第12讲母函数及其应用_new
母函数

母函数(生成函数)(发生函数)(发生函数)英文:generating function我们已知道了解决组合的计数问题的几种方法,从基本的加法原理和乘法原理开始,导出了排列与组合的各种公式,证明了容斥原理,并且已用它来解决某些计数问题。
这里将论证一种方法是属于Eular 的生成函数法。
(对工程师来说,数列的母函数通称为z-变换)§1 母函数利用生成函数可以说是研究计数问题的一个最主要的一般方法:其基本思想很简单:为了获得一个数列{} 210,,0:a a a k a k=≥的知识,我们用一个母函数+++=∑=≥22100)(x a x a a xa x g kk k这里x k 是指数函数来整体地表示这个数列,称g (x )是数列{}0:kx a k 的普通母函数,这样原数列就转记为成函数。
假如能求得这个函数,则不仅原则上已确定了原数列,还可以通过对函数的运算和分析得到这个数列的许多性质。
这里如果把x k 提成)(x k μ亦称普通母函数指数函数通常选来使得没有两个不同的序列令产生同一个母函数,故序列的母函数仅只是序列的另一种表示。
如1,cos x ,cos2x ,…为指数函数,序列{}2,,1ωω的母函数为+++++=rx x x x F rcos 2cos cos1)(2ωωω另一方面,用,1,1+x ,1-x ,1+x 2,1-x 2,…,1+x r ,1-x r …作为指数函数,序列(3,2,6,0,0)的普通母函数是3+2(1+x )+6(1-x )=11-4x ,而序列(1,3,7,6,0)和(1,2,6,1,1)会产生同一母函数即,1+3(1+x )+7(1-x )=11-4x ,xx x x x 411)1()1()1(6)1(2122-=-+++-+++故函数 ,1,1,1,1,122x x x x -+-+不应做为指数函数,)(x r μ的最近常用的是r x ,以下我们仅讨论这种情况的指数函数。
(沪科版)中考数学总复习课件【第12讲】反比例函数及其应用

∴煅烧时的函数表达式为 y=128x +32(0≤x≤6).
第12讲┃反比例函数及其应用
4800 (2) 当 x=480 时,y= = 10,10-6=4(min),∴锻造的操 480 作时间有 4 min.
第12讲┃反比例函数及其应用
核心考点三
相关知识
常见类型
用反比例函数解决实际问题
主要知识列举 1.矩形中,当面积 S 一定时,长 a 与宽 b 的关
S 系:a= .2.三角形中,当面积 S 一定时,高 h b 几何问题 2S 与相应的底 a 的关系:h= a 当路程 s 一定时,时间 t 是速度 v 的反比例函 行程问题 s 数,即 t= v
第11讲┃一次函数及其应用
核心练习
k 5. [2014·邵阳] 已知反比例函数 y= 的图象经过点( -1, 2), x
-2 则 k= ________ .
图 12 -5
第12讲┃反比例函数及其应用
k 6.[ 2014·娄底] 如图 12-5 所示,M 为反比例函数 y= 的 x 图象上的一点,MA 垂直于 y 轴,垂足为 A,△MAO 的面积为 2,则
第12讲┃反比例函数及其应用
(2) 求 k 的值; (3) 当 x=16 时,大棚内的温度约为多少度?
图 12 -7
第12讲┃反比例函数及其应用
解: (1)恒温系统在这天保持大棚内温度为 18 ℃的时间为 10 小时. k k (2) ∵点 B(12, 18)在双曲线 y= 上,∴18= ,∴k=216. x 12 216 (3) 当 x=16 时, y= =13.5 , 16 ∴当 x =16 时,大棚内的温度约为 13.5 ℃.
母函数的概念和使用

母函数的概念和使用
母函数是组合数学中的一种重要工具,用于描述序列的生成函数。
它可以将序列转化为形式简单的多项式,从而方便地进行计算和推导。
形式上,对于序列$\{a_n\}$,它的母函数可以定义为:
$A(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...$
母函数$A(x)$通常被视为$x$的函数,可以进行各种计算操作,比如加法、乘法、求导等。
母函数的使用有以下几个方面:
1. 求序列的常用操作:对于给定的序列,可以通过母函数求导、乘法、加法等操作得到新的序列。
例如,序列的微分对应于母函数的求导,序列的乘法对应于母函数的乘法,序列的加法对应于母函数的加法。
2. 求序列的递推关系:通过构造序列的母函数,可以得到序列的递推关系。
递推关系描述了序列相邻项之间的关系,是解决组合计数问题的关键。
通过求解递推关系,可以得到序列的通项公式,从而得到更深入的结论。
3. 求序列的生成函数:母函数可以将序列转化为一个形式简单的多项式。
通过对母函数进行逆变换,可以得到序列的生成函数,从而用多项式的形式来表示序列。
生成函数是分析序列性
质的一种强有力的工具,可以进行各种计算和推导。
母函数在组合计数、离散数学和概率等领域中具有广泛的应用,可以解决各种组合计数问题,如排列组合、图论、走迷宫等问题。
同时,母函数也是解决一些难题的关键,在一些具有复杂递推关系的序列中起到了重要作用。
【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第12讲 函数模型及其应用

返回目录
第12讲
函数模型及其应用
点 面 讲 考 向
[归纳总结] (1)指数函数模型常与增长率相结合进行 考查,在实际问题中有人口增长、银行利率、细胞分裂等 增长问题可以利用指数函数模型来表示. (2)应用指数函数模型时,先设定模型,将已知的相关 数据代入验证,确定参数,从而确定函数模型. (3)对于函数 y=a(1+x)n 通常利用指数运算与对数函 数的性质进行求解.
返回目录
第12讲
双 向 固 基 础
函数模型及其应用
4. 1992 年底世界人口达 54.8 亿, 若人口的年平均增长率 为 x% , 2014 年底世界人口数为 y(亿), 那么 y 与 x 的函数关系 式是____________________.
[答案]
y=54.8(1+x%)22
[解析] 因为 2014-1992=22,所以 y=54.8(1+x%)22.
返回目录
第12讲
函数模型及其应用
点 面 讲 考 向
可见,细胞总数 y 与时间 x(小时)之间的函数关系为 y= 3x 100×(2) ,x∈N*. 3x 3x 10 由 100×(2) >10 ,得(2) >108. 3 8 两边取以 10 为底的对数,得 xlg >8,解得 x> . 2 lg 3-lg 2 8 8 因为 = ≈45.45, lg 3-lg 2 0.477-0.301 所以 x>45.45. 故经过 46 小时,细胞总数超过 1010 个.
ax=300, x=120, 解得 (a+1)(x-12)=300+78. a=2.5.
返回目录
第12讲
双 向 固 基 础
函数模型及其应用
3.某车站有快、慢两种车,始发站距终点站 7.2 km,慢 车到终点站需 16 min,快车比慢车晚发车 3 min,且行驶 10 min 后到达终点站,则在慢车出发________min 后两车相遇, 相遇时距终点站________ km. [答案] 8 3.6
【工程数学课件】4.3 母函数

或取两次,L ,或取r次,L ,是用如下形式表示:
1 x x2 L xr +L
2!
r!
例5 证明从n个不同的物体中允许重复地选取r个物体 的排列数为nr。
解:设ar为所求的排列数,则序列(a0 ,a1,a2,L ,ar ,L )的 指数母函数为:
fe(x) 1
x
x2 2!
L
xr r!
每个物体出现偶数次的方式数。 解:设a2r为所求的方式数,则序列(a0 ,a1,L ,ar ,L )的普 通母函数为:
f
(x)
(1
x2
x4
L
)n
1
1 x2
n
r 0
n
r r
1
x2r
故有:a2r
n
r r
1
六、指数母函数在排列中的应用
与组合不同的是,某个物体在排列中不取,或取一次,
n n
x
n
1
xn
二、指数母函数
定义 fe ( x
)给 定 a0 一 a个1 1无 x! 穷a序2 x2列2! (aL0,
a1 ,L an
,xann n!
,L ),称函数
L
ai i0
xi i!
为序列(a0 ,a1,L ,an ,L )的指数母函数。
例5 容易得到序列(p(n,0), p(n,1),L , p(n, n))的指数母
x4)(142x4)L4(14 3x)
n
(1
x)n
n r 0
n
r
xr
x
r
的系数
n r
为从n个不同的物体选取r个的方法数.
(1 x x2L ) 表示某一物体可以不选,或选一次, 或选二次,…
算法合集之《母函数的性质及应用》

x 取 f ( x ) e , x 0 0 ,得 e x 1 x
x 2 x3 x 4 G ( x) , 2! 3! 4!
也就是说序列 1,1,1,1, 的指数型母函数的闭形式为 e x 。 同样运用 Taylor 公式,我们可以得到: 序列 1,1,1,1,1,1, 的指数型母函数为 e x 。 序列 0,1,0,1,0,1, 的指数型母函数为
m1 学归纳法同样可以得到结果 g n Cm n1 。
1 1 1 ,之后运用数 m 1 x (1 x) m1 (1 x)
那么闭形式
1 m1 m1 m1 对应的序列为 1, Cm , Cm 1 , Cm 2 , 。 (1 x) m
1 1 , 我们可以把 x 看成一个整体后来展开, 参考 的 1 x 1 x
关键字
母函数 递推 排列组合
§1.母函数的性质
§1.1. 定义
母函数是用于对应一个无穷序列的幂级数,一般来说母函数有形式:
G ( x) g 0 g1 x g 2 x 2 g n x n
n0
我们称 G( x) 是序列 g 0 , g1 , g 2 , 的母函数,下文表示为:
(1 x) m
§1.4. 指数型母函数
有时候序列 g n 所具有的母函数的性质十分复杂, 而序列
gn 所具有的母函数的 n!
性质十分简单,那我们宁愿选择
gn 来研究,然后再乘以 n! 。 n!
我们称:
G ( x) g n
n0
xn 为序列 g 0 , g1 , g 2 , 的指数型母函数。 n!
G( x) g 0 , g1 , g 2 ,
组合数学(第二版)母函数及其应用

考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中
《函数》第12讲 函数模型及其应用

图3ቤተ መጻሕፍቲ ባይዱ
图4
请你根据图象用简练的语言叙述出: 建议(1)是:不改变车票价格,减少支出费用 ; 建议(2)是:不改变支出费用,提高车票价格 .
[例题1]某工厂在甲、乙两地的两个分厂各生产某 种机器12台和6台,现销售给A地10台,B地8台 .已知从甲地调运1台至A地、B地的费用分别为 400元和800元,从乙地调运1台至A地、B地的费 用分别为300元和500元. (1)设从乙地调运x台至A地,求总运费y关于x 的函数关系式 . (2)若总运费不超过9 000元,则共有 种调运方案. (3)求出总运费最低的调运方案及最低的运费.
最大,则甲厂应选取何种生产速度?
自建函数模型解应用题 【例2】某市大桥上的车流速度v(千米/时)是车 流密度x(辆/时)的函数,当车流密度达到200辆/ 千米时造成堵塞,此时车流速度为0;当车流速 度不超过20辆/千米时车流速度为60千米/时。 研究表明:当 20 x 200时,车流速度是车流密 度的一次函数。 (1)当20 x 200 时,求车流速度v(x)的函数
练
习
2.某厂有许多形状为直角梯形的边角料。如 图,为了降低成本,现要从这些边角料上截 取矩形铁片(如图中阴影部分)备用。当截 取的矩形面积最大时,矩形的两边长x,y应为 A.x=15, y=12 B.x=12, y=15 C.x=14, y=10 D.x=10, y=14
建立数学模型一定要过好三关: (1)事理关:通过阅读,明白问题讲的是什么, 熟悉实际背景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数 学的符号语言,用数学式子表达文字关系. (3)数理关:在构建数学模型的过程中,对已 知数学知识进行检索,从而认定或构建相应 的数学模型)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
母函数及其应用 (Generation function) )
1 2011-3-30
从递推关系说起
2 2011-3-30
研究以下等式: 研究以下等式:
可以看出: x2项的系数a1a2+a1a3+...+an-1an中所有的项包括 n个元素a1,a2, …an中取两个组合的全体; 同理x3项系数包含了从n个元素a1,a2, …an 中取3个元素组合的全体。以此类推。
3 2011-3-30
若令a1=a2= …=an=1,在(2-1-1)式中 a1a2+a1a3+...+an-1an项系数中每一个组合 有1个贡献,其他各项以此类推。故有:
4 2011-3-30
母函数定义: 母函数定义:
对于序列a0,a1,a2,…构造一函数:
称函数G(x)是序列a0,a1,a2,…的母 函数
18 2011-3-30
改进方法
int main(void) { int n,i,j,k; int elem[17]={1,4,9,16,25,36,…,169,196,225,256,279} while (cin>>n && n!=0) { for (i=0;i<=n;i++) { c1[i]=1; c2[i]=0; } for (i=2; i<=17; i++) { for (j=0;j<=n;j++) for (k=0;k+j<=n; k+=elem[i-1] ) { c2[j+k]+=c1[j]; } for (j=0;j<=n;j++) { c1[j]=c2[j]; c2[j]=0; } } cout<<c1[n]<<endl; } return 0;
8 2011-3-30
几种砝码的组合可以称重的情况, 可以用以上几个函数的乘积表示:
(1+x)(1+x2)(1+x3)(1+x4) =(1+x+x2+x3)(1+x3+x4+x7) =1+x+x2+2x3+2x4+2x5+2x6+2x7+x8+x9+x10 从上面的函数知道,可称出从1克到10克,系 数便是方案数。例如右端有2x5 项,即称出5克 的方案有2:5=3+2=4+1,同样, 6=1+2+3=4+2;10=1+2+3+4。故称出6克 的方案有2,称出10克的方案有1
5 2011-3-30
For example:
(1+x)n是序列C(n,0),C(n,1),...,C(n,n)的母 函数。 如若已知序列a0,a1,a2,…则对应的 母函数G(x)便可根据定义给出。 反之,如若已经求得序列的母函数G(x), 则该序列也随之确定。 序列a0,a1,a2,…可记为{an} 。
}
19 2011-3-30
附:相关练习题(hdoj): 相关练习题(hdoj) (hdoj):
1028 、1059 、1085 1171 、1398 、2069 其它相关题目(比如求邮票、硬币之类 的组合数、整数的不同拆分数等)
20 2011-3-30
9 2011-3-30
例二、求用1分、2分、3 例二、求用1分、2分、3分的邮票 贴出不同数值的方案数。
因邮票允许重复,故母函数为
以展开后的x4为例,其系数为4,即4拆分成1、 2、3之和的拆分数为4,即 : 4=1+1+1+1=1+1+2=1+3=2+2
10 2011-3-30
概念:整数拆分
所谓整数拆分即把整数分解成若干整数的 和,相当于把n个无区别的球放到n个无 标志的盒子,盒子允许空着,也允许放多 于一个球。整数拆分成若干整数的和,办 法不一,不同拆分法的总数叫做拆分数。
15 2011-3-30
HDOJ_1398
Square Coins
Sample Input 2 10 30 0 Sample Output 1 4 27
16 2011-3-30
算法分析: 算法分析:
典型的利用母函数可解的题目。 G(x)=(1+x+x2+x3+x4+…)(1+x4+x8+x12 +…)(1+x9+x18+x27+…)…
17 2011-3-30
#include <iostream> using namespace std; const int lmax=300; int c1[lmax+1],c2[lmax+1]; int main(void) { int n,i,j,k; while (cin>>n && n!=0) { for (i=0;i<=n;i++) { c1[i]=1; c2[i]=0; } for (i=2;i<=17;i++) { for (j=0;j<=n;j++) for (k=0;k+j<=n;k+=i*i) { c2[j+k]+=c1[j]; } for (j=0;j<=n;j++) { c1[j]=c2[j]; c2[j]=0; } } cout<<c1[n]<<endl; } return 0; }
11 2011-3-30
练习:
例3:若有1克砝码3枚、2克砝码4枚、4 克砝码2枚,问能称出哪几种重量?各有 几种方案? 例4: 整数n拆分成1,2,3,…,m的和, 求其母函数。如若其中m至少出现一次, 其母函数又如何? 请自己写出以上两个问题的母函数。
12 2011-3-30
如何编写程序 实现母函数的应用呢? 实现母函数的应用呢? 关键:对多项式展开 关键:
6 2011-3-30Leabharlann 例分析7 2011-3-30
例一、若有1克、2克、3克、4克的砝码各一 例一、若有1 枚,能称出哪几种重量?各有几种可能方案? 能称出哪几种重量?各有几种可能方案?
如何解决这个问题呢?考虑构造母函数。 如果用x的指数表示称出的重量,则: 1个1克的砝码可以用函数1+x表示, 1个2克的砝码可以用函数1+x2表示, 1个3克的砝码可以用函数1+x3表示, 1个4克的砝码可以用函数1+x4表示,
13 2011-3-30
以整数拆分为例: 以整数拆分为例:
观察以下的母函数:
(这里以lwg写的程序为例)
14 2011-3-30
#include <iostream> using namespace std; const int lmax=10000; int c1[lmax+1],c2[lmax+1]; int main() { int n,i,j,k; while (cin>>n) { for (i=0;i<=n;i++) { c1[i]=0; c2[i]=0; } for (i=0;i<=n;i++) c1[i]=1; for (i=2;i<=n;i++) { for (j=0;j<=n;j++) for (k=0;k+j<=n;k+=i) { c2[j+k]+=c1[j]; } for (j=0;j<=n;j++) { c1[j]=c2[j]; c2[j]=0; } } cout<<c1[n]<<endl; } return 0; }