 装配快的一端称为正(+)极,另一 端为负( — )极。在一定的条件下, 微管一端发生装配使微管延长,而 另一端发生去装配,使微管缩短, 表现出明显的极性装配。
微管装配是一个动态不稳定过程
微管装配的动力学不稳定 性是指微管装配生长与快速 去装配的一个交替变换的现 象,为行使正常的微管功能, 微管动力学不稳定性是其功 能正常发挥的基础。
鞭 毛 运 动 形 式
鞭 毛 运 动 机 制
微 丝(microfilament,MF)
又称肌动蛋白纤维 (actin filament) , 是 指 真 核细 胞 中由肌动蛋白 (actin) 组成、 直径为7nm的骨架纤维。
分 布 于 细 胞 膜 下
微丝成分
肌动蛋白(actin)是微丝的基 本结构成分,外观呈哑铃状, 这种 actin 又叫 G-actin ,将 Gactin 形 成 的 微 丝 又 称 为 Factin。 肌动蛋白结合蛋白以不 同的方式影响微丝的形状和功 能、组装和去组装。
中间纤维的成分与分布
中间纤维成分比微丝和微管复杂, 具有组织特异性。中间纤维在形态上 相似,而化学组成有明显的差别。 中间纤维类型:角蛋白纤维、波形纤维、 结蛋白纤维、神经原纤维、神经胶质 纤维。 中间纤维蛋白的表达具有严格的组织特 异性。
中间纤维的装配
中间纤维装配与微丝和微管装配相比,有 以下几个特点: 1)中间纤维装配的单体是纤维状蛋白 (MF、 MT的单体呈球形); 2 )反向平行的四聚体导致 IF 不具有极性; 3 )在体内装配后,细胞中几乎不存在中 间纤维单体。
常 见 的 微 管 组 织 中 心
中心粒结构:9•3 鞭毛和纤毛 — 基体( 9•3 )和杆部 (9•2+2) 位于鞭毛和纤毛根部的结构称为 基体
微管功能
1、维持细胞形态 2、细胞内物质的运输 3、鞭毛、纤毛及中心粒、基体的基 本结构成分 4、纺锤体与染色体运动
神经细胞轴突物质运输
色素颗粒的转运
微管装配 α-微管蛋白和β-微管蛋白形成αβ 二聚体,αβ二聚体先形成环状核心 (ring) ,经过侧面增加二聚体而扩 展为螺旋带,αβ二聚体平行于长轴 重 复 排 列 形 成 原 纤 维 (protofilament) 。当螺旋带加宽至 13根原纤维时,即合拢形成一段微 管。内径15nm,外径25nm。
广义细胞骨架是指核骨架、 核纤层与中间纤维在结构上相互 连接,贯穿于细胞核、细胞质和 细胞膜的网架体系。
微管结构与化学组成
微管可装配成单管,二联管 ( 纤毛 和鞭毛中), 三联管(中心粒和基体中)。 微管的主要化学成分是微管蛋白 (tubulin),包括α -微管蛋白和β 微管蛋白,可结合形成异二聚体。含 有GTP或GDP及秋水仙素(colchicine) 和长春花碱的结合位点。
相关文档
最新文档