数学专业考研复习资料线性代数重点知识点整理
线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。
线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。
以下是为大家梳理的线性代数复习要点。
一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。
1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。
对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。
2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。
这些性质在行列式的计算中经常用到。
3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。
二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。
1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。
要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。
2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。
3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。
矩阵的秩在判断线性方程组解的情况等方面有重要应用。
4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。
三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。
1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。
2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。
3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。
4、向量空间了解向量空间的基本概念,如基、维数等。
四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。
1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
考研数学三必背知识点:线性代数

线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i >时,我们称21i i 组成一个逆序。
一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i τ 2、行列式性质(1) 行列式行列互换,其值不变,即TAA =(2) 行列式两行或两列互换,其值反号。
(3) 行列式某行或某列乘以k 等于行列式乘以k 。
(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。
(5) 行列式两行或两列对应成比例,则行列式为零。
(6) 行列式某行或某列元素为零,则行列式为零。
(7) 上、下三角行列式其值为主对角线上元素乘积。
(8) 行列式值等于对应矩阵所有特征值的乘积,即n A λλλ 21= (9) 齐次线性方程组0=Ax有非零解n A r A <⇔=⇔)(03、行列式行列展开定理 (1) 余子式ijji ijA M +-=)1( (2) 代数余子式ijji ijMA +-=)1(4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。
(2) 矩阵乘法是将对应行与对应列元素相乘再相加。
(3) 矩阵除法是乘以逆矩阵。
(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。
(5)n阶方阵一般可以有1*,,,-AA A A T 四大基本矩阵运算2、矩阵的行列式(1) A k kA A A n T ==, (2) A B B A BA AB === 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A ==+=+=)(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A ==--4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,AkkA A B AB AA A AA E A A A AA A A A n n -----=======(2)1)(0)(1)(1)()()(***-<⇔=-=⇔==⇔=n A r A r n A r A r nA r n A r5、逆矩阵 (1)1111*111111*1)(,1)(,,)(,,1-----------=======ABAB A AA AAA AE A AAAA AA(2) 分块矩阵的逆矩阵 ①111---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭AO A O OB O B (主对角分块)② 111OA O BB O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(副对角分块) ③11111AC A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭(拉普拉斯)④ 11111A O A O C B B C A B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭(拉普拉斯)6、矩阵初等变换(1) 交换矩阵两行或两列(2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵7、矩阵其他考点(1) 行列矩阵相乘:α为行矩阵),,(21n a a a ,β为列矩阵),,(21n b b b , 则βααβααβαβββαβαβαβα1)()()()())(()(-===k k(2) 矩阵n A 的求法:若A 可对角化,则有Λ=-AP P 1,于是1-Λ=P P A n n (3) 若n B r m A r ==)(,)(,则有m A r B A r =≤+)()(且n B r B A r =≤+)()(三、向量1、向量运算:βαβαλβαλβααββαk k k ±=±±±=±±±=±)(),()(,2、线性表示对于向量组s ααα ,,21和向量β,若存在一组数s k k k ,,21使得s s k k k αααβ+++= 2211 (1) 若s s k k k αααβ+++= 2211有唯一解,则β能由向量组s ααα ,,21唯一线性表示。
考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。
考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。
矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。
1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。
即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。
1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。
矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。
其中∑表示求和符号,k表示对应元素的相同下标。
1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。
即,如果A = [a_ij],则A^T = [a_ji]。
也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。
1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。
对于一个数k和一个矩阵A,它们的乘积记作kA。
即,kA = [ka_ij]。
其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。
二、线性方程组线性方程组是线性代数的重要内容之一。
解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。
通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。
2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。
具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。
2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。
对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。
2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。
湖南省考研数学复习资料线性代数重点知识梳理

湖南省考研数学复习资料线性代数重点知识梳理线性代数是数学中非常重要的一个分支,它在各个领域中具有广泛的应用。
对于湖南省的考研学生而言,掌握线性代数的重点知识是非常关键的。
本文将针对湖南省考研数学复习资料中的线性代数内容,进行一次全面的梳理和总结。
一、矩阵与行列式1. 矩阵的基本概念与运算矩阵的定义、矩阵的转置、矩阵的加法和乘法等基本概念。
2. 行列式的定义与性质行列式的定义、行列式的性质、行列式的计算等内容。
3. 矩阵的初等变换和初等矩阵矩阵的初等变换、初等矩阵的定义与性质。
4. 矩阵的秩与逆矩阵的秩、矩阵的逆及逆的计算等内容。
二、向量空间与线性方程组1. 向量空间及其基础知识向量空间的定义、子空间的性质、线性相关与线性无关等内容。
2. 线性方程组的解的结构齐次线性方程组和非齐次线性方程组的解的结构与性质。
3. 矩阵的秩与线性方程组的解矩阵的秩与线性方程组解的关系、矩阵的秩公式与推论等内容。
4. 矩阵的特征值与特征向量特征多项式、矩阵的特征值与特征向量、对角化矩阵等内容。
三、内积空间与正交变换1. 欧几里得空间与内积空间欧几里得空间和内积空间的定义与性质。
2. 正交变换与正交矩阵正交变换的概念、正交变换的性质、正交矩阵的定义与性质。
3. 对称矩阵和二次型对称矩阵的性质、对称矩阵的对角化、二次型的化简等内容。
4. 规范形与最小二乘规范形的概念与计算、最小二乘解的存在唯一性与性质等内容。
四、线性映射与矩阵的相似性1. 线性映射的定义与性质线性映射的概念、线性映射的性质、线性映射的矩阵表示等内容。
2. 矩阵的相似性矩阵的相似性的定义、相似矩阵的性质与判定等内容。
3. 线性映射的特征值与特征子空间线性映射的特征值与特征子空间的计算与性质等内容。
4. 线性映射的规范形线性映射的规范形的计算、规范形的性质与推论等内容。
以上就是我根据湖南省考研数学复习资料中线性代数的内容,为大家进行的重点知识梳理。
希望这篇文章能为考生们提供一定的参考和帮助,助力大家在考试中取得优异的成绩。
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学专业考研复习资料线性代数重点知识点
整理
数学专业考研复习资料:线性代数重点知识点整理
一、向量与矩阵
1. 向量的定义和性质
- 向量的表示与运算
- 单位向量和零向量
- 向量的线性相关性
2. 矩阵的定义和性质
- 矩阵的基本运算
- 矩阵的转置和逆矩阵
- 矩阵的秩和行列式
二、线性方程组
1. 线性方程组的概念
- 线性方程组的解和解的存在唯一性
- 齐次线性方程组和非齐次线性方程组
2. 线性方程组的解法
- 列主元消元法
- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法
三、线性空间和子空间
1. 线性空间的定义和性质
- 线性空间的子空间和直和
- 基和维数的概念
- 线性空间的同构与等价
2. 子空间的性质与判定
- 线性子空间的交与和
- 维数公式和秩-零化定理
- 子空间的降维与升维
四、线性变换和特征值
1. 线性变换的定义和性质
- 线性变换的表示和运算
- 线性变换的核与像
- 线性变换的矩阵表示和判定
2. 特征值和特征向量
- 特征方程和特征值的求解 - 特征空间和特征子空间
- 相似矩阵和对角化矩阵
五、内积空间和正交变换
1. 内积的定义和性质
- 内积的基本性质和判定
- 正交向量和正交子空间
- 构造内积空间
2. 正交变换和正交矩阵
- 正交变换的性质和表示
- 正交矩阵的特点和运算
- 正交矩阵的对角化和特征值
六、二次型和正定矩阵
1. 二次型的定义和性质
- 二次型的标准形和规范形 - 二次型的正定性和负定性
- 二次型的规约和降维
2. 正定矩阵的定义和性质
- 正定矩阵的判定和运算
- 正定矩阵的特征值和特征向量
- 正定矩阵及其应用
总结:
线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
掌握线性代数的重点知识,对于考研数学的学习和后续的学术研究都具有重要的意义。