七年级数学下册第七章第12课时 七年级下学期第七章检测题

合集下载

人教版本初中七年级的数学下册的第七章测试卷习题含标准标准答案.doc

人教版本初中七年级的数学下册的第七章测试卷习题含标准标准答案.doc

第七章综合训练(满分 120 分)一、选择题 . (每小题 4 分,共32 分)1. 在平面直角坐标系中,点P(,- x2 )所在的象限是()2 +1A. 第一象限B.第二象限C. 第三象限D. 第四象限2.如图所示,某班教室有 9 排 5 列座位 .1 号同学说:“小明在我的右后方 . ”2号同学说:“小明在我的左后方 . ”3号同学说:“小明在我的左前方 . ”4号同学说:“小明离 1 号同学和 3 号同学的距离一样远 . ”根据上面 4 位同学的描述,可知“5号”小明的位置在()排 3 列排 5 列排 4 列排 5 列3. 下列命题中正确的有()①点 P( 0,- 5)在坐标平面内的位置在第三象限或第四象限内;②点(-x,-y)在第三象限内;③坐标平面内的所有点与有序数对是一一对应的;④在直角坐标系中,点 A( a, b)与点 A′(b,a)有可能表示同一个点 .个个个个4. 若点P ,-3)与点 Q , x 之间的距离是,那么 x 的值是()(2 (2 ) 4B. -7或- 7 D. 无法确定5. 点P(a ,a-)在 x 轴上,则点 P 的坐标为()+2 2A. (0,- 2)B. (2,0)C. (4,0)D. (0,- 4)6.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km 处,乙车位于雕像北方7km 处. 若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km处时,乙车在()A. 雕像北方1km处B. 雕像北方3km处C. 雕像南方1km处D. 雕像南方3km处7.以平行四边形ABCD的顶点A 为原点,直线AD为x 轴建立平面直角坐标系,已知 B、D点的坐标分别为( 1,3),(4,0),把平行四边形向上平移 2 个单位,那么 C 点平移后相应的点的坐标是()A. (3,3)B. (5,3)C. (3,5)D. (5,5)8. 如图所示,方格纸中的每个小方格边长为 1 的正方形, AB 两点在小方格的顶点上,位置分别用( 2,)、(,)来表示,请在小方格顶点上确定一点C,连24 3接 AB、AC、BC,使三角形ABC的面积为 2 个平方单位,则点 C的位置可能为()A.(4 ,4)B.(4 ,2)C.(2 ,4)D.(3 ,2)二、填空题 .( 每小题 4 分,共 32 分 )9.若点 M(4,a)与点 N(b,-3) 的连线平行于 x 轴,并且点 M与点 N 到 y 轴的距离相等,那么 a、 b 的值分别是 ________、________.10.若 x2-4+| y+2|=0 ,则点( x,y)在第 ________象限 .11.已知点 N 的坐标为( a,a-1),则点 N 一定不在第 ________象限 .12.将点 A(3,- 1)向左平移 m个单位长度,再向上平移 n 个单位长度,得到点B(- 5,3),则 m=________,n=________.13.已知点 A( a, 0)和点 B(0,5)两点,且直线 AB与坐标轴围成的三角形的面积等于 10,则 a 的值是 ________.14.如图所示,围棋棋子放置在某个平面直角坐标系内,白棋②的坐标为(- 3,-1),白棋④的坐标为(- 2,- 5),则黑棋①的坐标为 ________.15.根据指令[ s,A]( s≥0,0°≤ A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s. 现机器人在直角坐标系的坐标原点,且面对 x 轴正方向,若下指令[ 4,90°],则机器人应移动到点________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如( 1,0),( 2, 0),(2,1),(3,2),( 3,1),(3,0),⋯根据这个规律,第 100 个点的坐标为 ________.三、解答题 .( 共 56 分 )17.(8 分在平面直角坐标系中,描出以下各点: A ,3),B -,,C -,) (4 ( 2 3) ( 3-1) ,D(2 ,- 2) ,E(0 ,- 1) , F( -1,0) ,G(0 ,0).(1)指出各点所在的象限或坐标轴 .(2)求四边形 ABFG的面积 .18.(10 分)已知点 A( a-1,-2) ,B(-3,b+1) ,根据以下要求确定a,b 的值;(1)直线 AB∥x 轴;(2)直线 AB∥y 轴;(3) A, B 两点在第二、四象限的角平分线上 .19.( 9 分)王红是某中学的七年级学生,放学后从学校骑自行车回家 . 学校在她现在的位置的北偏东 30°方向,距离此处的地方;她的家在她现在的位置的南偏西 45°方向,距离此处 2km的地方;邮局在她现在的位置的北偏西 60°方向,距离此处 3km的地方 . 根据这些信息画一张表示各处位置的简图 .20.( 9 分)如图所示的是某运动会体操比赛场地的示意图,请你建立适当的直角坐标系,写出各运动场地位置的坐标 .21(.10 分)如图所示,在直角坐标系中,第一次将三角形O AB变换成三角形 OA1B1,第二次将三角形OA1B1变换成三角形 OA2B2,第三次将三角形OA2B2变换成三角形OA3B3,⋯已知 A(1,3),A1(2,3),A2(4,3), A3(8,3), B(2,0),B1(4,0),B2(8,0), B3(16, 0) .( 1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将三角形OA4B4变换成三角形 OA5B5,求 A5和 B5的坐标 .( 2)直接写出点 A n与 B n的坐标 .22.( 10 分)(福建晋江中考)如图所示,在方格纸中(小正方形的边长为1),三角形 ABC的三个顶点均为格点,将三角形ABC沿 x 轴向左平移 5 个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的三角形 A′ B′ C′,并直接写出点 A′,B′, C′的坐标;(2)求出在整个平移过程中,三角形 ABC扫过的面积 .。

七年级下第七章数学测试卷

七年级下第七章数学测试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.333...D. 无理数2. 已知数轴上A、B两点对应的数分别是-3和2,那么AB之间的距离是()A. 5B. 7C. 5/3D. 7/33. 在直角坐标系中,点P的坐标是(2,-3),那么点P关于x轴的对称点坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)4. 若a、b是实数,且a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a - 2 < b - 2D. a + 2 > b + 25. 若m、n是方程x^2 - 5x + 6 = 0的两根,则m + n的值是()A. 5B. 6C. 4D. 36. 在等腰三角形ABC中,底边BC的长度为6,腰AB的长度为8,那么顶角A的度数是()A. 36°B. 45°C. 60°D. 90°7. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = kx (k≠0)D. y = √x8. 下列各数中,不是无理数的是()A. √9B. √16C. √25D. √-49. 已知x = 2,那么方程2x - 3 = 0的解是()A. x = 3B. x = 2C. x = 1D. x = 010. 在梯形ABCD中,AB平行于CD,AD = 4cm,BC = 6cm,AB = 3cm,那么梯形的高是()A. 2cmB. 3cmC. 4cmD. 5cm二、填空题(每题4分,共40分)11. 已知数轴上A、B两点对应的数分别是-5和3,那么AB之间的距离是__________。

12. 在直角坐标系中,点P的坐标是(-4,5),那么点P关于y轴的对称点坐标是__________。

13. 若a、b是实数,且a < b,那么下列不等式中正确的是__________。

人教版数学七年级(下册)第七章测试卷(附参考答案)

人教版数学七年级(下册)第七章测试卷(附参考答案)

人教版数学七年级(下册)第七章测试卷1.下列数据中不能确定具体位置的是()A.某市政府位于解放路12号B.小明住在花园小区3号楼7号C.太阳在我们的正上方D.东经102°,北纬25°的城市2.在平面直角坐标系中,若点P的坐标为(-3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列点中,位于直角坐标系第四象限的点是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)4.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(-5,3)或(5,3)C.(3,5)D.(-3,5)或(3,5)5.已知直角坐标系中,点P(x,y)满足x2=4,y3=-27,则点P坐标为()A.(2,-3)B.(-2,3)C.(2,3)D.(2,-3)或(-2,-3)6.如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数7.经过两点A(2,3)、B(-4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定8.如图1所示,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()图1A.(4,3)B.(2,4)C.(3,1)D.(2,5)9.如果用(7,2)表示七年级二班,那么八年级三班可表示成.10.将点A(4,3)向平移个单位长度后,坐标变为(6, 3).11.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.12.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标.13.如果点P(x2-4,y+1)是坐标原点,则2x+y=.14.如图2所示,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A’的坐标是.图215.在平面直角坐标系中,分别作出下列各点,并依次连接起来.(0,0),(0,3),(-2,3),(-2,5),(-3,5), (-3,0),(-2,0),(-2,2), (-1,2),(-1,0).(1)观察连接成的图形,这个图形像什么?(2)画出把这个图形向右平移4个单位的图形.并分别写出与上述各点对应的点的坐标.图316.如图4所示,一个七棱锥,把它的展开图放在平面直角坐标系中,若B(3,3),C(4,0).(1)试画出平面直角坐标系;(2)求出其余六个点的坐标.图417.如图5所示,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.图518.如图6所示,在方格纸内将每个小正方形的边长为1,△ABC经过平移后得到△A’B’C’,图中标出了点B的对应点B’.(1)补全△A’B’C’;(2)△A’B’C’的面积为.图619.如图7所示,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)画出△OBC关于y轴的对称图形△OB’C’;(2)分别写出B、C两点的对应点B’、C’的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.图7参考答案1.C2.B3.D4.D5.D6.D7.A8.D9.(8,3)10.右 211.(8,2)或(-2,2)12.(2,2)(答案不唯一)13.3或-514.(2,3)15.解:(1)如图所示,图形像字母h或椅子 .(2)如图,对应点坐标分别为(4,0),(4,3),(2,3),(2,5),(1,5),(1,0),(2,0),(2,2),(3,2),(3,0).16.解:(1)略.(2)A(0,4),D(1,-3),E(-3,-3),F(-4,0),G(-3,3).17.解:(1)(2,0).(2)(7,0).18.解:(1)略;(2)A’B’C’的面积为8.19.解:(1)图略.(2)B’(-3,-1),C’(-2,1).(3)M’(-x,y).。

最新人教数学七年级下第七章检测卷(带答案解析)

最新人教数学七年级下第七章检测卷(带答案解析)

第七章检测卷时间:120分钟满分:120分题号一二三总分得分一、选择题(每小题3分,共30分)1.能确定某学生在教室中的具体位置的是()A.第3排B.第2排以后C.第2列D.第3排第2列2.在平面直角坐标系中,点(3,-4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如果点P(a+1,a-1)在x轴上,那么点P的坐标为()A.(-2,0) B.(2,0)C.(0,-2) D.(0,2)4.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限B.第二象限C.第三象限D.第四象限5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是()A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)第5题图第6题图6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a-2,b+3) B.(a-2,b-3)C.(a+2,b+3) D.(a+2,b-3)7.一个长方形的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下面哪个点不在长方形上()A.(4,-2) B.(-2,4)C.(4,2) D.(0,-2)8.点P(2-a,2a-1)到x轴的距离为3,则a的值为()A.2 B.-2C.2或-1 D.-19.过A(4,-2)和B(-2,-2)两点的直线一定()A.垂直于x轴B.与y轴相交但不平行于x轴C.平行于x轴D.与x轴,y轴平行10.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式a=b2-9+9-b2b+3+2.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则点P的坐标为()A.(-3,1)B.(-2,1)C.(-4,1)D.(-2.5,1)二、填空题(每小题3分,共24分)11.小李在教室里的座位位置记作(2,5),表示他坐在第二排第五列,那么小王坐在第四列第三排记作________.12.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________.13.若第四象限内的点P(x,y)满足|x|=3,y2=4,则点P的坐标是________.14.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标________.第14题图第18题图15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD 与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD =4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q 从点O 出发,沿O →E →D 路线运动到点D 停止.若P ,Q 两点同时出发,且点P 的运动速度为1cm/s ,点Q 的运动速度为2cm/s.(1)直接写出B ,C ,D 三个点的坐标;(2)当P ,Q 两点出发112s 时,试求三角形PQC 的面积;(3)设两点运动的时间为t s ,用含t 的式子表示运动过程中三角形OPQ 的面积S (单位:cm 2).参考答案与解析1.D 2.D 3.B 4.D 5.C 6.A 7.B 8.C 9.C10.A 解析:∵a ,b 满足关系式a =b 2-9+9-b 2b +3+2,∴b 2-9=0,b +3≠0,∴b=3,a =2;∴点A (0,2),B (3,0),C (3,4),∴点B ,C 的横坐标都是3,∴BC ∥y 轴,∴BC =4-0=4,S 三角形ABC =12×4×3=6.∵OA =2,点P (m ,1)在第二象限,∴S 四边形ABOP =S三角形AOP+S 三角形AOB =12×2(-m )+12×2×3=-m +3.∵四边形ABOP 的面积与三角形ABC 的面积相等,∴-m +3=6,解得m =-3,∴点P 的坐标为(-3,1).故选A.11.(3,4) 12.(1,3) 13.(3,-2) 14.(-1,7) 15.(1,1) 16.-1 17.±4 18.(2017,2) 19.解:(1)三角形A ′B ′C ′如图所示.(3分) (2)建立的平面直角坐标系如图所示.(5分)点B 的坐标为(1,2),点B ′的坐标为(3,5).(7分)20.解:(1)∵A (2,1),AB =4,AD =2,∴BC 到y 轴的距离为4+2,(1分)CD 到x 轴的距离2+1=3,(2分)∴点B 的坐标为(4+2,1),点C 的坐标为(4+2,3),点D 的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a =2a +7或1-a +2a +7=0,解得a =-2或-8,(4分)故6-5a =16或46,(6分)∴6-5a 的平方根为±4或±46.(8分)22.解:(1)过B 作BF ⊥x 轴于F ,过A 作AG ⊥x 轴于G ,如图所示.(2分)∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO =⎣⎡⎦⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A (2,4),D (-1,1),B (1,2),E (-2,-1),C (4,1),F (1,-2).(3分)三角形DEF 是由三角形ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a -3=a +3,2b -3-3=4-b ,(7分)解得a =6,b =103,(9分)∴a -b =83.(10分)24.解:(1)三角形ABC 如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD=12×2×3=3,S 三角形ACE =12×2×4=4,S 三角形AOB =12×2×1=1.(6分)∴S 三角形ABC =S 长方形DOEC-S 三角形ACE -S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP=4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC =OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S 三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分)(3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S三角形OPQ=12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC 上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S三角形OPQ=S梯形OPME-S三角形PDM-S三角形DOE=12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。

人教版七年级数学下册第七章综合检测卷含答案

人教版七年级数学下册第七章综合检测卷含答案

人教版七年级数学下册第七章综合检测卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于电影票,如果将“8排4座”记作(8,4),那么“2排5座”记作() A.(5,2) B.(2,5) C.(-2,5) D.(-2,-5)2.在平面直角坐标系中,点P(-2,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【教材P75探究变式】如图,在平面直角坐标系xOy中,点P的坐标为(1,1).则将点P向上平移2个单位长度得到的点的坐标是()A.(1,3)B.(-1,1)C.(3,1)D.(1,2)5.如果点P(m+3,m+1)在直角坐标系的x轴上,那么点P的坐标为() A.(0,2) B.(2,0)C.(4,0) D.(0,-4)6.【教材P79习题T4变式】如图,将三角形ABC先向上平移1个单位长度,再向左平移3个单位长度,则点A的对应点的坐标是()A.(1,1)B.(1,3)C.(7,1)D.(7,3)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,若AB∥y轴,点D(6,3),则A点的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15 B.7.5 C.6 D.39.在平面直角坐标系中,点A的坐标是(3a-5,a+1),若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1或310.在平面直角坐标系中,一个智能机器人接到的指令如下:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2 023的坐标是()A.(1 010,0) B.(1 010,1)C.(1 011,0) D.(1 011,1)二、填空题:本大题共5小题,每小题3分,共15分.11.在平面直角坐标系中,第四象限内一点P到x轴的距离为3,到y轴的距离为6,那么点P的坐标是________.12.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点________.13.若(a-2)2+|b+3|=0,则点P(a,b)在第________象限.14.【教材P71习题T14变式】如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为__________.15.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,三角形ABC是直角三角形,且∠C不是直角,则满足条件的点C有________个.三、解答题(一):本大题共3小题,每小题8分,共24分.16.如图是某学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂________,图书馆________.(3)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置.17.【教材P70习题T7变式】在如图所示的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.①(4,5),(0,3),(1,3),(7,3),(8,3),(4,5);②(1,3),(1,0),(7,0),(7,3),(1,3).(1)观察所得的图形,你觉得它像什么?(2)求出这个图形的面积.18.【教材P69习题T4改编】已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到y轴的距离是2.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【教材P 86复习题T 9改编】如图,A ,B ,C 为一个平行四边形的三个顶点,且A ,B ,C 三点的坐标分别为(3,3),(6,4),(4,6). (1)请直接写出这个平行四边形第四个顶点的坐标; (2)求这个平行四边形的面积.20.如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a ,b ,c 满足关系式a -2+(b -3)2=0,(c -4)2≤0. (1)求a ,b ,c 的值.(2)如果在第二象限内有一点P ⎝ ⎛⎭⎪⎫-m ,12,请用含m 的式子表示四边形ABOP 的面积.(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.21.对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为⎝ ⎛⎭⎪⎫a +kb ,b +a k (其中k 为常数,且k ≠0),则称点P ′为点P 的“k 系好友点”.例如:P (3,2)的“3系好友点”为P ′⎝ ⎛⎭⎪⎫3+3×2,2+33,即P ′(9,3). 请完成下列各题:(1)点P (2,-1)的“2系好友点”P ′的坐标为________;(2)若点P 在y 轴的正半轴上,点P 的“k 系好友点”为点P ′,在三角形OPP ′中,PP ′=2OP ,求k 的值;(3)已知点A (x ,y )在第四象限,且满足xy =-12,点A 是点B (m ,n )的“-3系好友点”,求m -3n 的值.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4,OA =5,DE =2,动点P 从点A 出发,沿A →B →C 的路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 的路线运动到点D 停止.若P ,Q 两点同时出发,且P ,Q 运动的速度均为每秒钟一个单位长度. (1)直接写出B ,C ,D 三点的坐标;(2)当P ,Q 两点出发6 s 时,试求三角形POQ 的面积.23.如图,在平面直角坐标系中,已知A (a ,0),B (b ,0),其中a ,b 满足|a +1|+(b-3)2=0.(1)填空:a=________,b=________;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;(3)在(2)的条件下,当m=-32时,在y轴上有一点P,使得三角形BMP的面积与三角形ABM的面积相等,请求出点P的坐标.答案一、1.B2.C3.A4.A5.B6.B7.D8.D点拨:此题首先运用数形结合思想,在平面直角坐标系xOy中描点、连线画出三角形ABO,然后运用转化思想,将点的坐标转化为线段的长度,即底BO=2,高为3,所以三角形ABO的面积=12×2×3=3.9.C10.C二、11.(6,-3)12.(-1,1)13.四14.(3,0)或(9,0)点拨:设点P的坐标为(x,0),根据题意,得12×4×|6-x|=6,解得x=3或9,所以点P的坐标为(3,0)或(9,0).15.4三、16.解:(1)如图,以大门为坐标原点建立平面直角坐标系.(2)(-5,5);(2,5)(3)办公楼和教学楼的位置如图所示.17.解:如图所示.(1)它像一座房子.(2)这个图形的面积为6×3+12×8×2=26.18.解:(1)由题意知2m+4=0,解得m=-2,∴m-1=-3.∴P(0,-3).(2)由题意知m -1=2m +4+3,解得m =-8, ∴2m +4=-12,m -1=-9.∴P (-12,-9). (3)由题意知|2m +4|=2,∴2m +4=2或2m +4=-2, 解得m =-1或m =-3.当m =-1时,m -1=-2;当m =-3时,m -1=-4, ∴点P 的坐标是(2,-2)或(-2,-4). 四、19.解:(1)(7,7)或(1,5)或(5,1).(2)以A ,B ,C 为顶点的三角形的面积为 3×3-12×3×1-12×2×2-12×1×3=4. 所以这个平行四边形的面积为4×2=8. 20.解:(1)由已知a -2+(b -3)2=0,(c -4)2≤0,可得a -2=0,b -3=0,c -4=0,∴a =2,b =3,c =4. (2)由(1)知a =2,b =3,∴A (0,2),B (3,0), ∴OA =2,OB =3.∴S 三角形ABO =12×2×3=3. ∵P ⎝ ⎛⎭⎪⎫-m ,12,点P 在第二象限内,∴S 三角形APO =12×2×m =m , ∴S 四边形ABOP =S 三角形ABO +S 三角形APO =3+m . (3)存在.由(1)知b =3,c =4,∴C (3,4). ∵B (3,0),∴BC =4,BC ⊥OB . ∵OB =3,∴S 三角形ABC =12×4×3=6.∵四边形ABOP 的面积与三角形ABC 的面积相等, ∴S 四边形ABOP =6.由(2)知S 四边形ABOP =m +3,∴m +3=6, ∴m =3,∴存在点P ,点P 的坐标为⎝ ⎛⎭⎪⎫-3,12.21.解:(1)(0,0)(2)设P (0,t ),其中t >0,∴OP =t . 由题意可得P ′(kt ,t ),∴PP ′=|kt |.又∵PP ′=2OP , ∴|kt |=2t ,∴k =±2.(3)∵B (m ,n )的“-3系好友点”A 为⎝ ⎛⎭⎪⎫m -3n ,n -m 3.∴x =m -3n ,y =3n -m3.又∵xy =-12,∴(m -3n )·3n -m3=-12, ∴m -3n =±6.∵点A 在第四象限,∴x >0,∴m -3n =6. 五、22.解:(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,易得P 点的坐标为(4,3),Q 点的坐标为(6,0),∴S 三角形POQ =12×6×3=9. 23.解:(1)-1;3(2)如图①,过点M 作MN ⊥x 轴于点N . ∵A (-1,0),B (3,0),∴AB =1+3=4. ∵点M (-2,m )在第三象限,∴MN =|m |=-m , ∴S 三角形ABM =12AB ·MN =12×4×(-m )=-2m .(3)当m =-32时,点M 的坐标为(-2,-32),S 三角形ABM =-2×⎝ ⎛⎭⎪⎫-32=3. 点P 的位置有两种情况:(ⅰ)如图②,当点P 在y 轴的正半轴上时,设点P 的坐标为(0,k ), 易得S 三角形BMP =5⎝ ⎛⎭⎪⎫32+k -12×2⎝ ⎛⎭⎪⎫32+k -12×5×32-12×3 k =52k +94. ∵S 三角形BMP =S 三角形ABM ,∴52k +94=3,解得k =310,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,310;(ⅱ)如图③,当点P 在y 轴的负半轴上时,设点P 的坐标为(0,n ),易得S 三角形BMP =-5n -12×2⎝ ⎛⎭⎪⎫-n -32-12×5×32-12×3×(-n )=-52n -94.∵S 三角形BMP =S 三角形ABM ,∴-52n -94=3,解得n =-2110,∴点P 的坐标为⎝ ⎛⎭⎪⎫0,-2110.11 综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫0,310或⎝ ⎛⎭⎪⎫0,-2110.。

人教版七年级下册数学第7章测试题(附答案)

人教版七年级下册数学第7章测试题(附答案)

七下数学第七章《平面直角坐标系》单元测试一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>03.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.210.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.311.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.014.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.17.已知点P(m+2,2m﹣1)在y轴上,则m的值是.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第象限.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为.21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.参考答案一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边【分析】根据坐标确定位置的方法逐一判断即可得.【解答】解:能较为准确描述合肥市大蜀山位置的是北纬32°,东经116°,故选:C.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标为(﹣2+3,3﹣4),即(1,﹣1).故选:C.4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)【分析】将点B的横坐标减去2,纵坐标加上1即可得到点B'的坐标.【解答】解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【解答】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用平面直角坐标内点的坐标特点得出a,b的取值范围进而得出答案.【解答】解:∵点A(2a+1,b﹣2)在第三象限,∴2a+1<0,b﹣2<0,解得:a<﹣,b<2,∴﹣a>0,3﹣b>0,则点B(﹣a,3﹣b)在第一象限.故选:A.8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故选:D.9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.2【分析】由平面内点的坐标特点可知,点到x轴的距离是该点纵坐标的绝对值.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.10.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.11.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:把点(﹣3,4)向右平移3个单位,再向下平移2个单位后所得的点的坐标为:(﹣3+3,4﹣2),即(0,2),故选:D.12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.0【分析】先利用点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【解答】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【分析】根据点的坐标特点来确定点所在位置.【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).17.已知点P(m+2,2m﹣1)在y轴上,则m的值是﹣2.【分析】直接利用y轴上点的坐标特点得出m+2=0,进而得出答案.【解答】解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第三象限.【分析】直接利用第二象限内点的坐标特点得出m,n的符号,进而得出答案.【解答】解:∵P(m,n)在第二象限,∴m<0,n>0,∴﹣n<0,∴Q(﹣n,m)在第三象限.故答案为:三.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(2,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(2,3),故答案为:(2,3).20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为(3,3)或(3,﹣7).【分析】先根据平行于y轴的直线上任意两点横坐标相同得出点M的横坐标是3,再根据MP=5求出点M的纵坐标.【解答】解:∵点P(3,﹣2),MP∥y轴,∴点M的横坐标与点P的横坐标相同,是3,又∵MP=5,∴点M的纵坐标为为﹣2+5=3,或﹣2﹣5=﹣7,∴点M的坐标为(3,3)或(3,﹣7).故答案为(3,3)或(3,﹣7).21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为2.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.【分析】坐标平面内的点到两轴的距离实际上就是该点两坐标的绝对值.【解答】解:根据题意得,m﹣1=3m+5或m﹣1=﹣(3m+5),解得:m﹣1=3m+5,得m=﹣3,∴m﹣1=﹣4,点B的坐标为(﹣4,﹣4),解得:m﹣1=﹣(3m+5),得m=﹣1,∴m﹣1=﹣2,点B的坐标为(﹣2,2),∴点B的坐标为(﹣4,﹣4)或(﹣2,2).23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.【分析】根据直线平行于x轴的特点解答.【解答】解:∵直线AB平行于x轴,∴点A的纵坐标与点B的纵坐标相等相等,∴m2﹣3=6,m=3或m=﹣3,∵A.B是两个点.∴m≠3,即m=﹣3.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.【分析】(1)根据三角形面积求法得出即可;(2)根据已知将△ABC各顶点向下平移2个单位,向右平移5个单位得到各对应点,即可作图;进而得出点C′的坐标.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.【分析】(1)根据平移规律即可得到结论,(2)根据三角形的面积公式即可得到结论.【解答】解:(1)因为△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得所以,△A1B1C1是由△ABC向左平移3个单位,再向上平移1个单位所得A1(﹣1,2),B1(2,4),C1(0,5);(2)如图,△ABC的面积=3×3﹣×1×3﹣×1×2﹣×2×3=3.5.。

人教版数学七年级下册第七章测试卷(含答案)

初中数学人教版七年级下学期第七章测试卷一、单选题(共7题;共14分)1. ( 2分) 根据下列表述,能够确定一物体位置的是( )A. 东北方向B. 萧山歌剧院8排C. 朝晖大道D. 东经20度北纬30度2. ( 2分) 下列说法错误的是()A. 在x轴上的点的坐标纵坐标都是0,横坐标为任意数;B. 坐标原点的横、纵坐标都是0;C. 在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;D. 坐标轴上的点不属于任何象限3. ( 2分) 如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A. (3,5)B. (4,3)C. (3,4)D. (5,3)4. ( 2分) 点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A. (0,-2)B. (4,0)C. (2,0)D. (0,-4)5. ( 2分) 在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)6. ( 2分) 如图6,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是( )A. 4B. 5C. 6D. 77. ( 2分) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,−1),平移线段AB,使点A落在点A1(−2,2)处,则点B的对应点B1的坐标为()A. (−1,−1)B. (1,0)C. (−1,0)D. (3,0)二、填空题(共3题;共7分)8. ( 1分) 直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为________.9. ( 1分) 如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,−1),A6(−√3,−1),A7(0,3),A8(3√32,−32),A9(−3√32,−32),…,则点A2010的坐标是________.10. ( 5分) 点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为三、解答题(共2题;共15分)11. ( 5分) 如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,平移三角形ABC,使点B 与坐标原点O重合,请写出图中点A,B,C的坐标并画出平移后的三角形A1OC112. ( 10分) 小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.四、作图题(共2题;共21分)13. ( 11分) 如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A,B 的坐标分别是A(3,1),B(2,3).(1)请在图中画出△AOB关于y轴的对称△A′OB′,写出点A′的坐标,点B′的坐标(2)请写出A′点关于x轴的对称点A′'的坐标为________;(3)求△A′OB′的面积.14. ( 10分) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点A(2,4),B(1,1),C(3,2).(1)将三角形ABC先沿着x轴负方向平移6个单位,再沿y轴负方向平移2个单位得到三角形A1B1C1,在图中画出三角形A1B1C1;(2)直接写出点A1,B1,C1的坐标.五、综合题(共1题;共12分)15. ( 12分) 在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。

新人教版七年级数学下册第七章综合检测题含答案

七年级数学下册第七章综合检测题一、选择题(每小题3分,共30分)1.下列数据不能确定物体位置的是( )A.1单元201室B.解放路81号C.北偏东17°D.东经118°,北纬40°2.在平面直角坐标系中,点P 的坐标为(-2,a 2+1),则点P 所在的象限是( )A.第一象限B.第二象限C.第三象限 D 第四象限3.已知点P 在第三象限,且它到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( )A.(2,-1)B.(-1,2)C.(1,2)D.(1,2)4.在平面直角坐标系中,将点A(1,一2)向上平移3个单位长度再向左平移2个单位长度,得到点A ',则点A '的坐标是( )A.(1,1)B.(1,-2)C.(1,2)D.(1,2)5.如图,线段AB 经过平移得到线段A 'B ',其中点A ,B 的对应点分别为点A ',B '这四个点都在格点上.若线段AB 上有一个点P(a ,b),则点P 在A 'B '上的对应点P '的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.若点P(m ,1-2m)在第二、四象限的角平分线上,则m 的值为( )A.-1B.1C.-31 D 31 7.有以下三个说法:①坐标的思想是法国数学家笛卡尔首先建立的;①除了平面直角坐标系,我们也可以用方向和距离确定物体的位置:①平面直角坐标系内的所有点都属四个象限其中错误的是( )A.只有①B.只有①C.只有①D.①①①8.在如图所示的平面直角坐标系内有一个四边形ABCD,点A的坐标是(0,2)现将这个四边形平移,使点A落在点A'(5,-1)处,则此平移过程可以是( )A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移1个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度9.如图,网格中每个小正方形的边长为1,已知图中“笑脸”左眼的坐标是(2,3),则将此笑险向右平移3个选择是单位长度后,其右眼的坐标是( )A.(3,3)B.(-3,3)C.(0,3)D.(3,-3)10.如图所示,在平面直角坐标系中,A(1,1),B(-1,1),C(=1,=2),D(1,2),把一条长为2017个单位长度且没有弹性的细线的一端固定在点A处,并按A-B→C→D→A…的规律绕在四边形ABCD的边上(线的粗细忽略不计),则细线另一端所在位置的点的坐标是( )A.(-1,0)B.(1,2)C.(1,1)D.(0,2)二、填空题(每小题3分,共15分)11.电影票上“6排3号”,记作(6,3),则“3排6号”记作__________。

七年级数学下册第七章测试卷(含答案)

七年级数学下册第七章测试卷(含答案)第七章测试卷姓名:学号:班级:得分:⼀、选择题:(每题3分,计30分)1、下列数据中不能确定物体位置的是()A .某市政府位于北京路32号B .⼩明住在某⼩区3号楼7号C .太阳在我们的正上⽅D .东经130°,北纬54°的城市 2、如图,点A 的坐标为()A.(3,4)B.(4,0)C.(4,3)D.(0,3)3、若点A (m ,n )在第三象限,则点B (|m |,n )所在的象限是()A 、第⼀象限B 、第⼆象限C 、第三象限D 、第四象限4、已知直⾓坐标系中,点P (x ,y )满⾜42-x +(y+3)2=0,则点P 坐标为()A .(2,-3)B .(-2,3)C .(2,3)D .(2,-3)或(-2,-3)5、已知点P 位于错误!未找到引⽤源。

轴右侧,距错误!未找到引⽤源。

轴3个单位长度,位于错误!未找到引⽤源。

轴上⽅,距离错误!未找到引⽤源。

轴4个单位长度,则点P 坐标是()A 、(-3,4)B 、(3,4)C 、(-4, 3)D 、(4,3)6、如果P (a+b, ab )在第⼆象限,那么点Q (a,-b) 在第__象限.A .第⼀象限B .第⼆象限C .第三象限D .第四象限7、在平⾯直⾓坐标系中,将点(x ,y )向左平移a 个单位长度,再向下平移b 个单位长度,则平移后得到的点是()A 、(x+a ,y+b )B 、(x+a ,y-b )C 、(x-a ,y+b )D 、(x-a ,y-b)8、经过两点A (2,3)、B (-4,3)作直线AB ,则直线AB ()A 、平⾏于x 轴B 、平⾏于y 轴C 、.经过原点D 、⽆法确定9、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是()A 、将原图形向x 轴的正⽅向平移了1个单位B 、将原图形向x 轴的负⽅向平移了1个单位C 、将原图形向y 轴的正⽅向平移了1个单位D 、将原图形向y 轴的负⽅向平移了1个单位10、在坐标系中,已知A (2,0),B (-3,-4),C (0,0),则△ABC 的⾯积为()A 、4B 、6C 、8D 、3⼆、填空题:(每题3分,计30分)11、第三象限内的点P (x,y),满⾜5=x ,92=y ,则P 点的坐标是12、点M (2,-3)到x 轴的距离是______13、如果点P (x 2-4,y+1)是坐标原点,则2错误!未找到引⽤源。

人教版七年级数学下册第七章平面直角坐标系检测题(包含答案)

七年级数学下册第七章检测题ー、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若电影院中的5排3号记为(5,3),则3排5号应记为( ) A.(5,3) B.(-5,3) C.(3,5) D.(-3,5)2.点(5,-3)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知点(0,0),(0,-2),(-3,0),(0,4),(-3,1),其中在y 轴上的点的个数是( )A,0 B.1 C.2 D.34.将点P(-2,2)沿x 轴的正方向平移4个单位得到点P '的坐标是( ) A.(-2,6) B.(-6,2) C.(2,2) D.(2,-2)5.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那 么嘴的位置可以表示成( )6.点A,(1,0) B.(-1,0) C.(-1,1) D.(1,-1) A.21A(-2m ,2m)到x 轴的距离为1,则m 等于( )B.-21C.21或-21D.2或-2 7.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A.(3,0) B.(3,0)或(-3,0) C.(0,3) D.(0,3)或(0,-3)8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.在如图所示的平面直角坐标系内,放有一透明胶片制成的四边形ABCD ,点A的坐标是(0,2),若将这张胶片平移,并使点A落在点A'(5,-1)处,则实现平移的方法可以是( ) A.先向右平移5个单位,再向下平移1个单位B 先向右平移5个单位,再向下平移3个单位 C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位10.下列说法中正确的有( )①坐标平面内的点可以用有序数对来表示;②着a>0,b<0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第37课时 七年级下学期第七章检测题
一、选择题:(每小题3分,共30分)
1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A 、3㎝,4㎝,8㎝
B 、 8㎝,7㎝,15㎝
C 、 13㎝,12㎝,20㎝
D 、5㎝, 5㎝,11㎝ 2、图中三角形的个数为 ( ) A 、 4个 B 、 6个 C 、 8个 D 、 10个
3、已知多边形的每一个内角都等于150°,则这个多边形是( ) (A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形
4、如果三角形三内角之比是3︰2︰5,那么三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、正三角形
5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )
A.正方形与正三角形
B.正五边形与正三角形
C.正六边形与正三角形
D.正八边形与正方形
A
B
C
D
第10题
6题
第(4)题
E
D
C
B A
2题
A
B
6、在△ABC 中, ∠ABC =90°,∠A =50°,BD ∥AC ,则∠CBD 等于( )
A .40°
B .50°
C .45°
D .60°
7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高, 且相交于一点P ,若∠A=50°,则∠BPC 的度数是( ) A .150° B .130° C .120° D .100°
9题 10题
8
依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )
(A )
(B
(C )
(D
9、小芳画一个有两边长分别为5和6的等腰三角形,则它的周
长是( )
A 、16
B 、17
C 、11
D 、16或17
10、如图,正方形网格中,每个小方格都是边长为1的正方形,A 、
B 两点在小方格的顶点上,位置如图形所示,
C 也在小方格的顶点上,
且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为( )
A .3个
B .4个
C .5个
D .6个
二、填空题:(每小题3分,共24分)
11、如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一 根木条,这样做的数学道理是 .
D
A
B
E
C
P
11题
12、如果一个三角形两边为2cm ,7cm ,且第三边为奇数,则三角形的第三边长是_____.
13、一个多边形的内角和与外角和的和是12600,则这个多边形是 边形.
14、如图,点E 在AC 的延长线上,能判断AB ∥CD 的条件是 . 15、下列命题①过一点有且只有一条直线与已知直线平行;②同一平面内,若a ∥b ,c ⊥b 则a ∥c;③三角形的中线平分三角形的面
积;④三角形的一个外角大于它的任何一个内角,正确的是 (填序号).
16、一个四边形的四个内角中最多有 个钝角,最多有 个锐角。

17、在△ABC 中,∠ABC 与∠ACB 的平分线交于点I,若∠ABC=50°, ∠ACB=80°,则∠
BIC=____________.
18、等腰三角形一腰上的中线将这个等腰三角形的周长分成15和6两部,则这个等腰三角形的三边长是_________________。

三、解答下列各题(共66分)
A
B
C
D
E
1 2
3
4 14题
19、小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由。

(8分)
20、如图,在△ABC 中,AD ⊥BC, CE 是△ABC 的角平分线,AD 、CE 交于F 点.当∠BAC=80°,∠B=40°时,求∠AFE 的度数. (8分)
21、如图,按规定,一块横板中AB 、CD 的延长线相交成85角,因交点不在板上,不便测量,工人师傅连结AC ,测得∠BAC=320,∠DCA=650,此时AB 、CD 的延长线相交所成的角是不是符合规定?为什么?(8分)
F
E
D
C B
A
22、如图,若AB ∥CD ,EF 与AB 、CD 分别相交于E 、F ,EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,且∠BEP =40°,求∠P 的度数.(10分)
A B C
D
E
P
F
23、如图,AD 是△ABC 的角平分线。

DE ∥AC,DE 交AB 于E 。

DF ∥AB,DF 交AC 于F 。

图中∠1与∠2有什么关系?为什么?(10分)
24、如图所示,有一块三角形ABC 空地,要在这块空地上种植草皮来美化环境,已知这种草皮每平方米售价230元,AC =12m,BD =15m ,(1)购买这种草皮至少
需要多少元?(2)现在学校想到这块空地上种红、黄、白、紫色四种花,而且要保证这四种花的面积相等,画出你的分法。

(10分)
25、如图,AB ∥CD ,分别探讨下面三个图形中∠APC 与∠PAB 、∠PCD 的关系,请你从所得到的关系中任选一个加以说明........。

(12分)
B
A
C
P
D
(3)
B
A
C
P
D
(2)
B
A
C
P
D (1)
D
A
15m
12m
A
B C
D
F
E
12。

相关文档
最新文档