高考一轮复习知识点大搜集(理综)第六章、遗传和变异
高中生物遗传与变异知识点汇总

高中生物遗传与变异知识点汇总高中生物遗传与变异知识点一、遗传的基本规律一、基本概念1.概念整理:杂交:基因型别同的生物体间相互交配的过程,普通用 x 表示自交:基因型相同的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉,自交是获得纯系的有效办法。
普通用表示。
测交:算是让XXX子一代与隐性个体相交,用来测定F1的基因型。
性状:生物体的形态、结构和生理生化的总称。
相对性状:同种生物同一性状的别同表现类型。
显性性状:具有相对性状的亲本杂交,F1表现出来的这个亲本性状。
隐性性状:具有相对性状的亲本杂交,F1未表现出来的这个亲本性状。
性状分离:XXX的自交后代中,并且显现出显性性状和隐性性状的现象。
显性基因:操纵显性性状的基因,普通用大写英文字母表示,如D。
隐性基因:操纵隐性性状的基因,普通用小写英文字母表示,如d。
等位基因:在一对同源染XXX体的同一位置上,操纵相对性状的基因,普通用英文字母的大写和小写表示,如D、d。
非等位基因:位于同源染群体的别同位置上或非同源染群体上的基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指操纵生物性状的基因组成。
纯合子:是由含有相同基因的配子结合成的合子发育而成的个体。
杂合子:是由含有别同基因的配子结合成的合子发育而成的个体。
2.例题:(1)推断:表现型相同,基因型一定相同。
( x )基因型相同,表现型一定相同。
(x )纯合子自交后代基本上纯合子。
(√)纯合子测交后代基本上纯合子。
( x )杂合子自交后代基本上杂合子。
( x )只要存在等位基因,一定是杂合子。
(√)等位基因必然位于同源染群体上,非等位基因必然位于非同源染群体上。
( x )(2)下列性状中属于相对性状的是( B )A.人的长发和白发 B.花生的厚壳和薄壳C.狗的长毛和卷毛 D.豌豆的红花和黄粒(3)下列属于等位基因的是( C )A. aa B. Bd C. Ff D. YY二、基因的分离定律1、一对相对性状的遗传实验2、基因分离定律的实质生物体在举行减数分裂形成配子的过程中,等位基因会随着同源染群体的分开而分离,分不进入到两种别同的配子中,独立地遗传给后代。
高中生物遗传与变异知识点

高中生物遗传与变异知识点一、基因和染色体的结构与功能1.基因的结构:基因是由DNA分子组成的,由编码区和非编码区组成。
编码区是指直接参与蛋白质合成的DNA片段,非编码区则不参与蛋白质合成。
2.染色体的结构:染色体是由DNA和蛋白质组成的。
DNA在染色体上呈线状,固定在各个染色体上的特定位置。
3.基因的功能:基因是遗传信息的携带者,能够决定个体的性状及其遗传方式。
4.染色体的功能:染色体是遗传物质的载体,能够稳定遗传信息,并在细胞分裂过程中传递给后代细胞。
二、遗传变异的概念与类型1.遗传变异的概念:遗传变异指的是同一物种内个体之间在遗传物质上的差异。
2.遗传变异的类型:主要分为基因突变和染色体畸变两种。
-基因突变:指基因的突然改变,包括点突变、插入突变、缺失突变等。
例如,突变会导致基因的功能发生改变,进而影响个体的性状表现。
-染色体畸变:指染色体的数量和结构的异常,包括染色体数目异常和染色体结构异常。
例如,染色体缺失、重复、移位等畸变会引起染色体的不稳定和质量变化,从而影响个体的正常发育和生殖能力。
三、遗传规律与遗传定律1.孟德尔的遗传规律:孟德尔是遗传学的奠基人,他提出了两个基本遗传定律。
-第一定律:互斥性定律(简称分离定律):每个个体在生殖时只能传递给后代一半的遗传因子。
-第二定律:自由组合定律:每个基因对后代的遗传影响是相互独立的。
2.随机联合定律:指在两个或多个基因进行遗传时,基因之间以及其中一些基因的不完全显性和不完全隐性等特征的组合是随机的。
3.完全显性和不完全显性:完全显性是指一个等位基因(版本)能够完全表达其遗传信息,而不完全显性是指一个等位基因只能部分表达其遗传信息。
四、遗传特征的分离与联合1.分离:指两个不同表型的个体交配后,生产的后代表现出两个表型中的一个。
2.联合:指两个不同表型的个体交配后,生产的后代表现出两个表型的特征,即混合了两个表型的特征。
五、遗传的分子基础1.DNA的结构与复制:DNA由磷酸、糖和碱基组成,形成双螺旋结构。
高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结遗传是生物学的重要分支之一,研究生物基因与性状传递规律以及遗传变异的发生和演化机制。
在高考生物中,遗传和变异是一个较为重要的考点,掌握好这些知识点对于提高成绩至关重要。
下面将对高考生物遗传和变异的知识点进行总结。
一、遗传与变异基础概念1. 基因:遗传物质的分子基本单位,能够编码生物性状。
2. 染色体:基因的载体,存在于细胞核中,是由DNA和蛋白质组成的复合体。
3. 基因型:一个个体在某一基因位点上的基因的组合。
4. 表现型:一个个体在性状上的表现。
5. 等位基因:存在于同一位点上,控制着相同性状的不同基因。
6. 显性和隐性:显性基因决定个体的显性性状,隐性基因只在显性基因缺失或没有的情况下表现。
7. 一对杂合:一个个体所含的两个等位基因不相同的状态。
8. 纯合:一个个体所含的两个等位基因相同的状态。
9. 遗传性状:与遗传有关的外显的性状。
二、遗传和变异的规律1. 孟德尔的遗传实验:孟德尔通过对豌豆的杂交实验,发现一对配对基因对独立地分离和随机组合,形成新的基因型和表现型的组合。
2. 分离定律:个体的两对基因分离开来,并独立地进入不同的配子。
3. 自由组合定律:位于不同的染色体上的基因对独立地分离和自由组合。
4. 互补定律:两对显性纯合子的复合子,其表型与一个配子的表型相同。
5. 独立分配定律:亲代的两对基因以各自的方式分配给子代。
三、单因素遗传1. 显性和隐性遗传:显性遗传是指显性基因决定的性状能够表现在杂合和纯合个体上,隐性遗传是指隐性基因决定的性状只能在纯合个体上表现。
2. 过显性:过显性是指杂合个体的表型超过两种等位基因的效应之和。
3. 倒位:两对等位基因互换位置,导致显性和隐性状相反。
4. 可变等位基因:一个基因座上可以有多个等位基因,这些等位基因在自然界中随时变化。
5. 基因突变:由于基因突变,导致性状改变。
四、多因素遗传1. 重叠性状:多对基因的叠加作用,由于每对基因只对性状的一部分贡献,导致连续性状的存在。
生物的遗传和变异要点总结大全

生物的遗传和变异要点总结生物的遗传和变异要点总结大全生物的遗传和变异要点总结大全文章摘要:一、遗传和变异现象;二、性状遗传的物质基础;三、性状遗传有一定的规律性;四、人的性别遗传及遗传病;五、生物的变异。
一、遗传和变异现象1.遗传:是指亲子间的相似性。
举例:种瓜得瓜。
2.变异:是指子代和亲代个体间的差异。
举例:一猪生九子,一窝十个相。
3.生物的性状:生物的形态结构特征、生理特征、行为方式。
4.相对性状:同一种生物同一性状的不同表现形式。
(如人的单眼皮和双眼皮)二、性状遗传的物质基础基因是控制生物的性状基本单位。
例:转基因超级鼠和小鼠。
生物遗传下来的是基因而不是性状。
1.基因:是染色体上具有控制生物性状的DNA 段。
2.DNA:是主要的遗传物质,呈双螺旋结构。
3.染色体:细胞核内能被碱性染料染成深色的物质。
4.基因经精子或卵细胞传递。
精子和卵细胞是基因在亲子间传递的“桥梁”。
5.每一种生物细胞内的染色体的形态和数目都是一定的。
6.在生物的体细胞中染色体是成对存在的,基因也是成对存在的,分别位于成对的染色体上。
7.在形成精子或卵细胞的细胞分裂中,染色体都要减少一半。
三、性状遗传有一定的规律性1.等位基因:控制相对性状的'一对基因。
2.隐性性状基因组成为:dd 。
3.显性性状基因组成为:DD或Dd。
4.基因随配子代代相传。
四、人的性别遗传,遗传病1.每个正常人的体细胞中都有23对染色体(男:44+XY 女:44+XX)。
2.人的染色体中有22对男女都一样,叫常染色体。
有一对男女不一样,叫性染色体,男性为XY,女性为XX。
男性精子分两种:22条+X 或22条+Y;女性卵细胞只有一种:22条+X。
3.生男生女机会均等,为1:1。
4.我国婚姻法规定:直系血亲和三代以内的旁系血亲之间禁止结婚。
5.如果一个家族中曾经有过某种遗传病,或是携带有致病基因,其后代携带该致病基因的可能性就大。
如果有血缘关系的后代之间再婚配生育,这种病的机会就会增加。
高三生物遗传与变异知识点

高三生物遗传与变异知识点生物遗传与变异是高中生物课程中的重点内容,它涉及到了生物体的遗传基础和变异现象,对于理解生物演化与适应环境具有重要意义。
本文将从基因、染色体、遗传规律、突变等方面进行讲解。
一、基因与染色体基因是生物遗传的基础单位,它位于染色体上。
染色体是生物体内的遗传物质,由DNA组成。
在细胞分裂过程中,染色体会从一个细胞分裂成为两个细胞,确保遗传信息的传递和稳定。
二、遗传规律经过长期的研究,生物学家摸索出了一些遗传规律,其中包括孟德尔的遗传规律和硬连锁与柔连锁遗传规律。
孟德尔的遗传规律主要包括基因的隐性和显性、各自对生物性状的影响、基因的分离等。
它帮助我们理解了生物遗传的本质和遗传特点。
硬连锁与柔连锁遗传规律则是指基因之间的相互作用和相互关系。
硬连锁指的是两个基因在染色体上靠得很近,几乎同时遗传给后代,而柔连锁指的是基因在染色体上靠得较远,因此可能被断裂、重组等产生新的遗传组合。
三、突变突变是指遗传物质发生变异或改变,导致生物产生新的性状或特征。
突变可以分为基因突变和染色体突变两种。
基因突变是指基因序列的变异。
它可以是点突变、插入突变或缺失突变等。
基因突变会导致个体产生新的特征,有时对生物的发育有重要影响。
染色体突变则是指染色体结构的变异。
它可以是染色体片段的倒位、易位、缺失、加倍等变异。
染色体突变可能导致胚胎发育异常、不孕、遗传疾病等。
四、遗传变异的意义生物的遗传变异对于演化和适应环境有着重要意义。
它能够增加生物种群的多样性,以适应环境的变化。
遗传变异在物种起源和进化中起到了重要作用。
通过变异和选择的双重作用,生物种群可以产生适应环境的新特征和特性,从而增加生存竞争的优势。
对于人类而言,遗传变异的研究对于探讨人类起源、疾病的发生机理以及个体差异等方面都有重要的意义。
综上所述,遗传与变异是生物学中非常关键的内容,它和生物的演化、适应等方面有着密切的关联。
通过对基因、染色体、遗传规律和突变等知识点的学习,我们能够深入理解生物遗传的本质和特点,为进一步研究生物学提供基础和参考。
遗传与变异高三知识点总结

遗传与变异高三知识点总结遗传是生物学中重要的概念之一,它涉及到个体之间的遗传信息传递以及后代的遗传特征。
而变异是指由于基因突变或外界环境因素等原因导致个体间遗传特征的差异。
在高三生物学知识点总结中,遗传与变异的理解与掌握是至关重要的。
本文将以清晰、简洁的方式总结高三生物学中与遗传与变异相关的知识点。
一、遗传物质的结构和复制1. DNA是遗传物质的载体,由核苷酸链组成。
每个核苷酸由磷酸基团、糖基(脱氧核糖或核糖)、碱基组成。
2. DNA分子的复制是生物遗传信息传递的基础。
复制过程中,DNA链分离并由DNA聚合酶复制成两条完全相同的链。
二、遗传规律及其分子基础1. 孟德尔遗传定律:包括显性性状与隐性性状、基因分离律和自由组合定律。
2. 染色体理论:基因位于染色体上,遗传物质按照一定规律在染色体上排列。
3. 遗传信息传递的分子基础:DNA通过转录与翻译被转化为蛋白质,遗传信息由DNA到RNA再到蛋白质传递。
三、性状的表现1. 显性与隐性:显性性状受到的基因控制表现在个体外部,隐性性状则不能直接表现在个体外部。
2. 基因型与表现型:基因型决定个体的遗传信息,而表现型则是基因型加上环境因素共同作用的结果。
四、遗传的交叉与基因连锁1. 遗传的交叉是指配子的互换与基因的重新组合。
2. 基因连锁是指基因在染色体上的位置靠近,很少发生重组的现象。
五、变异的类型及其原因1. 突变是基因或基因组的突发性变化,包括点突变、插入突变、缺失突变等。
2. 易位是指染色体片段的互换。
3. 变异的原因包括突变、环境因素、杂交等。
六、遗传变异与生物进化1. 遗传变异提供了物种适应环境的生存基础。
2. 突变与重新组合导致基因的多样性,为生物进化提供了物质基础。
3. 遗传多样性是物种适应环境变化和生存发展的重要条件。
七、遗传与疾病1. 遗传疾病是由于个体遗传信息中基因发生突变导致的疾病。
2. 常见的遗传疾病包括先天性遗传疾病、染色体异常疾病等。
2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结一. 基因和染色体1. 基因的概念和结构: 基因是控制遗传性状的单位,由DNA序列组成。
基因主要由编码区和调控区组成。
2. 染色体的结构: 染色体由DNA和蛋白质组成,包括着丝粒、中节和武器,显示为X形。
人体细胞有23对染色体,其中一对性染色体决定个体的性别。
3. 基因表达和遗传密码: 基因在细胞内通过转录和翻译进行表达,形成蛋白质。
遗传密码是DNA上碱基序列与蛋白质上氨基酸序列之间的对应关系。
二. 遗传与变异1. 遗传的模式和规律: 单倍体和双倍体的授精结合方式决定了不同的遗传模式,如显性遗传、隐性遗传和中间型遗传等。
遗传规律包括孟德尔遗传定律、多基因遗传和多因素遗传等。
2. 变异的原因和分类: 变异是指个体间基因型和表型的差异。
变异原因有突变、基因重组和基因互作等。
变异可分为显性变异、隐性变异和连续变异等。
3. 变异的作用和意义: 变异是进化的基础,对物种的适应和生存具有重要作用。
变异也是品种育种和遗传病的研究的重要基础。
三. 遗传与性别决定1. 性染色体: 人类性别决定基因位于性染色体上,男性为XY,女性为XX。
Y染色体上的性别决定基因决定了个体的性别。
2. 性染色体遗传: 男性性别决定基因为隐性,女性性别决定基因为显性,男性将Y染色体传给儿子,女性将X染色体传给儿子和女儿。
3. 性别比的控制: 性别比由性别比偏离比和性别比变化比。
性别比的偏离由性染色体和非性染色体控制。
四. 遗传与遗传病1. 遗传病的概念和分类: 遗传病是由异常基因引起的疾病,可分为单基因遗传病、多基因遗传病和染色体遗传病。
2. 常见的遗传病: 单基因遗传病如先天愚型、血红蛋白病等;多基因遗传病如近视、高血压等;染色体遗传病如唐氏综合征、慢性粒细胞性白血病等。
3. 遗传病的防治: 遗传病的防治可以通过遗传咨询、基因筛查和基因治疗等手段进行。
五. 遗传与进化1. 进化的概念和证据: 进化是生物种群遗传结构和表型特征随时间发生变化的过程。
高考生物一轮复习 考点梳理 第六单元 生物变异与进化 新人教版

生物变异与进化一、基因重组与基因突变1.基因重组及其意义(1)可遗传的变异有三种来源:基因突变、染色体变异和基因重组。
(2)基因重组的方式有同源染色体上非姐妹单体之间的交叉互换和非同源染色体上非等位基因之间的自由组合,另外,外源基因的导入也会引起基因重组;在农业生产中最经常的应用是非同源染色体上非等位基因之间的自由组合。
拓展:①杂交育种的方法通常是选出具有不同优良性状的个体杂交,从子代杂合体中逐代自交选出能稳定遗传的符合生产要求的个体。
步骤:杂交、纯化。
②杂交育种的优点是简便易行;缺点是育种周期较长。
2.基因突变的特征和原因(3)基因突变是基因结构的改变,包括碱基对的增添、缺失或替换。
基因突变发生的时间主要是细胞分裂的间期。
(4)基因突变的特点是低频性、普遍性、少利多害性、随机性、不定向性。
(5)基因突变在进化中的意义:它是生物变异的根本来源,为生物进化提供了最初的原始材料,能使生物的性状出现差别,以适应不同的外界环境,是生物进化的重要因素之一。
(6)基因突变不一定能引起性状改变,如发生的是隐性突变(A→a),就不会引起性状的改变。
(7)诱变育种一般采用的方法有物理和化学两类:如射线照射、亚硝酸等。
拓展:①航天育种是诱变育种,利用失重、宇宙射线等手段诱发生物基因突变。
②诱变育种具有的优点是可以提高突变率,缩短育种周期,以及能大幅度改良某些性状。
缺点是成功率低,有利变异的个体往往不多;此外需要大量处理诱变材料才能获得所需性状。
二、染色体变异与育种1.染色体结构变异和数目变异(1)染色体变异是指染色体结构和数目的改变。
染色体结构的变异主要有缺失、重复、倒位、易位四种类型。
(2)区分基因突变、基因重组和染色体结构变异的方法是染色体结构变异可从显微镜下观察到,另外二者不能从镜下观察到。
基因突变是基因中分子结构的改变,而基因重组是在有性生殖细胞的形成过程中发生的基因重新组合过程。
(3)染色体组是指有性生殖细胞中的一组非同源染色体,其形状大小一般不相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考一轮复习知识点大搜集(理综)第二章、生命的基本单位—细胞一、DNA是主要的遗传物质名词:1、T2噬菌体:这是一种寄生在大肠杆菌里的病毒。
它是由蛋白质外壳和存在于头部内的DNA所构成。
它侵染细菌时可以产生一大批与亲代噬菌体一样的子代噬菌体。
2、细胞核遗传:染色体是主要的遗传物质载体,且染色体在细胞核内,受细胞核内遗传物质控制的遗传现象。
3、细胞质遗传:线粒体和叶绿体也是遗传物质的载体,且在细胞质内,受细胞质内遗传物质控制的遗传现象。
语句:1、证明DNA是遗传物质的实验关键是:设法把DNA与蛋白质分开,单独直接地观察DNA的作用。
2、肺炎双球菌的类型:①、R型(英文Rough是粗糙之意),菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
②、S型(英文Smooth是光滑之意):菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
如果用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡。
2、格里菲斯实验:格里菲斯用加热的办法将S型菌杀死,并用死的S型菌与活的R型菌的混合物注射到小鼠身上。
小鼠死了。
(由于R型经不起死了的S型菌的DNA(转化因子)的诱惑,变成了S型)。
3、艾弗里实验说明DNA是“转化因子”的原因:将S型细菌中的多糖、蛋白质、脂类和DNA 等提取出来,分别与R型细菌进行混合;结果只有DNA与R型细菌进行混合,才能使R 型细菌转化成S型细菌,并且的含量越高,转化越有效。
4、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。
4、噬菌体侵染细菌的实验:①噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
②DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。
用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA 进入了细菌体内。
③结论:进入细菌的物质,只有DNA,并没有蛋白质,就能形成新的噬菌体。
新的噬菌体中的蛋白质不是从亲代连续下来的,而是在噬菌体DNA的作用下合成的。
说明了遗传物质是DNA,不是蛋白质。
③此实验还证明了DNA能够自我复制,在亲子代之间能够保持一定的连续性,也证明了DNA能够控制蛋白质的合成。
5、肺炎双球菌的转化实验和噬菌体侵染细菌的实验只证明DNA是遗传物质(而没有证明它是主要遗传物质)6、遗传物质应具备的特点:①具有相对稳定性②能自我复制③可以指导蛋白质的合成④能产生可遗传的变异。
7、绝大多数生物的遗传物质是DNA,只有少数病毒(如烟草花叶病病毒)的遗传物质是RNA,因此说DNA是主要的遗传物质。
病毒的遗传物质是DNA或RNA。
8、①遗传物质的载体有:染色体、线绿体、叶绿体。
②遗传物质的主要载体是染色体。
二、DNA的结构和复制名词:1、DNA的碱基互补配对原则:A与T配对,G与C配对。
2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。
DNA的复制实质上是遗传信息的复制。
3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。
4、DNA 的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。
5、人类基因组是指人体DNA分子所携带的全部遗传信息。
人类基因组计划就是分析测定人类基因组的核苷酸序列。
语句:1、DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。
②组成DNA的基本单位——脱氧核苷酸。
每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸③构成DNA的脱氧核苷酸有四种。
DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:A TGC。
④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。
2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。
两条主链之间的横档是碱基对,排列在内侧。
相对应的两个碱基通过氢键连结形成碱基对,DNA 一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。
3、DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。
②多样性:DNA中的碱基对的排列顺序是千变万化的。
碱基对的排列方式:4n(n为碱基对的数目)③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。
4、碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。
②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。
③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。
5、DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期。
②场所:主要在细胞核中。
③条件:a、模板:亲代DNA 的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。
缺少其中任何一种,DNA复制都无法进行。
④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。
随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子。
⑤特点:边解旋边复制,半保留复制。
⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子。
⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性.。
⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的双螺旋结构,能为复制提供模板;二是因为它的碱基互补配对能力,能够使复制准确无误。
6、DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。
一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。
子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x 。
7、核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。
三、基因的表达名词:1、基因:是控制生物性状的遗传物质的功能单位和结构单位,是有遗传效应的DNA 片段。
基因在染色体上呈间断的直线排列,每个基因中可以含有成百上千个脱氧核苷酸。
2、遗传信息:基因的脱氧核苷酸排列顺序就代表~。
3、转录:是在细胞核内进行的,它是指以DNA的一条链为模板,合成RNA的过程。
4、翻译:是在细胞质中进行的,它是指以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。
5、密码子(遗传密码):信使RNA上决定一个氨基酸的三个相邻的碱基,叫做~。
6、转运RNA(tRNA):它的一端是携带氨基酸的部位,另一端有三个碱基,都只能专一地与mRNA上的特定的三个碱基配对。
7、起始密码子:两个密码子AUG和GUG除了分别决定甲硫氨酸和撷氨酸外,还是翻译的起始信号。
8、终止密码子:三个密码子UAA、UAG、UGA,它们并不决定任何氨基酸,但在蛋自质合成过程中,却是肽链增长的终止信号。
9、中心法则:遗传信息从DNA传递给RNA,再从RNA传递给蛋白质的转录和翻译过程,以及遗传信息从DNA传递给DNA 的复制过程。
后发现,RNA同样可以反过来决定DNA,为逆转录。
语句:1、基因是DNA的片段,但必须具有遗传效应,有的DNA片段属间隔区段,没有控制性状的作用,这样的DNA片段就不是基因。
每个DNA分子有很多个基因。
每个基因有成百上千个脱氧核苷酸。
基因不同是由于脱氧核苷酸排列顺序不同。
基因控制性状就是通过控制蛋白质合成来实现的。
DNA的遗传信息又是通过RNA来传递的。
2、基因控制蛋白质的合成:RNA与DNA的区别有两点:①碱基有一个不同:RNA是尿嘧啶,DNA则为胸腺嘧啶。
②五碳糖不同:RNA是核糖,DNA是脱氧核糖,这样一来组成RNA的基本单位就是核糖核苷酸;DNA则为脱氧核苷酸。
3、转录:(1)场所:细胞核中。
(2)信息传递方向:DNA→信使RNA。
(3)转录的过程:在细胞核中进行;以DNA特定的一条单链为模板转录;特定的配对方式:4、翻译:(1)场所:细胞质中的核糖体,信使RNA由细胞核进入细胞质中与核糖体结合。
(2)信息传递方向:信使RNA→一定结构的蛋白质。
5、信使RNA 的遗传信息即碱基排列顺序是由DNA决定的;转运RNA携带的氨基酸(如甲硫氨酸、谷氨酸)能在蛋白质的氨基酸顺序的哪一个位置上是由信使RNA决定的,归根结底是由DNA 的特定片段(基因)决定的。
6、信使RNA是由DNA的一条链为模板合成的;蛋白质是由信使RNA为模板,每三个核苷酸对应一个氨基酸合成的。
公式:基因(或DNA)的碱基数目:信使RNA的碱基数目:氨基酸个数=6:3:1;脱氧核苷酸的数目=的基因(或DNA)的碱基数目;肽键数=脱去水分子数=氨基酸数目—肽链数。
7、一种氨基酸可以只有一个密码子,也可以有数个密码子,一种氨基酸可以由几种不同的密码子决定。
8、基因对性状的控制:①一些基因就是通过控制酶的合成来控制代谢过程,从而控制生物性状的。
白化病是由于基因突变导致不能合成促使黑色素形成的酪氨酸酶。
②一些基因通过控制蛋白质分子的结构来直接影响性状的。
(如:镰刀型细胞贫血症)。
第二节、遗传的基本规律一、基因的分离规律名词:1、相对性状:同种生物同一性状的不同表现类型,叫做~。
(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做~。