73等腰三角形
北师大版八年级数学(下)第一章 等腰三角形

1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。
2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。
等腰三角形的判定

在⊿BAD和⊿CAD中, 1 2
∠1=∠2, ∠B=∠C,
AD=AD
B
C
D
∴ ⊿BAD≌ ⊿CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
如何判定等腰三角形?
1.有两条边相等的三角形是等腰三角形. A
2.有两个角相等的三角形是等腰
三角形.
B
C
如果一个三角形有两个角相等,那么这两个角 所对的边也相等. (等角对等边)
中有哪些等腰三角形?
D
1 2
B
C
2.把一张长方形的纸条像图中那样折叠,重合
部分是什么形状?为什么?
E
F
A
D
B
C
3,如图,AC和BD相交于点O,且 AB∥DC,OA=OB,
求证:OC=OD
D
C
O
A
B
动动脑
4.已知如图, ∠1=∠2 ,∠3=∠4,DE∥BC,
试说明:DE=DB+EC
A
解:∵DE∥BC
呢? 让我想想,我为什么
动动脑
1.在△ABC中,已知∠A=40°, ∠B=70 °,你能判 断△ABC是什么三角形吗?
解:因为∠C=180°-∠A-∠B =180°-40°-70° =70°
所以∠C=∠B 因此△ABC是等腰三角形
1 求证:如果三角形一个外角的平分线平行于 三角形的一边,那么这个三角形是等腰三角形。
已知:如图,∠CAE是⊿ABC的外角,∠1=∠2,
AD∥BC。
E
求证:AB=AC 分析:从求证看:要证AB=AC,
A1 2
D
需证∠B=∠C,
从已知看:因为∠1=∠2,
AD∥BC
《等腰三角形》轴对称PPT课件 (共25张PPT)

写一写
图形
条件 AB=AC
AB、AC BC ∠A
CA=CB
CA、CB AC ∠C
∠A、 ∠B
AC=AD
AC、AD DC ∠CAD
∠ACD、 ∠ADC
腰
底边 顶角
底角 ∠B、 ∠C
1、动手操作:用一张长方形纸片,折剪一个等腰三角形。
(只剪一刀)
2、想一想:
(1)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。 (2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合 的部分?并指出重合的部分是什么? (3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
B
C
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还 有没有重合的部分?并指出重合的部分是什么?
A
C
你发现了什么?
结论:等腰三角形的两底角相等
A
性质1、等腰三角形的两个底角相等。
` D 1
C
AB=AC(已知)
AD=AD(公共边)
B
D
C
∴ △ABD ≌ △ACD(SAS)
∴ ∠B=∠C
∴ △ABD ≌ △ACD(HL) ∴ ∠B=∠C
议一议:说说为什么在添加辅助时,作顶角平分线,
底边中线,底边高都能使分成的两个三角形全等?
性质2:等腰三角形的顶角平分线,底边上的中线,底边
上的通常说成等腰三角形的“三线合一”)
3、书面作业P56面、1、2、3
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
等腰三角形和直角三角形(共83张PPT)

(1)判断∠ABE与∠ACD的数量关系,并说明理由. (2)求证:过点A,F的直线垂直平分线段BC. 【思路点拨】(1)根据全等三角形的判定SAS可证明 △ABE≌△ACD,然后可得证.(2)根据(1)的结论和等腰三 角形的性质,可由线段垂直平分线的判定得证.
【自主解答】(1)∠ABE=∠ACD. 因为AB=AC,∠BAE=∠CAD,AE=AD, 所以△ABE≌△ACD. 所以∠ABE=∠ACD.
_____3_____个.
图 4-2-27
6.已知等腰三角形一边长为4,另一边长为8,则这个 等腰三角形的周长为20或16. ( × ) 7.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为5.
( √)
8.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD, AB=BD,则∠B的度数为36°. ( √ )
图1
第 30 页
图2
考点 2 直角三角形的性质和判定
5.(2011 年广东肇庆)在直角三角形 ABC 中,∠C=90°, BC=12,AC=9,则 AB=1_5_______.
6.(2010 年广东汕头)如图 4-2-29,把等腰直角三角形 △ABC 沿 BD 折叠,使点 A 落在边 BC 上的点 E 处.下面结论
【变式训练】 1.(2017·滨州中考)如图,在△ABC中,AB=AC,D为BC上 一点,且DA=DC,BD=BA,则∠B的大小为 ( )
A.40° B.36° C.80° D.25°
【解析】选B.设∠C=x°,由于DA=DC,可得∠DAC=∠C =x°,由AB=AC可得∠B=∠C=x°.∴∠ADB=∠C+∠DAC =2x°,由于BD=BA,所以∠BAD=∠ADB=2x°,根据三角形 内角和定理,得x°+x°+3x°=180°,解得x=36.所以 ∠B=36°.
等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
等腰三角形2

E B
D
F C
探究 你能证明“等腰三角形两腰上的 A 高相等中 哪些线段相等?
归纳
等腰三角形中相等的线段: 1.等腰三角形底边中点到两腰的距离 相等;
2.等腰三角形两腰上的高相等; 3.等腰三角形两腰上的中线相等;
4.等腰三角形两底角的平分线相等。
新授 Ⅰ.已知等腰三角形的 一个底角为30°, B 求其顶角的度数。 Ⅱ.已知等腰三角形的 一个顶角为30°, 求其底角的度数。
巩固 5.已知等腰三角形一腰上的高与另一腰 所夹的角的度数为45°,则底角为( ) A 45° B 67.5° C 67.5°或45° D 22.5°或67.5°
巩固
6.等腰三角形中,若两个角的比为1︰4, 则底角的度数为 。
巩固 5.如图,在△ABC中,AB=AC,D是 BC边上的中点,E在AC上, 且AD= AE,若∠BAD= 40°。求: A (1)∠DAC的度数; (2)∠EDC的度数。
分类思想
/ 鞍山交通信息网
像.琼英见东舌与王雄诞战成壹团,便迅速从锦带之中拿出壹颗石子,夹在两指之间,望准咯王雄诞の后心,壹声清喝,石子脱手而出,呼啸声传来.哐/壹声猎猎轰响传来,火光激溅四射,那壹颗石子正中王雄诞の后甲护心镜."受死吧/"那壹石子打得王雄诞心寒胆丧,吃惊之余,东舌趁机壹声 怒喝,手中血吸尽周遭壹切杀戮之气,熠熠生辉の锋之中涵盖咯万钧之力,朝王雄诞壹刺去.壹封喉/PS:(求订阅,求打赏,.)(o(∩_∩)o)(.)<!--geilwx-->二百二十四部分赵子龙单骑救樊氏杀气刺穿空气,呼啸若雷音.()唰/王雄诞喉咙上猛地绽开壹道血洞,双目圆睁,直挺挺从马上飞 咯出去.东舌壹刺穿咯王雄诞の咽喉,王雄诞整个人掉落到乱军之中,无数刀戈齐齐落下,瞬间被斩成肉泥."嘶.
2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)

2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)一.选择题1.如图,△ABC中,直线l是边AB的垂直平分线,若直线l上存在点P,使得△P AC,△P AB均为等腰三角形,则满足条件的点P的个数共有()A.1B.3C.5D.72.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△P AB 是等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个3.如图,网格中的每个小正方形的顶点称作格点,图中A、B在格点上,则图中满足△ABC 为等腰三角形的格点C的个数为()A.7B.8C.9D.104.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明同学们知道这个三角形“可爱角”应该是()A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°5.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°6.已知点O在直线AB上,点P在直线AB外,以OP为一边作等腰三角形POM,使第三个顶点M在直线AB上,则点M的个数为()A.2B.2或4C.3或4D.2或3或47.等腰△ABC的一边长为4,另外两边的长是关于x的方程x2﹣10x+m=0的两个实数根,则m的值是()A.24B.25C.26D.24或25二.填空题8.如图,在菱形ABCD中,AB=6,BD=9,M为对角线BD上一动点(M不与B和D重合),过点M作ME∥CD交BC于点E,连接AM,当△ADM为等腰三角形时,ME的长为.9.如图,在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.若∠C=2∠B,且0°<∠BAD<60°,若翻折后得到的△DEF中有两个角相等,则∠BAD=.10.如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰AC上的一点,则当△EDP为等腰三角形时,∠EDP的度数是.11.两块全等的等腰直角三角形如图放置,∠A=90°,DE交AB于点P,E在斜边BC上移动,斜边EF交AC于点Q,BP=3,BC=10,当△BPE是等腰三角形时,则AQ 的长为.12.等腰三角形的一个角为40°,则它的顶角为.三.解答题13.如图所示,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连结AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”).(2)当DC的长为多少时,△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中,△ADE的形状也在改变,请判断当∠BDA等于多少度时,△ADE是等腰三角形.(直接写出结论,不说明理由.)14.在平面直角坐标系中,以坐标原点为圆心的⊙O半径为3.(1)试判断点A(3,3)与⊙O的位置关系,并加以说明.(2)若直线y=x+b与⊙O相交,求b的取值范围.(3)若直线y=x+3与⊙O相交于点A,B.点P是x轴正半轴上的一个动点,以A,B,P三点为顶点的三角形是等腰三角形,求点P的坐标.15.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB.(1)求点A的坐标;(2)点D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,是否存在点D,使△ACD为等腰三角形?若存在,请你直接写出点D的坐标,若不存在,请说明理由.16.如图,已知平面直角坐标系内,点A(2,0),点B(0,2),连接AB.动点P从点B出发,沿线段BO向O运动,到达O点后立即停止,速度为每秒个单位,设运动时间为t秒.(1)当点P运动到OB中点时,求此时AP的解析式;(2)在(1)的条件下,若第二象限内有一点Q(a,3),当S△ABQ=S△ABP时,求a的值;(3)如图2,当点P从B点出发运动时,同时有点M从A出发,以每秒1个单位的速度沿直线x=2向上运动,点P停止运动,点M也立即停止运动.过点P作PN⊥y轴交AB于点N.在运动过程中,是否存在t,使得△AMN为等腰三角形?若存在,求出此时的t值,若不存在,说明理由.17.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解析式;(2)点E为直线CD上任意一点,过点E作EF⊥x轴交直线AB于点F,作EG⊥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∠CMN=45°,且△CMN为等腰三角形时,直接写出点M的横坐标.18.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)∠OBC=°;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,当△PQB是直角三角形时,求t的值;②若点P、Q的运动路程分别是a,b,当△PQB是等腰三角形时,求出a与b满足的数量关系.19.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE=;(2)在点P的运动过程中,①EF+FQ的值为;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.20.如图,在Rt△ABC中,∠ACB=Rt∠,AC=8,AB=10,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连结AF,CD.设点D运动时间为t秒.(1)BC的长为;(2)当t=2时,求△ADC的面积.(3)当△ABF是等腰三角形时,求t的值.参考答案一.选择题1.解:分三种情况:如图:当AP=AC时,以A为圆心,AC长为半径画圆,交直线l于点P1,P2,当CA=CP时,以C为圆心,CA长为半径画圆,交直线l于点P3,P4,当P A=PC时,作AC的垂直平分线,交直线l于点P5,∵直线l是边AB的垂直平分线,∴直线l上任意一点(与AB的交点除外)与AB构成的三角形均为等腰三角形,∴满足条件的点P的个数共有5个,故选:C.2.解:分三种情况,如图:∵∠ACB=90°,∠BAC=30°,∴∠ABC=90°﹣∠BAC=60°,当BA=BP时,以B为圆形,BA长为半径画圆,交直线BC于P1,P2两个点,∵BA=BP2,∠ABC=60°,∴△ABP2是等边三角形,∴AB=BP2=AP2,当AB=AP时,以A为圆形,AB长为半径画圆,交直线BC于P2,当P A=PB时,作AB的垂直平分线,交直线BC于P2,综上所述,在直线BC上取一点P,使得△P AB是等腰三角形,则符合条件的点P有2个,故选:B.3.解:如图所示:分三种情况:①以A为圆心,AB长为半径画弧,则圆弧经过的格点C1,C2,C3即为点C的位置;②以B为圆心,AB长为半径画弧,则圆弧经过的格点C3,C4,C5,C6,C7,C8即为点C的位置;③作AB的垂直平分线,垂直平分线没有经过格点;∴△ABC为等腰三角形的格点C的个数为:8,故选:B.4.解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,故选:C.5.解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.6.解:如图1中,当∠POB≠90°或∠POB≠60°时,满足条件的点M有2个,如图2中,当∠POB=60°时,满足条件的点M有2个.如图3中,当∠POB=90°时,满足条件的点M有2个.故选:B.7.解:方程x2﹣10x+m=0的有两个实数根,则Δ=100﹣4m≥0,得m≤25,当底边长为4时,另两边相等时,x1+x2=10,∴另两边的长都是为5,则m=x1x2=25;当腰长为4时,另两边中至少有一个是4,则4一定是方程x2﹣10x+m=0的根,代入得:16﹣40+m=0解得m=24.∴m的值为24或25.故选:D.二.填空题8.解:以菱形ABCD的对角线BD所在直线为x轴,以AC所在直线为y轴建立直角坐标系,∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,AC⊥BD,OB=OD=BD=,OA=OC=AC,∴OA===,∴A(0,),D(,0),∴B(﹣,0),∵点M在y轴上,∴设M(m,0),∴AM2=m2+()2=m2+,AD2=62=36,DM2=(﹣m)2,∵ME∥CD,∴∠BME=∠BDC,∠BEM=∠BCD,∴△BME∽△BDC,分三种情况:当AM=AD时,点M与点B重合,不符合题意;当MA=MD时,如图:∵MA2=MD2,∴m2+=(﹣m)2,∴m=,∴M(,0),∵B(﹣,0),∴BM=﹣(﹣)=5,∵△BME∽△BDC,∴=,∴=,∴ME=,当DA=DM时,如图:∵DA2=DM2,∴(﹣m)2=36,∴m=(舍去)或m=﹣,∴M(﹣,0),∵B(﹣,0),∴BM=﹣﹣(﹣)=3,∵△BME∽△BDC,∴=,∴=,∴ME=2,综上所述:ME的长为:或2,故答案为:或2.9.解:∵∠BAC=90°,∵∠C=2∠B,∴∠C=60°,∠B=30°,设∠BAD=x,∴∠ADB=180°﹣∠B﹣∠BAD=150°﹣x,∠ADC=∠B+∠BAD=30°+x,由折叠得:∠B=∠E=30°,∠BAD=∠DAE=x,∠ADB=∠ADE=150°﹣x,∴∠EDF=∠ADE﹣∠ADC=(150°﹣x)﹣(30°+x)=120°﹣2x,∵∠BAC=90°,∠BAD=∠DAE=x,∴∠EAC=∠BAC﹣∠BAE=90°﹣2x,∴∠AFC=180°﹣∠EAC﹣∠C=180°﹣(90°﹣2x)﹣60°=30°+2x,∴∠AFC=∠DFE=30°+2x,分三种情况:当∠EDF=∠DFE,120°﹣2x=30°+2x,∴x=22.5°,∴∠BAD=22.5°,当∠EDF=∠E,120°﹣2x=30°,∴x=45°,∴∠BAD=45°,当∠DFE=∠E,30°+2x=30°,∴x=0°,∵0°<∠BAD<60°,∴x=0°(舍去),综上所述:∠BAD为22.5°或45°,故答案为:22.5°或45°.10.解:∵AB=AC,∠B=50°,∠AED=73°,∵当△DEP是以DE为腰的等腰三角形,①当点P在P1位置时,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP1H中,DE=DP1,DG=DH,∴Rt△DEG≌Rt△DP1H(HL),∴∠AP1D=∠AED=73°,∵∠BAC=180°−50°−50°=80°,∴∠EDP1=134°,②当点P在P2位置时,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P2DH,∴∠EDP2=∠GDH=180°−80°=100°,综上∠EDP的度数为134°或或100°.故答案为:134°或100°.11.解:如图,当BP=BE=3时,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,CE=10﹣3,∵∠DEC是△BEP的外角,∴∠DEF+∠QEC=∠B+∠BPE,∴∠BPE=∠QEC,∴△BPE∽△CQE,∴,∴,∴CQ=10﹣3,∴AQ=AC﹣CQ=5﹣(10﹣3)=8﹣10,当BE=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵BE=PE,∴∠B=∠BPE=45°,∴∠BEP=180°﹣45°﹣45°=90°,∴∠PEC=90°,∠QEC=45°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=PE=3,∴EC=BC﹣BE=10﹣3=7,∴EQ=QC=,∴AQ=AC﹣CQ=5﹣=,当PB=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵PB=PE,∴∠B=∠PEB=45°,∴∠QEC=180°﹣45°﹣45°=90°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=BP=×3=6,∴CE=BC﹣BE=10﹣6=4,∴QC=CE=4,∴AQ=AC﹣CQ=5﹣4=,综上所述,AQ的长为8﹣10或或,故答案为:8﹣10或或.12.解:当40°角为顶角时,则顶角为40°,当40°角为底角时,则顶角为180°﹣40°﹣40°=100°,故答案为:40°或100°.三.解答题13.解:(1)∵∠B=40°,∠BDA=115°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣115°﹣40°=25°,由图形可知,∠BDA逐渐变小,故答案为:25°;小;(2)当DC=2时,△ABD≌△DCE,理由如下:∵AB=2,∴AB=DC,∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE是等腰三角形,当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠DAE+∠C=40°+40°=80°,综上所述,当∠BDA的度数为110°或80°时,△ADE是等腰三角形.14.解:(1)∵A(3,3),∴OA=3,∵3>3,∴点A在⊙O外;(2)如图,当直线y=x+b与⊙O相切于点C时,连接OC,则OC=3,∵∠CBO=45°,∴OB=3,∴直线y=x+b与⊙O相交时,﹣3<b<3;(3)∵直线y=x+3与⊙O相交于点A,B.∴A(0,3),B(﹣3,0),∴AB=3,当BA=BP=3时,∴P1(﹣3+3,0),P2(﹣3﹣3,0),当AB=AP时,∵AO⊥x轴,∴BO=OP,∴P3(3,0),当PB=P A时,点P与O重合,∴P4(0,0),∴点P的坐标为(﹣3+3,0)或(﹣3﹣3,0)或(3,0)或(0,0).15.解:(1)解方程x2﹣6x+8=0,可得x1=2,x2=4,∵OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB,∴OC=2,OB=4,∵∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠CAO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即,解得AO=1,∴A(﹣1,0);(2)由(1)可知C(0,2),B(4,0),A(﹣1,0),设直线AC解析式为y=kx+b,∴,解得,∴直线AC的解析式为y=2x+2,同理可求得直线BC解析式为y=﹣x+2,当点D在线段OA上时,即﹣1<t≤0时,则点P在直线AC上,∴P点坐标为(t,2t+2),∴d=2t+2;当点D在线段OB上时,即0<t<4时,则点P在直线BC上,∴P点坐标为,∴d=﹣t+2;综上可知d关于t的函数关系式为d=;(3)存在.由勾股定理得,AC==,当AC=AD=,点D在点A的右侧时,D点的坐标为(﹣1,0),当CA=CD时,∵CO⊥AD,∴OD=OA=1,∴D点的坐标为(1,0),当DA=DC时,如图,OD=DA﹣OA=DC﹣1,在Rt△COD中,DC2=OD2+OC2,即DC2=(DC﹣1)2+22,解得,DC=,∴OD=﹣1=,∴D点的坐标为(,0),综上所述,△ACD为等腰三角形时,D点的坐标为(﹣1,0)或(1,0)或(,0).16.解:(1)∵B(0,2),∴OB的中点为(0,),当点P运动到OB中点时,P(0,),设直线AP的函数解析式为y=kx+,将A(2,0)代入y=kx+得,2k+=0,∴k=﹣,∴直线AP的函数解析式为y=﹣x+;(2)由点A(2,0),B(0,2)可知,直线AB的解析式为y=﹣x+2,∵S△ABQ=S△ABP,∴直线PQ∥AB,∴直线PQ的解析式为y=﹣x+,当y=3时,∴﹣,解得x=1﹣,∴a=1﹣;(3)当AN=MN时,设PN交直线x=2于H,则AM=2AH,∴t=2(2﹣t),解得t=,当AN=AM时,∵OA=2,OB=2,∴AB=4,∴∠ABO=30°,∵BP=t,∴BN=2t,∴2t+t+4,解得t=,当MN=AM时,∵∠MAN=30°,∴AN=t,∴2t+=4,解得t=8﹣4,综上:t=或或8﹣4.17.解:(1)∵点C(﹣3,n)在直线y=2x+9上,∴n=2×(﹣3)+9=3,∴C(﹣3,3),设直线CD的解析式为y=kx+b,∵C(﹣3,3),D(6,0),∴,解得:,∴直线CD的解析式为y=x+2;(2)如图1,设点E的横坐标为m,∵点E在直线CD上,EF⊥x轴交直线AB于点F,EG⊥y轴于点G,∴E(m,m+2),F(m,2m+9),G(0,m+2),∴EF=|(2m+9)﹣(m+2)|=|m+7|,EG=|m|,∵EF=2EG,∴|m+7|=|m|,∴m=﹣或﹣21;(3)如图2,∵∠CMN=45°,且△CMN为等腰三角形,∴CN=MN或CM=MN或CN=CM,①当CN=MN时,则∠MCN=∠CMN=45°,∵C(﹣3,3),∴∠COM=45°,∴∠CMO=90°,即CM⊥x轴,∴M1(﹣3,0),即点M的横坐标为﹣3;②当CM2=M2N2时,则∠M2CN2=∠M2N2C=67.5°,∵∠OM2N2=∠M2N2C﹣∠COM2=67.5°﹣45°=22.5°,∴∠CM2O=∠CM2N2+∠OM2N2=45°+22.5°=67.5°,∴∠M2CN2=∠CM2O,∴OM2=OC=3,∴M2(﹣3,0),即点M的横坐标为﹣3;③当CN=CM时,∠CMN=∠CNM=45°,∴∠MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为﹣3或﹣3.18.解:(1)在Rt△COB中,∠COB=90°,OB=2,BC=4,∴∠BOC=30°,∴∠OBC=90°﹣∠BOC=60°,故答案为:60;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°∴只有∠PQB=90°和∠QPB=90°两种情况,当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=BP,即t=(5﹣2t),解得:t=;当∠QPB=90°时,∵∠OBC=60°,∴∠BQP=30°,∴PB=BQ,即5﹣2t=t,解得:t=2;综上所述,当t=或t=2时,△PQB是直角三角形;②如图:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5;如图3:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,即a﹣5=b,∴a﹣b=5,综上所述:当△PQB是等腰三角形时,a与b满足的数量关系为:a+b=5或a﹣b=5.19.解:(1)如图1,设DG=a,∵CD⊥AB,PE⊥AB,QF⊥AB,∴QF∥CD∥EF,∵DE=DF,∴EG=QG,∴DG是△EFQ的中位线,∴QF=2a,∵tan∠BAC==,即=,∴AF=a,DF=DE=4﹣a,∵BD=3,∴BE=3﹣(4﹣a)=a﹣1,∵PE∥CD,BP=PC,∴BE=ED,∴a﹣1=4﹣a,∴a=,∴FQ=2a=5,EF=2(4﹣a)=8﹣2a=8﹣5=3,∴EQ==;故答案:;(2)①如图2,过点Q作QH⊥CD于H,∵FQ⊥AB,CD⊥AB,∴∠QFD=∠FDH=∠QHD=90°,∴四边形FDHQ为矩形,∴DF=QH=DE,FQ=DH,∵tan∠ACD====,∴CH=2QH=EF,∴EF+FQ=DH+CH=8:故答案为:8;②由①得:EF+FQ=8,设EF=x,则FQ=8﹣x,∴EQ===,当x=4时,EQ取最小值为=4,此时,DE=DF=2,∴BE=3﹣2=1,∵PE∥CD,∴==,Rt△BDC中,由勾股定理得:BC==,∴PB=,当PB=时,线段QE最小,最小值是4;③设DE=m,BE=3﹣m,DF=m(0≤m≤3),∴AE=4+m,AF=4﹣m,FQ=8﹣2m,AC===4,AQ=(4﹣m),当△AEQ为等腰三角形时,存在以下三种情况:i)AQ=AE,则4+m=(4﹣m),解得:m=6﹣2,∴BE=3﹣(6﹣2)=2﹣3;ii)AQ=QE,∵QF⊥AE,∴AF=EF,∴4﹣m=2m,∴m=,∴BE=3﹣=;iii)AE=EQ,则4+m=,7m2﹣40m+48=0,解得:m1=4(舍),m2=,∴BE=3﹣=;综上所述,BE的长为2﹣3或或.20.解:(1)在Rt△ABC中,∠ACB=90°,AC=8,AB=10,由勾股定理得:BC===6,故答案为:6;(2)如图1,过点C作CH⊥AB于H,S△ABC=AC•BC=AB•CH,则×8×6=×10×CH,解得:CH=,当t=2时,AD=2×2=4,则S△ADC=×4×=;(3)当F A=FB时,DF⊥AB,∴AD=AB=×10=5,∴t=5÷2=;当AF=AB=10时,∠ACB=90°,则BF=2BC=12,∴AB•DF=BF•AC,即×10×DF=×12×8,解得:DF=,由勾股定理得:AD===,∴t=÷2=;当BF=AB=10时,∵BF=10,BC=6,∴CF=BF﹣BC=10﹣6=4,由勾股定理得:AF===4,∵BF=BA,FD⊥AB,AC⊥BF,∴DF=AC=8,∴AD===4,∴t=4÷2=2;综上所述,△ABF是等腰三角形时,t的值为或或2.。
初一数学知识点公式定理大全

初一数学知识点公式定理大全初中数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容。
小编在此整理了初一数学知识点公式定理大全,希望能帮助到您。
数学公式定理大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。