等腰三角形综合应用
等腰三角形的性质和判定的综合题目

轴对称性
等腰三角形是轴对称图形,其 对称轴为底边的垂直平分线。
等腰三角形的两腰相等,且与 底边形成两个相等的角。
题目:等腰三角形ABC中,AB=AC,D为BC上一点,BD=CD,AD=DE=EB,过 点E作EM平行于AB交BC于点M,求BM:ME的值。
图形变化的题目
题目:等腰三 角形ABC中, AB=AC,D是 BC上一点,且 AD=BD=CD, 则∠BAC的度
数为多少。
题目:在等腰 三角形ABC中, AB=AC,D是 BC上一点,且 AD=BD=CD, 则∠BAC的度
等腰三角形在建筑、工程和艺术等领域也有广泛应用,如建筑设计、桥梁构造和图案设 计等。
解决实际问题
利用等腰三角形 的性质解决生活 中的实际问题, 如建筑、工程、 设计等领域。
等腰三角形在物 理学中的应用, 如力的平衡、杠 杆等。
等腰三角形在数 学中的实际应用 ,如代数、几何 、三角函数等。
等腰三角形在实 际问题中的应用 ,如航海、地理 、天文等。
题目:等腰三角形ABC中,AB=AC,D为BC上一点,BD=CD, AD=DE=EB,AE交BD于点M,过点D作DF平行于AB交AE于点F,求 BM:MF的值。 题目:等腰三角形ABC中,AB=AC,D为BC上一点,BD=CD, AD=DE=EB,AE交BC于点N,过点D作DM平行于AE交BC于点M,求 BM:MN的值。
解题思路:利用 等腰三角形的性 质和判定的综合 应用,通过题目 给出的条件逐步 推导出各角的度 数。
人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。
【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。
等腰三角形和等边三角形的综合题

等腰三角形的性质应用及判定【例1】(扬州中考)如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形)【例2】如图,△ABC 为等边三角形,延长BC 到D,又延长BA 到E ,使AE=BD,连接CE,DE,求证:△CDE 为等腰三角形【例4】如图,△ABC 是边长为1的正三角形,△BDC 是顶角为120°的等腰三角形,以D 为顶点作一个60°的∠MDN ,点M,N 分别在AB,AC 上,则△AMN 的周长是【例5】(重庆中考)已知一个等腰三角形两内角的度数比为1:4,则这个等腰三角形顶角的度数为( )A.20° B.120° C.20°或120° D.36°【例6】(双柏中考)等腰三角形两边长分别为4和9,则第三边长为:【例7】如图,点O 事等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC,连接OD,则△COD 是等边三角形;(1)当α为多少度时,△AOD 是等腰三角形?(2)求证:△COD 是等边三角形(3)当α=150°时,试判断△AOD 的形状,并说明理由A EB C O D E A B C D EA B C D FAM ND B C A M NDB CP Q BDBE【例8】(乐山中考)如图,在等边△ABC 中,点D,E 分别在边BC,AB 上,BD=AE,AD 与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC 的度数。
【例9】(黄冈中考)如图,分别以Rt △ABC 的直角边AC,BC 为边,在Rt △ABC 外作两个等边三角形△ACE 和△BCF ,连接BE,AF 。
等腰三角形勾股定理及全等的综合应用

∴△BDF是等腰直角三角形,
∴DF=BD=5,
∴AF=AD-DF=12-5=7;
(2)证明:如图2,在BF上取一点H使BH=EF,
连接CF、CH
在△CHB和△AEF中,
=
∵ ∠ = ∠ = ° ,
=
∴△CHB≌△AEF(SAS),
∴AE=CH,∠AEF=∠BHC,
∴DE⊥DP;
(2)连接PE,设DE=x,则
EB=ED=x,CE=4-x,
∵∠C=∠PDE=90°,
2
2
2
2
2
∴PC +CE =PE =PD +DE
,
2
2
2
2
∴2 +(4-x) =1 +x ,
解得:x=
.
则DE=
,
证:CD⊥BF;
2
2
2
(2)连接BE,交CD的延长线于点H,如图2,若BC =BE +CD ,试判断
CD与BE的位置关系,并证明.
解:(1)证明:在△ACD和△AFE中
=
∠ = ∠ ,
=
∴△ACD≌△AFE(SAS),
∴∠DCA=∠EFA,
∴CD∥EF,
∵BF⊥EF,
∴CD⊥BF;
(2)解:CD⊥BE,理由如下:
延长CA到F,使AF=AC,连接EF,
∵BA⊥CF,AC=AF,
∴BC=BF,
由(1)可知CD∥EF,CD=EF,
2
2
2
∵BC =BE +CD ,
2
2
2
∴BF =BE +EF ,
等腰三角形的“三线合一”的性质及综合运用

等腰 三角形 底边 上 的高 、底 边 上 的中线 和顶 角平 分 线
相互重合 ,我 们将 等 腰 三角形 的这 一特 性 简称 为 “三 线 要性质 之一 .其 主要特 点
体现在认 下三个方面 :① 等腰 三角形 的顶 角平分线 垂直 平
的性质定 理.这些性 质定 理在几何 问题中被广 泛应用 .下 面
以近几年 来各地 的中考 试题 的改 编题 为例 ,针对 等 腰三 角
形 的“三线合一 ”的分类应用加 以阐述 ,供大家参考.
一 、 求线段最值
在解 决和线段有 关 的数学 问题 时 ,如果 可 以 同时用 全
等 三角形 和等腰 三角形 的知 识来 解决 ,则 提倡运 用 等腰 三
度 的 最 小 值 .
B
解 析 经过 A点作 AP垂直 BC于 P 点 ,已知 AC=AB =5,BC=6,根 据 等 腰
图 1
三 角形 的“三线合 一”性 质 ,可 知 BC被 AP垂 直 平分 ,得 到 BP:3,及直 角三角形 APB,根据勾股 定理可知 AP=4,又 由 垂 直线段最短 ,可知当 BH垂直 于边 AC时 ,BH取最小值 ,根 据 等 面 积 法 ,可 得 AJP ·BC=BH ·AC,即 4×6=5×BH,可
合一 ”性质 、全 等三角形 的判及性质的理解 和应用.
三 、处 理 角 与角 之 间 的 关 系
在 解 答 关 于 角 之 间 关 系 的 题 目 时 ,可 以 运 用 等 腰 三 角
形 的“三线合一”性 质 ,将 题 目已知条 件与 待证 的角 的关 系
联 系到一起 ,从而简化 问题 的解 决步骤.
等腰三角形判定教案5篇

等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
七年级(下)数学 第14讲 等腰三角形二 (解析版)

本节主要针对等腰三角形的综合性问题进行讲解,对于条件不足的问题,通过添加平行线或截长补短或倍长中线等构造全等的三角形,综合性较强.根据等腰三角形的性质进行角度和边长的相关计算.【例1】如图,△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个【答案】C【解析】经分析可知,等腰三角形有:ABC ABD ACE BCE BDC,,,,,BEF CDF BCF,,,共8个.【总结】考查等腰三角形定义及三角形内角和的综合运用.等腰三角形二内容分析知识结构模块一:计算知识精讲例题解析ABCDEF2 / 22【例2】 如图,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,求∠A 的度数. 【答案】45A ∠=︒.【解析】BE ED EBD EDB =∴∠=∠,2233180818022.5245AED EBD EDB AED EBD AD ED A AED EBD BD BC C CDB AB AC C ABC C CDB ABCCDB A EBD CDB EBDC ABC CDB EBD A ABC C EBD EBD A EBD ∠=∠+∠∴∠=∠=∴∠=∠=∠=∴∠=∠=∴∠=∠∴∠=∠=∠∠=∠+∠∴∠=∠∴∠=∠=∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒∴∠=∠=︒,,,,,,, 【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.【例3】 如图,AC =BC ,DF =DB ,AE =AD ,求∠A 的度数. 【答案】36A ∠=︒【解析】AC BC A B =∴∠=∠,2180518036DB DF F BA B F EDA B F EDA A AD AE ADE AEDA ADE AED A A =∴∠=∠∴∠=∠=∠∠=∠+∠∴∠=∠=∴∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒,,,,, 【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.【例4】 如图,△ABC 中,AB =AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF =70°,求∠AFD 的度数. 【答案】160AFD ∠=︒.【解析】AB AC B C =∴∠=∠, 90702018070707090160DE AB DF BC DEB FDC FDB FDE EDB B DEB EDB B C AFD C FDC AFD ⊥⊥∴∠=∠=∠=︒∠=︒∴∠=︒∠+∠+∠=︒∴∠=︒∠=︒∠=∠+∠∴∠=︒+︒=︒,,,,【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.A BC DE FAB C DE FABCDE【例5】 如图,△ABC 中,AB =AC ,D 在BC 上,∠BAD =30°,在AC 上取点E ,使AE =AD ,求∠EDC 的度数.【答案】15EDC ∠=︒. 【解析】AB AC B C AD AE ADE AED =∴∠=∠=∴∠=∠,,,23015ADC B BAD AED C EDCADC ADE EDC B BADC EDC EDC B BAD EDC BAD BAD EDC ∠=∠+∠∠=∠+∠∴∠=∠+∠=∠+∠∴∠+∠+∠=∠+∠∴∠=∠∠=︒∴∠=︒,,,【总结】考查等腰三角形的性质及三角形外角性质的综合运用, 注意观察角度间的关系.【例6】 如图,△ABC 中,∠C =90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE =AC ,BD =12, DE +BC =1,求∠ABC 的度数. 【答案】30ABC ∠=︒.【解析】解:延长BC 至点F ,使CF DE =,联结AF ()1190..111222909030DE BC BF BC CF BC DE BE AC DEB ACF DE CFBDE AFC S A S BD AF BD B FAC AF BF B BAC FAC BAC ABC +=∴=+=+==∠=∠=︒=∴≅=∴==∠=∠∴=∠+∠=︒∴∠+∠=︒∴∠=︒,,,,,,,,,【总结】考查全等三角形的判定及性质,注意辅助线的添加.【例7】 如图,△ABC 中,AD 平分∠BAC ,若AC =BD +AB ,求∠B :∠C 的值. 【答案】:2:1B C ∠∠=.【解析】在AC 上取点E ,使AE AB =,联结DEAD 平分BAC ∠,()..ABD AED S A S ∴≅B AED BD DE ∴∠=∠=,,AC BD AB =+EC DE C EDC ∴=∴∠=∠,2:2:1AED C B B C ∴∠=∠=∠∴∠∠=,【总结】考查截长补短构造全等三角形及等腰三角形的性质及外角性质.AB CDEABC DEF EABCD4 / 22【例8】 在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.【答案】454590︒︒︒,,或3636108︒︒︒,,或367272︒︒︒,,或180540540777,,. 【解析】解:如图(1),当BD AD CD ==时, AB AC B C BD AD DC B BAD CAD C=∴∠=∠==∴∠=∠=∠=∠,,,41804590B B C BAC ∴∠=︒∴∠=∠=︒∴∠=︒,,;如图(2)当BD AD CD AC ==,时, AB AC B C =∴∠=∠,,BD AD CD AC B BAD CDA DAC ==∴∠=∠∠=∠,,, 23CDA B BAD CDA B BAC B ∠=∠+∠∴∠=∠∴∠=∠,, 180518036108B C BAC B B C BAC ∠+∠+∠=︒∴∠=︒∴∠=∠=︒∠=︒,,,如图(3)当AD BD BC ==时,同理可得:51803672A A ABC C ∠=︒∴∠=︒∠=∠=︒,,; 如图(4)当AD BD BC CD ==,时 同理可得180540718077A A ABC C ︒︒∠=︒∴∠=∠=∠=,,. 【总结】考查等腰三角形的性质及三角形内角和定理及分类讨论的思想的运用.1. 添加平行线构造全等三角形; 2. 截长补短构造全等三角形; 3. 倍长中线构造全等三角形.【例9】 如图,已知:在△ABC 中,AB =AC ,BE=CF ,EF 交BC 于点G ,求证:EG =FG . 【答案】详见解析【解析】证明:过点E 作//EM AF ,交BC 于点M 则GCF GME EMB ACB ∠=∠∠=∠,,AB AC ABC ACB =∴∠=∠,ABC EMB EM EB BE CF EM CF ∴∠=∠∴==∴=,,, ()..EMG FCG A A S EG FG ∴≅∴=,. 【总结】考查通过辅助线构造全等三角形及结合等腰三角形的性质的应用.【例10】 如图,已知AD 是ABC 的中线,BE 交AC 于点E ,交AD 于点F ,且AE =EF ,试说明AC =BF 的理由. 【答案】详见解析.【解析】延长AD 至点M ,使MD FD =,联结MC()..BD CD BDF CDM DF DM BDF CDM S A S MC BF M BFM EA EF EAF EFA AFE BFM M MAC AC MC BF AC=∠=∠=∴≅∴=∠=∠=∴∠=∠∠=∠∴∠=∠∴=∴=,,,,,,,,,,,【总结】考查通过辅助线构造全等三角形及结合等腰三角形的性质应用.模块二:构造全等形知识精讲例题解析ABC E FGM AD FBCEM6 / 22【例11】 如图,△ABC 中,∠B =60°,角平分线AD 、CE 交于点O ,试说明AE +CD =AC . 【答案】详见解析.【解析】证明:在AC 上取AF AE =,联结OF易证()..AEO AFO S A S AOE AOF ≅∴∠=∠,.AD CE 、分别平分BAC ACB ∠∠、,()1180602ECA DAC B ∴∠+∠=︒-∠=︒则180120AOC ECA DAC ∠=︒-∠-∠=︒ 120AOC DOE ∴∠=∠=︒, 60AOE COD AOF ∴∠=∠=∠=︒则60COF COD COF ∠=︒∴∠=∠,, 又FCO DCO CO CO ∠=∠=, ()..FOC DOC A S A DC FC ∴≅∴=,AC AF FC AC AE CD =+∴=+,.【总结】考查通过辅助线构造全等三角形的性质应用,注意找寻角度间的关系.【例12】 已知:如图,在等边三角形ABC 中,D 、E 分别是AB 、AC 边上的点,且BD =AE ,EB 与CD 相交于点O .EF 与CD 垂直于点F .求OEF ∠的度数. 【答案】30OEF ∠=︒. 【解析】解:ABC 是等边三角形,60,A ABC AB BC ∴∠=∠=︒=,BD =AE易证()..ABE BCD S A S ≅,ABE DCB ∴∠=∠ADO ABC DCB ABE BOD ∠=∠+∠=∠+∠6060BOD ABC EOF ∴∠=∠=︒∴∠=︒, 30EF CD OEF ⊥∴∠=︒,【总结】考查全等的性质及等腰三角形的性质应用.ADFB CEOABCD EOF【例13】 如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,试说明BC =AB +CD .【答案】详见解析.【解析】在BC 上截取BE BA =,联结DEBD 平分ABC ∠,BE BA =,()..ABD EBD S A S ∴≅10818010872DEB A DEC ∴∠=∠=︒∴∠=︒-︒=︒, ()1180108362AB AC C B =∴∠=∠=︒-︒=︒,, 72EDC CE CD BE CE AB CD ∴∠=︒∴=∴+=+,,,BC AB CD ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意添加合适的辅助线构造全等.【例14】 如图,在△ABC 中,AB =AC ,∠A =100°,BD 平分∠ABC ,试说明BC =BD +AD .【答案】详见解析.【解析】在BC 上截取BF BA =,联结DF ,在BC 上截取BE BD =,联结DEBD 平分ABC ∠,BF BA =()..ABD FBD S A S ∴≅,100DFB A ∴∠=∠=︒,18010080DFC ∴∠=︒-︒=︒.()1180101040200AB AC C A ABC =∴∠=∠∠==︒-︒︒=︒,,, 20DBC ∴∠=︒20BE BD DBC =∠=︒,,80BED BDE ∴∠=∠=︒, DFE FED DF DE ∴∠=∠∴=,804040FED C EDC EDC C ∠=︒∠=︒∴∠=︒∴∠=∠,,, DE EC AD EC ∴=∴=,,BC AD BD ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意辅助线的合理添加.ABCDE ABCDF E8 / 22【例15】 在△ABC 中,已知AB =AC ,D 为△ABC 外一点,∠ABD =60°,1902ADB BDC ∠=︒-∠,试说明AB =BD +DC .【答案】详见解析【解析】证明:以AD 为轴作ABD 的对称'AB D''1'60'902B D BD AB AB AC B ABD ADB ADB BDC∴===∠=∠=︒∠=∠=︒-∠,,, '180ADB ADB BDC ∴∠+∠+∠=︒, 'C D B ∴、、共线, 'ACB ∴是等边三角形, AB BD DC ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意辅助线的正确添加.【例16】 已知:如图,AB =AC =BE ,CD 为△ABC 中AB 边上的中线,试说明CD =12CE .【答案】详见解析.【解析】证明:延长CD 到F ,使DF =CD ,连接BF , ∵CD 为△ABC 中AB 边上的中线, ∴BD =AD ∵DF =CD ,ADC BDF ∠=∠,∴ADC BDF ≅∴BF AC BE ==,180ABF A ABC CBE ∠=∠=-∠=∠,∴180CBF ABF ABC ABC CBE ∠=∠+∠=-∠=∠, 又∵BC BC =,∴CBF CBE ≅, ∴CE CF =,∵12CD CF =,∴CD =12CE . 【总结】考查全等的性质及等腰三角形的性质应用,注意倍长中线辅助线的运用.A BCDB ’ABCDEF【例17】 如图,AM 为△ABC 的中线,AE ⊥AB ,AF ⊥AC ,且AE =AB ,AF =AC ,MA 的延长线交EF 于点P ,试说明AP ⊥EF . 【答案】详见解析【解析】证明:延长AM 至N ,使MN AM =,联结CNAM 是BC 边上的中线,()..ABM NCM S A S ∴≅AB NC BAM N ABM NCM ∴=∠=∠∠=∠,, //180CN AB NCA BAC ∴∴∠+∠=︒,180AE AB AF AC EAF BAC ⊥⊥∴∠+∠=︒,,,180NCA BAC ∴∠+∠=︒,EAF NCA ∴∠=∠AE AB AF AC EAF NCA EFA NAC ==∴≅∴∠=∠,,,9090AF AC PAF NAC EAF NAC PAF EFA ⊥∴∠+∠=︒∠=∠∴∠+∠=︒,,, 90APF AP EF ∴∠=︒∴⊥,【总结】本题一方面考查中线倍长辅助线的添加,另一方面考查全等三角形的性质应用.【例18】 如图,在△ABC 中,已知∠BAC =900,AB =AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB =∠CDF . 【答案】详见解析.【解析】证明:过A 作AG 平分BAC ∠交BD 于G190452BAC GAB CAG A ∠=︒∴∠=∠=∠=︒,()1180452AB AC C B C A =∴∠=∠∴∠=︒-∠=︒,,,C BAG ∴∠=∠ 9090AE BD ABE BAE CAF BAE ABE CAF ⊥∴∠+∠=︒∠+∠=︒∴∠=∠,,, ()..ABG CAF A S A AG CF ∴≅∴=,,D 为AC 中点,AD CD ∴=又45C DAG ∠=∠=,()..AGD CFD S A S ADB CDF ∴≅∴∠=∠,. 【总结】考查等腰直角三角形的性质应用,注意辅助线的添加.ABCMEFPNA BCD E FG10 / 22【例19】 如图,△ABC 中,AB =AC ,D 为△ABC 外一点,且∠ABD =∠ACD =60°.试说明CD =AB -BD . 【答案】详见解析.【解析】证明:延长BD 到E ,使BE BA =,连接AE CE 、60ABD ∠=︒,ABE ∴为等边三角形6060AE AB AC BE ACE AEC AEB ACD AEB ACD DEC DCE DC DEBD DC BD DE BE AB DC AB BD∴===∠=∠∠=︒∠=︒∴∠=∠∴∠=∠=∴+=+==∴=-,,,,,【总结】考查全等的性质及等腰三角形的性质的综合应用.利用等腰三角形的“三线合一”的性质构造等腰三角形【例20】 如图,△ABC 中,∠ABC 、∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E ,求证:DE =BD +AE . 【答案】详见解析.【解析】证明:BP AP 、平分ABC CAB ∠∠、//CBP ABP CAP BAP DE AB DPB PBA EPA PABCBP DPB CAP EPA BD PD PE AE DE DP PE DE BD AE∴∠=∠∠=∠∴∠=∠∠=∠∴∠=∠∠=∠∴===+∴=+,,,,,,,,, 【总结】考查“平行线与角平分线得到等腰三角形”的基本模型的运用.模块三:构造等腰三角形知识精讲例题解析ABCD EPABCDE【例21】 如图,△DEF 中,∠EDF =2∠E ,F A ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系? 【答案】DF AD AE +=【解析】证明:在AE 上取一点B ,使AB AD =,连接BF2,FA DE FD FB FBD D E FBD E BFE E BFE BE BF BE DF AE AB BE AD DF⊥∴=∴∠=∠=∠∠=∠+∠∴∠=∠∴=∴=∴=+=+,,,,,, 【总结】考查等腰三角形的性质的应用.【例22】 如图,△ABC 中,∠ABC =2∠C ,AD 是BC 边上的高,延长AB 到点E ,使BE =BD ,试说明AF =FC . 【答案】详见解析【解析】证明:BE BD E BDE =∴∠=∠,22ABC E BDE BDE ABC C C BDE BDE CDF C CDF DF FC∠=∠+∠=∠∠=∠∴∠=∠∠=∠∴∠=∠∴=,,,AD 为BC 边上的高9090CDF ADF ADC C CAD CAD ADF DF AF AF FC∴∠+∠=∠=︒∠+∠=︒∴∠=∠∴=∴=,,,【总结】考查等腰三角形的性质的应用.【例23】 如图,△ABC 中,AB =AC ,AD 和BE 两条高交于点H ,且AE =BE .试说明AH =2BD . 【答案】详见解析. 【解析】AD BE 、为高,90AEH BEC BDH ∴∠=∠=∠=︒BHD AHE EAH EBC ∠=∠∴∠=∠,,AE =BE ,()..AEH BEC A S A AH BC ∴≅∴=, 2AB AC AD BC BC BD =⊥∴=,,,2AH BD ∴=.【总结】考查等腰三角形的性质的应用.ABCDEFABCDE HAEFDB12 / 22【例24】 如图,已知∠ABC =3∠C ,∠1=∠2,BE ⊥AE ,试说明AC -AB =2BE .【答案】详见解析【解析】证明:延长BE 交AC 于点M90BE AE AEB AEM ⊥∴∠=∠=︒,,12ABE AME ∠=∠∴∠=∠,,2AB AM BE AE BM BE AC AB AC AM CM ∴=⊥∴=∴-=-=,,,,3322AMB C MBC ABC C ABC ABM MBC AMB MBC C AMB MBC MBC C MBC C CM BM AC AB BM BE∠=∠+∠∠=∠∴∠=∠+∠=∠+∠∴∠=∠+∠=∠+∠∴∠=∠∴=∴-==,,【总结】考查等腰三角形的性质的应用,注意根据题目条件构造等腰三角形.【例25】 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE =BD .试说明EC =ED . 【答案】详见解析【解析】证明:延长BD 至F ,使DF AB =,连接EFABC 是等边三角形,60AB BC AC B ∴==∠=︒,.AE BD DF AB AE AB BD DF BE BF ==∴+=+=,,,即 60B ∠=︒,BEF ∴为等边三角形,60B F BE FE DF AB BC DF ∴∠=∠=︒==∴=,,, ()..BCE FDE S A S EC ED ∴≅∴=,【总结】考查等腰三角形的判定及性质的综合应用.【例26】 如图,△ABC 中,AB =AC ,∠BAC =90°,BD =AB ,∠ABD =30°,试说明AD =DC .【答案】详见解析.A BC2 E1 MABCDEFABCD E【解析】在BC 上截取BE AD =,连接DE9045AB AC BAC ABC ACB =∠=︒∴∠=∠=︒,, 3075BD AB ABD BAD BDA =∠=︒∴∠=∠=︒,,1515DAC BAC BAD DBC ABC ABD ∠=∠-∠=︒∠=∠-∠=︒, ()..1545154515DAC DBC BDE ACD S A S BDE ACD DE DC DCE DECDEC EBD BDE ACD DCE ACB ACD ACD ACD ACD ACD ∴∠=∠∴≅∴∠=∠=∴∠=∠∠=∠+∠=︒+∠∠=∠-∠=︒-∠∴︒+∠=︒-∠∴∠=︒,,,,,,,ACD DAC AD DC ∴∠=∠∴=,.【总结】考查等腰三角形的性质及全等三角形判定的综合应用.【例27】 如图,四边形ABCD 中,∠BAD +∠BCD =180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H ,试说明EH ⊥FH . 【答案】详见解析【解析】连接EF ,则180CFE CEF FCE ∠+∠+∠=︒180180BAD BCD FCE BCDBAD FCE ∠+∠=︒∠=∠∴∠+∠=︒,E F ∠∠、的平分线交于点H11221809018090CFH CFA HEC BEDA CFA CFE CEF BED CFH BEH CEF FCE CFH BEH CEF FCE H H EH FH∴∠=∠∠=∠∠+∠+∠+∠+∠=︒∴∠+∠+∠+∠=︒∠+∠+∠+∠+∠=︒∴∠=︒∴⊥,,【总结】考查角平分线的性质及三角形内角和定理的综合应用,综合性较强,注意认真分析 角度间的关系.【例28】 已知:如图,在∆ABC 中,∠ACB =90°,AC =BC ,CD ⊥AB ,垂足是D ,CE 平分∠ACD ,BF ⊥CE ,垂足是G ,交AC 于F ,交CD 于H ,试说明DH =12AF .【答案】详见解析.ABC D EFM H14 / 22ACBEF【解析】证明:延长CD 到M ,使CM CB =,连接BM ,则M CBM ∠=∠90ACB AB BC ∠=︒=,,ABC ∴是等腰直角三角形. 4567.5CD AB BCM ACD M ⊥∴∠=∠=︒∴∠=︒,,, CE 平分ACD ∠,122.52GCH ACD ∴∠=∠=︒,67.5CE BF GHC ⊥∴∠=︒,, MHB GHC BM BH ∴∠=∠∴=,. ()90..2BD HM DH DMFCG HCG CGF CGH CG CG CGF CGH A S A CF CH AC BC CM AC CF CM CH AF HM AF DH⊥∴=∠=∠∠=∠=︒=∴≅∴===∴-=-∴=∴=,,,,,,即12DH AF =. 【总结】考查等腰三角形的性质应用,综合性较强,注意添加相应的辅助线,将问题进行转 化.【习题1】 如图,在△ABC 中,∠ACB =900,AC =AE ,BC =BF ,则∠ECF =( )A .600B .450C .300D .不确定【答案】B【解析】90,90ACB A B ∠=︒∴∠+∠=︒29045AC AE ACE AEC BC BF BCF BFC AEC B ECB BFC A FCAFCA ECF ECB B ECF ECB FCA A ECF A B ECF =∴∠=∠=∴∠=∠∠=∠+∠∠=∠+∠∴∠+∠=∠+∠∠+∠=∠+∠∴∠=∠+∠=︒∴∠=︒,,,,,,故选B .【总结】考查等腰三角形的性质的运用,注意角度间的关系.随堂检测AF GBH DEC M【习题2】 如图,在△ABC 中,D 是BC 边上一点AD =BD ,AB =AC =CD ,求∠BAC 的度数. 【答案】108BAC ∠=︒. 【解析】AD BD B BAD =∴∠=∠,,AB AC DC B C CDA CAD ==∴∠=∠∠=∠,,22180518036108CDA B BAD CDA B CAD B B C BAC B B BAC ∠=∠+∠∴∠=∠∴∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒∴∠=︒,,,, 【总结】考查等腰三角形的性质.【习题3】 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,试说明AF =EF .【答案】详见解析【解析】证明:延长AD 至G ,使DG AD =,联结BGAD 是BC 边上的中线,BD CD ∴=()..ADC GDB S A S G CAD AC BG BE AC BG BE G BED BED AEF AEF G CAD AF EF∴≅∴∠=∠==∴=∴∠=∠∠=∠∴∠=∠=∠∴=,,,,,, 【总结】考查等腰三角形的性质,注意倍长中线辅助线的添加.【习题4】 如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE =12BD ,试说明BD 是∠ABC 的角平分线.【答案】详见解析【解析】证明:延长AE BC 、交于点F9090ACB DBC BDC ∠=︒∴∠+∠=︒,,同理:90FAD EDA ∠+∠=︒ ()..1122EDA BDC FAD DBC AC BC AFC BDC A S A AF BD AE BD AE AF∠=∠∴∠=∠=∴≅∴==∴=,,,,,, ()..AE FE BAE BFE S A S ABE FBE ∴=∴≅∴∠=∠,,BD ∴是ABC ∠的角平分线.【总结】考查全等三角形及等腰三角形性质的应用,注意对模型的总结.【习题5】 如图,在Rt △ABC 中,∠ABC =100o ,D 、E 在AC 上,且AB =AD ,CB =CE .求∠EBD 的度数. 【答案】40EBD ∠=︒ABCDACDEEABDCF GAE BC DF16 / 22【解析】10080ABC A C ∠=︒∴∠+∠=︒,28040AB AD ABD ADB BC EC CBE CEB ADB C DBC CEB A ABEABE EBD DBC C EBD DBC ABE A EBD A B EBD =∴∠=∠=∴∠=∠∠=∠+∠∠=∠+∠∴∠+∠=∠+∠∠+∠=∠+∠∴∠=∠+∠=︒∴∠=︒,,,,,,【总结】考查等腰三角形的性质及三角形内角和定理的综合运用..【习题6】 已知:如图在∆ABC 中,AD 是∠BAC 的平分线,DE ∥AC 交AB 于点E ,EF ⊥AD ,垂足是G ,且交BC 的延长线于点F .试说明∠CAF =∠B .【答案】详见解析【解析】证明://DE AC CAD EDA ∴∠=∠,AD 是BAC ∠的平分线,BAD CAD ∴∠=∠, ()..EAD EDA EA EDEF AD AFG DFG S A S AF DF ADF DAF B BAD CAF CAD BAD CAD CAF B∴∠=∠∴=⊥∴≅∴=∴∠=∠∴∠+∠=∠+∠∠=∠∴∠=∠,,,,,【总结】考查等腰三角形的性质及外角性质的综合运用.【习题7】 如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,试说明AB +BD =CD . 【答案】详见解析【解析】证明:在CD 上取一点E 使DE BD =,联结AE()..22AD BC ABD AED S A S AB AE B AEB B C AEB C AEB C EAC C EAC AE EC CD DE EC AB BD⊥∴≅∴=∴∠=∠∠=∠∴∠=∠∠=∠+∠∴∠=∠∴=∴=+=+,,,,,,, 【总结】考查等腰三角形的性质及全等三角形的判定.ACDFB HGEBACDE【习题8】 如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G . (1) 求证:AD ⊥CF ;(2)连结AF ,试判断△ACF 的形状,并说明理由. 【答案】(1)详见解析;(2)等腰三角形. 【解析】(1)在等腰Rt ABC 中,9045ACB CBA CAB ∠=︒∴∠=∠=︒, ()9045//9045..9090DE AB DEB BDE BF AC CBF BFD BDEBF DB CD DB BF CD CBF ACD S A S BCF CAD BCF GCA CAD GCA AD CF⊥∴∠=︒∴∠=︒∴∠=︒∴∠=︒=∠∴==∴=∴≅∴∠=∠∠+∠=︒∴∠+∠=︒∴⊥,,,,,,,,, (2)联结AF ,CF AD =,DBF 是等腰直角三角形,∵BE 是DBF ∠的平分线,BE ∴垂直平分DFAF AD CF AD CF AF ∴==∴=,,,∴ACF 为等腰三角形.【总结】考查等腰三角形的性质与判定的综合运用.【习题9】 在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA延长线于E ,交AC 于F ,试说明BE =CF =12(AB +AC ). 【答案】详见解析【解析】证明:过点B 作//BN AC 交EM 延长线于点N()////12BN AC BM CM CFM BNM CF BNAD ME AD BAC CFM DAC E E N BEN BE BN CFEFA CFM E EFA AE AF AB AC AB AF FC AB AE FC BE FC BE CF AB AC =∴≅∴=∠∴∠=∠=∠∴∠=∠∴∴==∠=∠∴∠=∠∴=∴+=++=++=+∴==+,,,,平分,,是等腰三角形,,,【总结】考查等腰三角形的性质与判定的综合运用.GFED C BAABDMCF E N18 / 22BDCA【习题10】 如图,在△ABC 中,AB =AC ,∠BAC =800,O 为△ABC 内一点,且∠OBC =100,∠OCA =200,求∠BAO 的度数. 【答案】70BAO ∠=︒.【解析】作BAC ∠的角平分线与CO 的延长线交于点D ,联结BD()..805020202040BAD DAC AB AC AD ADABD ACD S A S BD CD ABD ACD DBC DCB BAC ABC ACB OCA ABD ACD OBD ABC ABD OBC ABD DOB OBC OCB BAD OBD ABD DOB DAB BD BD ABD ∠=∠==∴≅∴=∠=∠∴∠=∠∠=︒∴∠=∠=︒∠=︒∴∠=∠=︒∴∠=∠-∠-∠=︒=∠∠=∠+∠=︒=∠∠=∠∠=∠=∴≅,,,,,,,,,,,()()()()..1111801801804070222OBD A A S AB OB BAO AOB BAO ABO ABC OBC ∴=∴∠=∠∴∠=︒-∠=︒-∠-∠=︒-︒=︒⎡⎤⎣⎦,,【总结】考查等腰三角形的性质与全等相结合的综合应用,综合性较强,注意辅助线的添加.【作业1】 如图,△ABC 中,∠ABC =460,D 是BC 边上一点,DC =AC ,∠DAB =210,试确定∠CAD 的度数. 【答案】67CAD ∠=︒.【解析】DC AC CAD CDA =∴∠=∠,CDA B DAB ∠=∠+∠,又4621ABC DAB ∠=︒∠=︒, 67CDA ∴∠=︒,67CAD ∴∠=︒.【总结】考查等腰三角形性质及外角的性质的综合运用,比较基础.课后作业OABCD【作业2】 如图所示,12AB AD BC DE ==∠=∠,,,试说明:(1)(2)2AC AE CAE =∠=∠;. 【答案】详见解析.【解析】(1)2112ADC ADE B ∠=∠+∠=∠+∠∠=∠,又ADE B AB AD BC DE ∴∠=∠==,, ()..ABC ADE S A S AC AE ∴≅∴=,;(2)ABC ADE BAC DAE ≅∴∠=∠,,BAC DAC DAE DAC ∴∠-∠=∠-∠1122CAE CAE ∴∠=∠∠=∠∴∠=∠,,【总结】考查三角形全等的判定及性质的应用,比较基础.【作业3】 如图,在△ABC 中,AB =AC ,∠BAD =30°,AD =AE .求∠CDE 的度数.若∠BAD =40呢?【答案】15CDE ∠=︒,20CDE ∠=︒. 【解析】AD AE AC AB ADE AED B C ==∴∠=∠=∠,,,23023015ADE CDE B BAD AED C CDE C CDE CDE B BAD CDE BAD BAD CDE CDE ∠+∠=∠+∠∠=∠+∠∴∠+∠+∠=∠+∠∴∠=∠∠=︒∴∠=︒∴∠=︒,,,, 同理:当40BAD ∠=︒时,20CDE ∠=︒.【总结】考查等腰三角形性质及外角的性质,注意角度间的转换.【作业4】 如图,△ABC 中,AB =AC ,BC =BD =ED =EA ,求∠A 的度数.【答案】1807A ︒∠=.【解析】AE ED ADE A =∴∠=∠,,2DEB ADE A A ∴∠=∠+∠=∠.233318018071807BD ED ABD DEB A BDC ABD A ABD BC C BDC A AB AC ABC C A ABC C A A A =∴∠=∠=∠∴∠=∠+∠=∠=∴∠=∠=∠=∴∠=∠=∠︒∠+∠+∠=︒∴∠=︒∴∠=,,,,,,, 【总结】考查等腰三角形性质及外角的性质,注意角度间的转化.ABCDE21ABCDEABCDE20 / 22【作业5】 已知∆ABC 中,BD =CE ,DF =EF .试说明AB =AC . 【答案】详见解析【解析】证明:过点D 作//DG AC 交BC 于G()//..DG AC DGB ACB DGF ECF DF EF DFG EFC DFG EFC A A S CE DG BD CE BD DG B DGB B ACB AB AC∴∠=∠∠=∠=∠=∠∴≅∴==∴=∴∠=∠∴∠=∠∴=,,,,,,,,, 【总结】考查等腰三角形结合全等三角形的性质及判定的应用.【作业6】 如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )A .AC >2AB B .AC =2ABC .AC ≤2ABD .AC <2AB【答案】D【解析】解:延长CB 到D ,使DB AB =,联结AD222AB BD BAD D ABC D BAD ABC DABC C C D AD AC AB BD AD AB BD AC AB AC=∴∠=∠∠=∠+∠∴∠=∠∠=∠∴∠=∠∴=+>∴+>∴>,,,,,,,故选D .【总结】考查三角形外角性质,等腰三角形性质以及三角形三边之间的关系.【作业7】 如图,已知:AC ∥BD ,EA 、EB 平分∠BAC 、∠DBA ,交CD 于点E ,试说明:AB =AC +BD . 【答案】详见解析【解析】证明:在AB 上取一点F ,使AF AC =,联结EF .EA EB 、平分BAC DBA ∠∠、,CAE FAE EBF EBD ∴∠=∠∠=∠,()..ACE AFE S A S ∴≅,C AFE ∴∠=∠,//180AC BD C D ∴∠+∠=︒,,180AFE EFB ∠+∠=︒,EFB D ∴∠=∠,()..BEF BED A A S BF BD ∴≅∴=,. AB AF BF AB AC BD =+∴=+,.【总结】考查全等三角形的判定与性质的综合运用,注意认真分析题目中的条件.BDCEAFGABCDA BCDEF【作业8】 如图,在△ABC 中,∠BAC =∠BCA =440,M 为△ABC 内一点,使∠MCA =300,∠MAC =160,求∠BMC 的度数. 【答案】150BMC ∠=︒.【解析】过B 作BD AC ⊥于D ,交CM 延长线于O ,联结OA4492BAC BCA AB BC ABC ∠=∠=︒∴=∠=︒,,BD AC ⊥, ABO CBO ∴∠=∠,ABO CBO ∴≅30OA OC OAC MCA ∴=∴∠=∠=︒,443014301614906012012030BAO BAC OAC OAM OAC MAC BAO MAO AOD OAD COD AOM AOB AO AO ABO AMO OB OM BOM OMB OBM ∴∠=∠-∠=︒-︒=︒∠=∠-∠=︒-︒=︒∴∠=∠∠=︒-∠=︒=∠∴∠=︒=∠=∴≅∴=∠=︒∴∠=∠=︒,,,,,, 180150BMC OMB ∴∠=︒-∠=︒.【总结】考查等腰三角形性质、及全等三角形判定、三角形外角、内角和性质等.【作业9】 如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,试说明:BQ +AQ =AB +BP .【答案】详见解析.【解析】延长AB 到D ,使BD BP =,联结PD ,则D BPD ∠=∠.AP BQ 、分别是BAC ABC ∠∠、的角平分线,且6040BAC ACB ∠=︒∠=︒,()3080408040..BAP CAP ABC ABQ QBC C QB QC ABC D BPD D BPD APD APC A A S AD ACAB BD AQ QC AB BP BQ AQ∴∠=∠=︒∠=︒∴∠=∠=︒=∠∴=∠=∠+∠=︒∴∠=∠=︒∴≅∴=∴+=+∴+=+,,,,,,, 【总结】考查全等三角形的判定与性质及等腰三角形性质相结合的综合运用,综合性较强, 注意分析题目中的条件,添加合适的辅助线.B CMADOABPQCD22 / 22【作业10】 如图,已知:在△ABC 中,AD 是∠BAC 的平分线,∠ABC =2∠C ,M 为BC的中点,ME ⊥AF ,交AB 的延长线于点E ,交AD 的延长线于F ,试说明:BD =2BE .【答案】详见解析【解析】证明:延长BE 到G ,使EG BE =,联结CG GD 、, 延长AF 交GC 于H .//BE EG BM MCEM CG ME AF AH CG==∴⊥∴⊥,,,AH 平分BAC ∠,AG AC ∴=,GAD CAD ∠=∠()..AGD ACD S A S DGA ACD ∴≅∴∠=∠,22CBA ACB CBA DGA BDG BDG DGB BD BG BE EG BD BE∠=∠∠=∠+∠∴∠=∠∴==∴=,,, 【总结】本题综合性较强,难度较大,考查三角形的相关性质及全等三角形的判定以及等腰 三角形的性质的综合运用,也可以用其它方法进行求解,建议教师选择性讲解.ABCDEF MGH。
人教版《等腰三角形》ppt课件初中数学1

一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形
复习内容:等腰三角形
复习目标:1.通过复习过程,使学生熟记等腰三角形的性质,判定及常见的等腰三角形的基本模型,并能用他们熟练的解决数学问题。
2.能运用方程的思想,分类讨论,数形结合及转化的数学思想去
解决问题,提高学生的解题灵活性。
3.通过小组讨论的方式让学生主动参与到复习的过程中来,让其
体会学习的乐趣。
复习重点:等腰三角形
复习难点:让学生熟练的选择知识点解决问题。
复习过程:
一.知识梳理:
1.等腰三角形的分类:
我们把等腰三角形一般分为等腰三角形和等腰三角形。
特殊等腰三角形又分为顶角为度的等腰三角形(),顶角为度的等腰三角形()和顶角为的等腰三角形()
2.一般等腰三角形的性质及判定:
性质:等腰三角形的相等,等腰三角形的相等,等腰三角形
判定:相等的三角形是等腰三角形,相等的三角形是等腰三角形。
常用辅助线: 3.特殊等腰三角形的性质及判定: 等边三角形:
性质:具备一般等腰三角形的所有性质,
另外:等边三角形 相等, 相等且都为 度。
判定: 相等的三角形是等边三角形, 相等的三角形是等边三角形, 个角是 度的三角形是等边三角形, 个角是 度的 是等边三角形。
4.黄金三角形:
性质:底与腰之比是
二. 知识巩固:
1.
等腰三角形与平行
例1.如图,在⊿ABC 中,∠ABC 和∠ACB 的平分线交与点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A 6 B 7 C 8 D 9
小结:角平分线与平行结合得等腰三角形。
基本图形为
2.等腰三角形与分类讨论:
例2:若等腰三角形的边长均满足方程x 2-6x+5=0,则该等腰三角形的周长是
小结:当题目告知等腰三角形且不明确边的相等关系时要对边进行分类讨论,一般有三种情况,任意两边相等。
角同样如此。
3.特殊三角形与旋转
例3.如图,P 是正△ABC 内的一点,且PB=1,若将△PBC 绕点B 旋转到△P′BA ,则∠PBP′的度数是 ,连接P P′,则P P′=
△PBC 所扫过的区域面积为 。
小结:旋转中任意一对对应点与旋转中心所构成的三角形一定是等腰三角形,当旋转角为60°时此等腰三角形是等边三角形,当旋转角为90°时此等腰三角形是等腰直角三角形。
4.等腰三角形与圆
例4.如图,圆O 中圆周角∠ABC=30°,半径为1,则该圆周角所对的弦AC 长为
小结:圆中任意一条弦(弦不为直径)和经过弦的两个端点的两条半径所构成的三角形为等腰三角形。
5.等腰三角形与等积法:
例5.如图,等边三角形ABC 的边长为4,点P 为边BC 上任一点,PM
P'
P
C
B
A
AB 与点M ,PN ⊥AC 与点N ,则PM+PN= 。
小结:在等腰三角形中,若求一条垂线段的长或求两条垂线段的和通常考虑等积法。
6.轴对称与等腰三角形:
例6:如图,在四边形ABCD 中,∠BAD=110°,∠B=∠D=90°,在BC,CD 上分别找一点E,F ,使△AEF 周长最小,此时∠EAF 的度数为(
A 40°
B 45°
C 50°
D 55°
小结:在轴对称中,一对对称点和对称轴上任意点即可构成等腰三角形(即已知线段的垂直平分线常得等腰三角形)。
三.知识应用:
1. AB 为半径是1的⊙O 的一条弦,则弦AB 所对的圆周角为 。
2.如图,在△ABC 中,∠CAB=70°
.在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′=( )
A . 30°
B . 35°
C . 40°
D . 50°
第2题图 第3题图 第4题图 3.将一张长方形纸片ABCD 按图中那样折叠,若AB=4,AD=8,则重叠部分
D
C
B
A
F
E
D
C
B
A
面积为 。
4.等腰三角形ABC 中AB=AC,且∠BAC=36°,若AB=4,BD 平分∠ABC ,交AC 于点D ,则CD= 。
5.在⊿ABC 中AD 平分∠BAC ,且交BC 与中点D ,BC=8,AD=6,求AB 上的高。
6.如图,等腰三角形ABC,DCE,FEG,HGQ 都是全等三角形,且AB=AC=DC=DE=FE=FG=HG=HQ,连接AQ 交FG 于点M,AB=4,BC=2, 则MQ= 。
四.知识小结: 谈一谈这节课你有哪些手获? 五.作业: 见导学案 六.教学反思:
D
C
B
A。