指数母函数

合集下载

母函数(生成函数)

母函数(生成函数)

母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。

如果系数不是常数,需要根据具体情况进⾏处理。

具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。

(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。

假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。

⽽对于未知的数列,主要分为两类:递推型和组合型。

递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。

所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。

然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。

具体计算就不算了。

PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。

母函数与指数型母函数

母函数与指数型母函数
xm [C(m n, 0) C(m n,1) x C(m n, 2) x2 C(m n, m n) xmn
比较等式两端的常数项,可以得到恒等式:
C(m n, m) C (n, 0)C (m, 0) C (n,1)C (m,1) C(n, m)C(m, m).
又如在等式 (1 x)n C(n,0) C(n,1)x C(n, n)xn
注意到,出现1,5有两种选法,出现2,4也有两 种选法,而出现3,3只有一种选法,按加法法则, 共有2+2+1=5种不同选法。
或者,第一个骰子除了6以外都可选,有5种选法, 一旦第一个选定,第二个骰子就只有一种可能的选 法,按乘法法则有5×1=5种。
但碰到用三个或四个骰子掷出n点,上述两方法就 不胜其烦了。
a1 a3 a5 a7 0, a0 1, a2 C(8, 2) 28,
a4 C(8, 4) 70, a6 C(8, 6) 28, a8 1. 因此序列a1,a2,…,a8对应的母函数为:
A( x) 1 28x2 70x4 28x6 x8 .
类似可得女同志的允许组合数对应的母函数为
1: b0 a0 x: b1 a0 a1 x2: b2 a0 a1 a2
__+_)___x_k:_b_k _a_0 __a1__a_2 ____ak________
B( x) a0 /(1 x) a1 x /(1 x) a2 x2 /(1 x)
[a0 a1 x a2 x2 ] /(1 x) A( x) /(1 x).
中令x=1 可得 C(n, 0) C(n,1) C(n, 2) C(n, n) 2n.
两端对x求导可得:
n(1 x)n1 C(n,1) 2C(n,2)x nC(n,n)xn1,

高考数学冲刺复习母函数考点速查

高考数学冲刺复习母函数考点速查

高考数学冲刺复习母函数考点速查高考对于每一位学子来说都是人生中的一次重要挑战,而数学作为其中的关键学科,更是备受关注。

在高考数学的众多考点中,母函数是一个较为复杂但又十分重要的知识点。

在冲刺复习阶段,对母函数考点进行速查和强化,能够帮助我们在考试中更加从容应对。

一、什么是母函数母函数,简单来说,就是一种将数列与多项式联系起来的工具。

通过母函数,我们可以将一个数列的各项用一个多项式的系数来表示。

例如,对于数列 1,2,3,4,5,其对应的母函数可以表示为 G(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 。

母函数的作用在于它能够将一些离散的数量关系转化为连续的函数形式,从而便于我们进行分析和计算。

二、常见的母函数类型1、普通型母函数普通型母函数主要用于解决组合计数问题。

比如,从 n 个不同元素中选取 r 个元素的组合数,可以通过普通型母函数来表示和计算。

2、指数型母函数指数型母函数通常用于解决排列计数问题。

在涉及到具有重复元素的排列时,指数型母函数能够发挥重要作用。

三、母函数的基本运算1、加法运算两个母函数相加,就是将它们对应的多项式的系数相加。

例如,G1(x) = 1 + 2x + 3x^2 ,G2(x) = 2 + 3x + 4x^2 ,则 G1(x) + G2(x) = 3 + 5x + 7x^2 。

2、乘法运算母函数的乘法运算对应着组合问题中的分步计数原理。

例如,G1(x) = 1 + 2x ,G2(x) = 1 + 3x ,则 G1(x)×G2(x) = 1 + 5x + 6x^2 。

四、母函数在解题中的应用1、求解组合数通过构造合适的母函数,可以方便地求出特定条件下的组合数。

例如,求从 5 个不同的球中选取 2 个球的组合数。

我们可以设母函数 G(x) =(1 + x)^5 ,展开后 x^2 的系数即为所求组合数。

2、解决分配问题在将一定数量的物品分配到不同的容器或分组的问题中,母函数能够清晰地展现各种可能的分配情况。

组合数学(第二版)母函数及其应用

组合数学(第二版)母函数及其应用

考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中

六大母函数

六大母函数

六大母函数数学学习者对母函数的认识体系早已深入人心,尤其是偏微分方程的学习者更是认识深刻,其中最著名的就是六大母函数。

它们常常被用在抽象数学、实际工程分析、物理研究、计算机科学等多个领域,并且都被普遍认可和称赞。

首先是正弦函数(Sine),它是特殊椭圆函数的一种,可以被用于描述各种周期性变化的运动状态,比如观测到的气温变化规律。

此外,绘制正弦图形也可以帮助我们更清楚地了解数据的趋势,从而帮助我们做出合理的决策。

其次是余弦函数(Cosine),它是正弦函数的拓展,主要分为三角形(单位圆)函数和双曲线(正切)函数,它们都可以用于描述物体的朝向,做出有关它们的轨迹的分析。

另外,它还可以被用于极坐标系统,帮助我们更清楚地获得物体的具体位置和运动轨迹。

第三是指数函数(Exponential),它是一种以指定的比率递增或递减的函数,它可以用来解决各种指数增长和指数衰减的问题,如经济的指数增长、收益的指数衰减等,我们可以快速地根据指定的初始条件和参数得出指数函数的具体情况。

接下来是对数函数(Logarithm),它是一种以指定的底数为基础的函数,通常用来表示较复杂的数学表达式,也是很多实际应用中不可或缺的一环。

其五是幂函数(Power),它是一种以指定指数乘幂来生成函数的主要方法,它可以帮助我们更直观地解释数学表达式,并且它在模拟实物行为的时候也非常有用。

最后是一元三次函数(Quadratic),它是一种椭圆函数,最常见的是二次和三次方程,它们可以用来表示物理环境中的运动状况,如磁场中的气流和热流等。

此外,它还可以用来处理更加复杂的问题,如多元三次方程、多元四次方程等等。

总而言之,六大母函数为我们提供了十分方便和快捷的解决方案,它们能够帮助我们快速有效地完成各种大型计算,甚至是有意义的结果,从而节省许多精力,提高计算效率。

在抽象数学、实际工程分析、物理研究、计算机科学等多个领域中,六大母函数起着极为重要的作用,而掌握它们的技巧和知识,也是实现计算的重要前提。

07母函数介绍

07母函数介绍

解:由定义4.2,有
特别地:若 =1,则序列(1,1,…,1,…)的指数母函数为ex 。 例8、求序列(1, 1×4, 1×4×7,…, 1×4×7×…×(3n+1),…)的指数母函数。


§4.1 指数母函数例8
§4.1 母函数的基本概念
4.1.2 指数母函数
解:由定义4.2和二项式定理,有
x x2 xn f e ( x ) 1 (1 4) (1 4 7) ... 1 4 7 ... (3 n 1) ... n! 1! 2! 1 4 7 ... (3 n 1) n x n! n0 4 7 ... 3 n 1 3 3 3n x n 1 3 n! n 1 4 4 1 ... 4 n 1 3 3 3 1 ( 3 x )n n! n 1 4 1 3 ( 3 x ) n n n 1
第4章 母函数
回顾前一章——容斥原理:
基本原理 重集的r-组合 错排、有限制排列
本章重点介绍母函数(普通母函数、指数母 函数)的基本概念及其在排列组合中的应用 : 母函数的基本概念 母函数的基本运算 母函数在排列、组合中的应用 整数拆分 母函数在组合恒等式中的应用
• • • • •
§4.1 普通母函数概念
(1-4x)-1/2 是 序 列 (C(0,0), C(2,1), C(4,2), … , C(2n,n),…)的普通母函数。
§4.1 普通母函数例3 证明:由牛顿二项式定理有 §4.1 母函数的基本概念 (1 4 x )1 2 1 1 2 ( 4 x )k k k 1 1 2 1 2 1 1 2 2 ... 1 2 k 1 1+ ( 4 x )k k! k 1 4 k 1 3 ... (2k 1) k x 1+ 2k k ! k 1 2 k k ! 1 3 ... (2k 1) xk 1 k !k ! k 1 2 4 ... (2k ) 1 3 ... (2k 1) k 1 x k !k ! k 1 (2k )! k 1 x 1 2k x k k k 1 k ! k ! k 1 0 2 x 4 x 2 ... 2k x k ... 0 1 2 k 由定义知,(1-4x)-1/2是序列(C(0,0), C(2,1), C(4,2), … , C(2n,n),…) 的普通母函数。

组合数学幻灯片41母函数的基本概念

组合数学幻灯片41母函数的基本概念

x1
x2
xn
fe (x) p(n,0) p(n,1) 1! p(n,2) 2! p(n, n) n! 0
n 0
n1
x
n 2
x
2
n n
xn
(1 x)n
• 例6 求序列
p(0,0),p(2,1),p(4,2),…,p(2n,n),…) 的指数母函数fe(x)。
解:由定义4.2和式(1.7),再利用例3的结果有
由定义4.1可知
一个序列和它的普通母函数是一一对应 的。给定了一个序列就可以得到这个序列的 普通母函数。
反之,如果给定了普通母函数,则序列 也随之而定。
由此可见,普通母函数实质上是序列的 另一种表达形式。
求序列
n 0
,
n 1
,
n 2
,
,
n n
的普通母函数。
解:由定义4.1和式(1.13)有
f (x) a0 a1x1 a2 x2 an xn ai xi i0 (a0,a1,…,an,…)的普通母函数。
• 必须注意的是,在定义4.1中,普通 母函数是一个无穷级数,没有必要去讨 论它的收敛性,实质上它只是引进一个 表示序列的记号而已。
此时变量x只是一种形式变元。对这种级数 可以把它看成形式幂级数,我们可以按通常 方式定义其加法、乘法、形式微分等运算, 从而构成一个代数体系。
i 1
i!
1 2i i!1 3 5 (2i 1)xi
i 1
i!i!
1 (2 4 6 2i)[1 3 5 (2i 1)]xi
i 1
i!i!
0 0
2 1
x1
4 2
x
2
2n nBiblioteka xn由定义4.1知,

指数母函数

指数母函数

指数母函数一、概述指数母函数是组合数学中的一种重要工具,在组合计数、概率论、随机过程等领域有广泛的应用。

它是一种形式为幂级数的母函数,其中每一项的指数和对应着某个组合对象的特性。

二、定义2.1 母函数的基本概念在组合数学中,母函数是用来描述组合对象的一种工具。

对于一个组合对象,我们可以根据其某种特性,将其抽象为一个序列,其中每一项表示该特性出现的次数。

母函数则是用来表示这个序列的生成函数。

2.2 指数母函数的定义指数母函数是一类特殊的母函数。

对于一个序列(a0,a1,a2,…),其指数母函数定义为:E(z)=∑a i i!∞i=0z i其中,z是一个复数。

三、性质指数母函数具有许多有用的性质,使得它在计算组合对象的计数问题时非常方便和高效。

3.1 复合性指数母函数具有复合性的性质。

设 A (z )=∑a i i!∞i=0z i 和 B (z )=∑bj j!∞j=0z j 是两个指数母函数,它们对应的序列分别为 (a 0,a 1,a 2,…) 和 (b 0,b 1,b 2,…)。

则它们的复合 C (z )=A(B (z )) 的指数母函数为C (z )=∑c k k!∞k=0z k其中 c k 表示序列 (c 0,c 1,c 2,…) 的第 k 项,c k =∑a i i!k i=0bk−i(k−i )!。

3.2 乘法性指数母函数具有乘法性的性质。

设 A (z )=∑a i i!∞i=0z i 和 B (z )=∑bj j!∞j=0z j 是两个指数母函数,它们对应的序列分别为 (a 0,a 1,a 2,…) 和 (b 0,b 1,b 2,…)。

则它们的乘积 C (z )=A (z )⋅B (z ) 的指数母函数为C (z )=∑c k k!∞k=0z k其中 c k 表示序列 (c 0,c 1,c 2,…) 的第 k 项,c k =∑a i i!k i=0bk−i(k−i )!。

四、应用指数母函数在多个领域都有广泛的应用,以下介绍几个常见的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数母函数
指数母函数是概率论中一个重要的概念,它在组合学、统计学、以及算法设计
中具有广泛的应用。

本文将介绍指数母函数的定义、性质以及一些典型的应用场景。

首先,让我们来了解一下指数母函数的定义。

在概率论中,我们通常通过概率
分布来描述一个随机变量的性质。

指数母函数是一种生成函数,可以用来完整地描述一个非负随机变量的概率分布。

对于一个非负随机变量X,指数母函数定义为G_X(t) = E[t^X] = ∑_(k=0)^(∞) P(X=k)t^k
其中,E[•]表示数学期望操作,P(X=k)表示随机变量X取值为k的概率。

通过
指数母函数,我们可以方便地计算出随机变量的各种矩、生成函数以及其他相关特征。

指数母函数具有一些重要的性质。

首先,对于独立同分布的随机变量序列X_1, X_2, ... , X_n,它们的指数母函数的乘积等于它们各自的指数母函数的乘积。

也就
是说,如果我们知道了每个随机变量的指数母函数,那么我们就可以得到它们共同的指数母函数。

其次,通过指数母函数的导数,我们可以计算出随机变量的矩。

具体来说,对
于指数母函数G_X(t),它的k阶导数G_X^(k)(0)可以表示随机变量X的k阶矩。

这个性质在数理统计中经常被使用,特别是在估计参数、构造置信区间等问题中。

除了基本的性质之外,指数母函数还有一些典型的应用场景。

一个典型的例子
是在组合学中的应用。

对于一个集合,我们可以用一个0-1序列来表示它的子集。

对于一个具有n个元素的集合,我们可以定义一个指数母函数,它的每一项表示集合的各个子集的个数。

这样,我们就可以通过指数母函数来计算出子集个数的期望值、方差等统计量。

指数母函数在算法设计中也有广泛的应用。

在某些问题中,我们需要计算出满
足一定条件的排列或者子集的个数。

通过构造相应的指数母函数,我们可以很方便地计算出这些排列或者子集的个数。

这个方法在算法设计中被广泛使用,特别是在动态规划、组合优化等领域。

综上所述,指数母函数是概率论中一个重要的工具,它可以用来描述非负随机
变量的概率分布。

通过指数母函数,我们可以计算出随机变量的各种特征,例如矩、生成函数等。

指数母函数具有一些重要的性质,例如独立同分布的指数母函数的乘积等于它们各自的指数母函数的乘积。

指数母函数在组合学、统计学以及算法设计中都有广泛的应用。

通过构造相应的指数母函数,我们可以方便地计算出各种排列、子集的个数,从而解决一些具体的问题。

指数母函数的研究在概率论以及相关学科中具有重要的意义,它为我们提供了一个强大的工具来分析和计算各种随机变量的特性。

相关文档
最新文档