人教版七年级数学下册第一次月考试卷
人教版七年级数学下学期第一次月考试卷含答案详解

七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。
人教版七年级下册数学第一次月考试题附答案

【分析】根据线段、垂线段的公理、平行线的性质以及补角的性质判断即可.
【解答】解:A、两点之间,线段最短,是真命题;
B、两直线平行,同旁内角互补,原命题是假命题;
C、等角的补角相等,是真命题;
D、垂线段最短,是真命题;
故选:B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
6.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
【分析】根据对顶角的定义作出判断即可.
【解答】解:根据对顶角的定义可知:只有选项C中的是对顶角,其它都不是.
故选:C.
【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
12(3分).如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().
2022年七年级下册第一次月考
数 学试 题
满 分:120分时间:120分钟
亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)49的算术平方根是( )
A.±7B.7C.± D.
人教版数学七年级(下)第一次月考数学试卷(含答案)

七年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.下列语句错误的是()A.连接两点的线段的长度叫做这两点间的距离B.两直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角互为邻补角D.平移变换中,连接各组对应点所得线段平行且相等2.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120°B.130°C.60°D.150°3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°4.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角5.把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值6.学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25°D.65°7.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°8.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°二、填空题(每小题3分,共24分)9.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.10.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠DEG=度.11.如图,直线a∥b,∠1=130°,则∠2=度.12.把命题“同角的余角相等”改写成“如果…那么…”的形式.13.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是cm2.15.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=度.16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.三、解答题(共72分)17.(8分)如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度数.18.(9分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q,(1)AB与ED平行吗?为什么?(2)∠1与∠2是否相等?说说你的理由.19.(9分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(1)求出四边形ABCD的面积;(2)请画出将四边形ABCD向上平移5个单位长度,再向左平移2个单位长度后所得的四边形A′B′C′D′.20.(8分)如图,AB∥CD,直线PQ分别交AB、CD于E、F,FG⊥PQ,若∠PEB=130°,求∠CFG 的度数.21.(8分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.22.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.23.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠E n=α度,那∠BEC等于多少度?(直接写出结论).七年级(下)第一次月考数学试卷2参考答案一、选择题(每小题3分,共24分)1.C;2.A;3.A;4.D;5.B;6.A;7.C;8.C;二、填空题(每小题3分,共24分)9.70;10.100;11.50;12.如果两个角是同一个角的余角,那么这两个角相等;13.垂线段最短;14.12;15.60;16.36°或37°;三、解答题(共72分)23.60°;。
最新人教版七年级数学下册第一次月考试题(3篇)

人教版七年级下册第一次月考数学试卷一、选择题(每题2分,共24分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直3.下列实数:π、、、、0.1010010001,其中无理数的个数有()A.2个 B.3个 C.4个 D.5个4.如果一个数的平方根与立方根相同,则这个数为()A.0 B.1 C.0或1 D.0或±15.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原方向上平行前进,两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐50°D.第一次左拐50°,第二次右拐50°6.若|m+2|+(n﹣1)2=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.47.如图,数轴上点A表示的数是2,点B表示的数是,且AB=AC,则点C表示的数是()A.B.C.D.8.下列说法正确的是()A.0.01是0.1的一个平方根B.64的立方根是±4C.如果a+b=0,那么D.﹣1的平方根是±19.如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度10.如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠811.在实数范围内,下列判断正确的是()A.若=,则a=b B.若|a|=()2,则a=bC.若a>b,则a2>b2D.若()2=()2则a=b12.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有()(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.A.1个 B.2个 C.3个 D.4个二、填空题(本大题6个小题,每小题3分,共18分)13.3﹣π的相反数是;的值是.14.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是.15.比较大小:﹣3﹣2,(填“>”或“<”或“=”)16.如图所示,已知a∥b,则∠1=.17.已知a、b为两个连续的整数,且,则a+b=.18.如图,一个零件ABCD需要AB边与CD边平行,现已测得拐角∠ABC=120°,则∠BCD=零件才合格.三.计算题和解答题:(共58分)19.(8分)计算.(1);(2)+|1﹣|+﹣.20.(10分)解方程:(1)(3x+1)2﹣1=0;(2)2(x﹣1)3=﹣.21.(6分)将下图中的阴影部分向右平移6个单位,再向下平移4个单位.22.(7分)推理填空:已知,如图∠1=∠2,∠3=∠4,求证:BC∥EF.证明:∵∠1=∠2∴∥()∴=∠5 ()又∵∠3=∠4∴∠5=()∴BC∥EF ()23.(9分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.24.(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.25.(10分)类比平方根(二次方根)、立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫做a的四次方根;②如果x5=a,那么x叫做a的五次方根;请根据以上两个定义并结合有关数学知识回答问题:(1)81的四次方根为;﹣32的五次方根为;(2)若有意义,则a的取值范围为;若有意义,则a的取值范围为;(4)解方程:①x4=16②100000x5=243.人教版七年级下册第一次月考数学试卷一、选择题:(本大题12个小题,每小题2分,共24分)1.π、,﹣,,3.1416,0.中,无理数的个数是()A .1个B .2个 C.3个 D.4个2.四条直线相交于一点,总共有对顶角()A.8对 B.10对C.4对 D.12对3.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D .4.下列说法正确的个数是()(1)两个无理数的和必是无理数;(2)两个无理数的积必是无理数;(3)无理数包括正无理数,0,负无理数;(4)实数与数轴上的点是一一对应的.A.1 B.2 C.3 D.45.如图,三条直线相交于点O.若CO⊥AB,∠1=52°,则∠2等于()A.37°B.28°C.38°D.47°6.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°7.下列说法正确的是()A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根8.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120° D.130°9.已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n的值为()A.6 B.7 C.8 D.910.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D .10911.如图,已知AB∥CD,AD∥C,∠ABE 是平角,则下列说法中正确的是()A.∠1+∠2=∠3 B.∠1=∠2>∠3C.∠1+∠2<∠3 D.∠1+∠2与∠3的大小没有关系12.如图,数轴上的点A 所表示的数为x,则x的值为()A.B.+1 C.﹣1 D.1﹣二、填空题(本大题6个小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,倒数是.14.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.15.如果+(2x﹣4)2=0,那么2x﹣y=.16.如图,两条平行线AB、CD被直线EF所截.若∠1=118°,则∠2=°.17.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=4,则2a+b=.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么12※4=.三、解答题:(58分)19.(16分)计算或求值:(1)(x﹣3)3=27(2)÷﹣×+.(3)|﹣|﹣|﹣2|﹣|﹣1|;(4)﹣12016++3﹣27﹣|2﹣|++﹣.20.(8分)若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B的值.21.(10分)如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,求∠EDC的度数.22.(12分)如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.23.(12分)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.七年级数学下册第一次月考试题一、选择题:(24分)1.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个 B.2个 C.3个 D.4个2.四条直线相交于一点,总共有对顶角()A .8对 B.10对C.4对 D.12对3.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.4.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°5.如图,三条直线相交于点O.若CO⊥AB,∠1=52°,则∠2等于()A.37°B.28°C.38°D.47°6.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定7.如图,已知直线AB、CD被直线AC所截,AB∥CD ,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④8.下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个9.已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n的值为()A.6 B.7 C.8 D.910.如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C .99 D.10911.如图,已知AB∥CD,AD∥C,∠ABE是平角,则下列说法中正确的是()A.∠1+∠2=∠3 B.∠1=∠2>∠3C.∠1+∠2<∠3 D.∠1+∠2与∠3的大小没有关系12.如图,数轴上的点A 所表示的数为x ,则x 的值为()A.B.+1 C.﹣1 D.1﹣二、填空题(本大题6个小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,倒数是.14.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.15.如果+(2x﹣4)2=0,那么2x﹣y=.16.如图,两条平行线AB、CD被直线EF所截.若∠1=118°,则∠2=°.17.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=4,则2a+b=.18.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.三、解答题:(共78分)19.(10分)计算或求值:(1)(x﹣3)3=27(2)÷﹣×+.20.(7分)如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.21.(7分)若A=为a+3b的算术平方根,B=为1﹣a2的立方根,求A+B的值.22.(10分)如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.23.(10分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?24.(10分)已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.25.(12分)阅读材料,并完成下列问题: 不难求得方程x +=3+的解是x 1=3,x 2=; x +=4+的解是x 1=4,x 2=; x +=5+的解是x 1=5,x2=;(1)观察上述方程及其解,可猜想关于x 的方程x +=m +(m ≠0)的解是 . (2)试用“求出关于x 的方程x +=m +(m ≠0)的解”的方法证明你的猜想; (3)利用你猜想的结论,解关于x 的方程=m +.26.(12分)如图,已知直线l 1∥l 2,且l 3和l 1、l 2分别交于A 、B 两点,点P 在AB 上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P 和A 、B 不重合)。
人教版数学七年级下册第一次月考试卷及答案

人教版数学七年级下册第一次月考试题一、选择题(每小题3分,共30分)1.同一平面内如果两条直线不重合,那么他们( ) A .平行B .相交C .相交或垂直D .平行或相交2.两条直线被第三条直线所截,若∠1与∠2 是同旁内角,且∠1=70º,则 ( ) A. ∠2=70º B. ∠2=110ºC. ∠2=70º或∠2=110ºD.∠2的度数不能确定 3.如图AB ∥CD ,则∠1=( ) A .75° B .80° C .85° D .95°4.如图,△ABC 经过怎样的平移得到△DEF ( )A .把△ABC 向左平移4个单位,再向下平移2个单位B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位D .把△ABC 向左平移4个单位,再向上平移2个单位5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( ) A .1B .2C .3D .46. 2)7.0(-的平方根是( )A. -0.7B. ±0.7C. 0.7D. 0.49 7.若3a -=387,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 8.如图,数轴上点P 表示的数可能是( )A.10 B 5 C 3 D 2 9.下列等式正确的是( )12341-PA.43169±= B.311971=- C.393-=- D.31)31(2=- 10.有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确说法的个数是( ) A. 1 B. 2 C. 3 D. 4 二、填空题(每小题3分,共24分)11.如果一个角的补角是150°,那么这个角的余角是 度.12.小明从点A 沿北偏东60°的方向到B 处,又从B 沿南偏西25°的方向到C 处,则小明两次行进路线的夹角为 .13.把“同角的余角相等”写成“如果…,那么…”的形式为 .14.把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC= . 15. 9的平方根是_______16. 若1.1001.102= 1.0201=_______ . 17. 25-的相反数是_______ 18. 比较大小:35 6 ; 三、解答题(共66分)19.(8分)如图:已知∠B=∠BGD ,∠DGF=∠F ,求证:∠B+∠F=180°. 请你认真完成下面的填空. 证明:∵∠B=∠BGD ( 已知 ) ∴AB ∥CD ( ) ∵∠DGF=∠F ;( 已知 ) ∴CD ∥EF ( ) ∵AB ∥EF ( ) ∴∠B+∠F=180°( ).20.(8分)已知:如图,AC 平分∠DAB ,∠1=∠2 求证:AB ∥CD21. 计算(每小题5分,共10分)(1) 2243+ (2)32-+223-22. 求下列各式中的x .(每小题5分,共10分)(1) 2491690x -= (2) 3(0.7)0.027x -=-23.(10分)如图,直线AB ,CD ,EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=28°,求∠BOE ,∠AOG 的度数.24.(10分)一个正数x 的两个平方根是2a-3与5-a ,求x 的值.25. (10分)完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD求证:∠EGF=90°参考答案一、(30分)1-5,DDCCD 6-10,BBBDB 二、(24分)11题60 12题35度 13题如果两个角是同一个角的余角,那么它们相等。
最新人教版七年级数学下册第一次月考试题

人教版七年级数学下册第一次月考试题一、选择题(每小题3分,共24分)1.下列各组数中互为相反数的是()A.﹣3与B.﹣(﹣2)与﹣|﹣2| C.5与D.﹣2与﹣2.如图,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角3.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤4.的算术平方根是()A.±9B.±3C.9D.35.同一个平面内,若a⊥b,c⊥b()A.平行B.垂直C.相交D.以上都不对6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是07.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D的位置上,EC交AD于点G,则∠BEG等于()A.57°B.114°C.66°D.76°8.如图,若∠A=∠CBE,则下列关系正确的是()A.AB∥DC B.AD∥BC C.∠A=∠C D.∠A+∠D=180°二、填空题(每小题3分,共18分)9.49的算术平方根是.10.已知﹣2x m﹣2y2与3x4y2m+n是同类项,则m﹣3n的平方根是.11.把命题“平行于同一直线的两直线平行”改写成“如果…,那么…”的形式:.12.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,水沟最短.理由是.13.如图,将△ABC沿BC方向平移2个单位得到△DEF,若△ABC的周长等于12cm.14.如图所示,已知a∥b,∠1=30°,则∠3=.三、解答题(共9题,58分)15.(8分)求下列方程中x的值:(1)x2﹣=0;(2)(x﹣1)2=49.16.(6分)若一个正数的平方根是2m﹣4与3m﹣1,求这个正数的算术平方根.17.(5分)如图,AB∥CD,∠A=50.5°18.(5分)若x,y为有理数,且|x+1|+,求(xy)2020的值.19.(7分)阅读下列解答过程,在横线上填入恰当内容.解方程:(x﹣1)2=4解:∵(x﹣1)2=4 (1)∴x﹣1=2,(2)∴x=3.(3)上述过程中有没有错误?若有,错在步骤(填序号)原因是请写出正确的解答过程.20.(6分)在下面的括号内,请你填上推理的根据.如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.证明:∵∠B=∠BGD(),∴AB∥CD().∵∠DGF=∠F(),∴CD∥EF().∴AB∥EF().∴∠B+∠F=180°().21.(6分)如图,直线a∥b,点B在直线上b上,∠1=55°,求∠2的度数.22.(6分)如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,求证:EP⊥FP.23.(9分)如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.判断BE和CD位置关系,并说明理由.。
新版人教版七年级数学下册第一次月考试卷含答案

第1页共6页第2题图)(第7题图)O B D A C (第2题54D 3E 21C B A (第5题图)(第10题新版人教版七年级数学下册第一次月考试卷含答案(满分:120分时间:120分钟)亲爱的考生,请你沉着应考,细心审题,揣摩题意,应用技巧,准确作答,祝你成功!一、选择题(每小题3分,共36分)1.如图,直线AB 与直线CD 相交于点O,其中∠A0D 的对顶角是().A.∠A0C B.∠B0D C.∠B0C D.∠A0C 和∠B0D 2.如图,在正方体ABCD-EFGH 中,下列各棱与棱CD 平行的是().A.BC B.BF C.EH D.EF3一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°4.观察下面图案,在A、B、C、D 四幅图案中,能通过图案(1)的平移得到的是()5.如右图,下列能判定AB∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.46.同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是().A.a⊥c B.a∥c C.a=c D.a∥b∥c7.如图,与∠2互为同旁内角的角共有()个.A.1B.2C.3D.48.下列说法中正确的是().A.在同一平面内,两条直线的位置只有两种:相交和垂直.B.有且只有一条直线垂直于已知直线.C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行9.在平移过程中,对应线段().5题图)10题图)(1)A B C D第2页共6页第13题图b a 21A.互相平行且相等B.互相垂直且相等C.互相平行(或在同一条直线上)且相等D.在一条直线上10.如图,AD ‖BC,点E 在BD 的延长线上,若∠ADE=145°,则∠DBC 的度数为().A.155°B.25°C.45°D.35°11.下列各式正确的是()A、3)3(2=-B、16)4(2=-C、39±=D、416-=-12.下列命题是真命题的是()A.如果两角是同位角,那么这两角一定相等B.两个互补的角一定是邻补角C.如果a 2=b 2,那么a=b;D.如果两个角不相等,那么这两个角不是对顶角;二.填空题(每题3分,共24分)13.如图a∥b,∠2=110°,则∠1的度数是14.()27-的平方根是15.若∠1与∠2是对顶角,∠3与∠2互补,又知∠3=80°,则∠1=度16.命题分为题设和结论两部分,把命题“同角的补角相等”改写成“如果…,那么…”的形式为.17.大于7-小于17的所有整数的和是18.点A 在数轴上表示为53-,点B 在数轴上表示为5-,则A、B 两点间的距离为.19.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =65°,则2=_______20.小明将较大的一个三角尺按如图所示的放置在课本上(平面图),此时他量得∠1=110°,则你认为∠DEF=19题图)(19题图)B ACDE FG M N 12。
人教版2024年七年级下册第一次月考数学模拟卷 含详解

人教版2024年七年级下册第一次月考数学模拟卷(范围:第5-7章满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列四个图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.下列各数中是无理数的是( )A.﹣1B.0C.D.3.143.点P(3,m2+1)位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.下列说法不正确的是( )A.±0.3是0.09的平方根,即B.=﹣C.的平方根是±9D.存在立方根和平方根相等的数6.如图,一辆汽车经过两次拐弯后,行驶方向与原来平行,若第一次是向左拐30°,则第二次拐弯的角度是( )A.右拐30°B.左拐30°C.左拐150°D.右拐150°7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.428.在平面直角坐标系中,点A(x,y),B(4,3),AB=4,且AB∥y轴,则A点的坐标为( )A.(4,7)B.(4,﹣1)C.(0,3),或(8,3)D.(4,7),或(4,﹣1)9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为( )A.1个B.2个C.3个D.4个10.如图的象棋盘中,“卒”从A点到B点,规定只能向右和向上走,每次走一格,则不同的路径共有( )A.14条B.15条C.20条D.35条二.填空题(共6小题,满分24分,每小题4分)11.比较大小: 2(填“>”、“<”或“=”号).12.把命题“对顶角相等”改写成“如果…,那么…”形式为如果 ,那么 .13.第四象限内的点P(x,y)满足|x|=7,y2=9.则点P的坐标是 .14.一个实数的平方根为3x+3与x﹣1,则这个实数是 .15.已知AO⊥BO,DO⊥CO,∠AOD=4∠BOC,则∠AOD的度数为 .16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为 .三.解答题(共8小题,满分66分)17.(6分)解答下列问题:(1)计算:;(2)求出式子中x的值:(x﹣1)2﹣25=0.18.(6分)已知4x﹣37的立方根是3,求2x+4的平方根.19.(6分)如图,已知AB∥CD,∠A=140°,∠C=130°,求∠E的度数.20.(8分)请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点G,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC= °( ).∴AD∥EG( ).∴∠1=∠2( ),∠E=∠3( ).∵∠E=∠1(已知),∴∠2=∠ ( ).∴AD平分∠BAC( ).21.(8分)(1)已知a是的整数部分,b是的小数部分,求(﹣a)3+(b+3)2的值;(2)实数a在数轴上对应的位置如图,化简:.22.(10分)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A′B′C′,且点C的对应点坐标是C′.(1)画出△A′B′C′,并直接写出点C′的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P′,直接写出点P′的坐标;(3)求△ABC的面积.23.(10分)如图1,已知AD∥BC,∠B=∠D=120°.(1)求证:AB∥CD;(2)若点E,F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图2,求∠FAC的度数;(3)若点E在直线CD上,且满足∠EAC=∠BAC,求∠ACD:∠AED的值.(请自己画出正确图形,并解答)24.(12分)如图,在平面直角坐标系中,点A(a,0),点B(b,c),点C(0,c),其中a是算术平方根等于本身的正数,且,AB与y轴交于点E.(1)求点E的坐标;(2)如图2,点P为线段BC延长线上一点,连接OP,OM平分∠KOP,OM⊥ON,当点P运动时,∠OPC与∠MOC是否有确定的数量关系?写出你的结论并说明理由;(3)如图3,点G是线段AB上一点,点F是射线BS上一点,射线FH平分∠GFS,射线GT平分∠AGF,GQ∥FH,求的值.人教版2024年七年级下册第一次月考数学模拟卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.能通过其中一个四边形平移得到,不合题意;B.能通过其中一个四边形平移得到,不合题意;C.能通过其中一个四边形平移得到,不合题意;D.不能通过其中一个四边形平移得到,符合题意.故选:D.2.【解答】解:A、﹣1是有理数,不符合题意;B、0是有理数,不符合题意;C、是无理数,符合题意;D、3.14是有理数,不符合题意.故选:C.3.【解答】解:∵m2+1≥1,∴点P(3,m2+1)位于第一象限.故选:A.4.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.5.【解答】解:A、±0.3是0.09的平方根,即,该说法正确,故选项不符合题意;B、=﹣,该说法正确,故选项不符合题意;C、,9的平方根是±3,所以的平方根是±3,该说法不正确,故选项符合题意;D、0的立方根和平方根都是它本身,所有存在立方根和平方根相等的数,该说法正确,故选项不符合题意,故选:C.6.【解答】解:如图,延长AB到C,∵BD∥AE,∴∠CBD=∠BAE=30°,∴第二次拐弯的角度是右拐30°,故选:A.7.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.8.【解答】解:∵AB∥y轴,∴A、B两点的横坐标相同,又∵AB=4,∴A点纵坐标为:3+4=7或3﹣4=﹣1,∴A点的坐标为:(4,7)或(4,﹣1).故选:D.9.【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选:C.10.【解答】解:如图所示,利用“标数法”可得:共35条路径,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵>,∴>2,故答案为:>.12.【解答】答案:两个角是对顶角;这两个角相等.解:“对顶角相等”改写成“如果……,那么……”的形式是“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.【解答】解:∵第四象限内的点P(x,y),∴x>0,y<0,∵|x|=7,y2=9,∴x=7,y=﹣3.故点P的坐标是:(7,﹣3).故答案为:(7,﹣3).14.【解答】解:根据题意得:①这个实数为正数时:3x+3+x﹣1=0,∴x=﹣,∴(x﹣1)2=,②这个实数为0时:3x+3=x﹣1,∴x=﹣2,∵x﹣1=﹣3≠0,∴这个实数不为0.故答案为:.15.【解答】解:由AO⊥BO,DO⊥CO,得∠AOB=∠COD=90°.由余角的性质,得∠AOC=∠BOD,由角的和差,得∠AOC+∠BOC+∠BOD=∠AOD,即2∠AOC+∠BOC=4∠BOC,解得∠AOC=∠BOC.由于角的定义,得∠AOC+∠BOC=90°,即∠BOC+∠BOC=90°,解得∠BOC=36°,∠AOD=4∠BOC=4×36°=144°,故答案为:144°.16.【解答】解:观察可得到第n列有(1+2+3+4+…+n)个点,当n=13时,有91个点.所以排到横坐标为13的点是第91个点横坐标为13的点最后一个是(13,0)∴(13,0)是第91个点∴可数得第100个点是(14,8);故答案为:(14,8).三.解答题(共8小题,满分66分)17.【解答】解:(1)=3+(﹣1)﹣3=﹣1;(2)(x﹣1)2﹣25=0,(x﹣1)2=25,x﹣1=±5,x=6或x=﹣4.18.【解答】解:由题意得:4x﹣37=33,4x﹣37=27,4x=64,解得x=16,∴2x+4=36,∴2x+4的平方根是±6.19.【解答】解:过点E作EF∥AB,如图:则EF∥AB∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°∴∠AEF=180°﹣∠A=40°,∠CEF=180°﹣∠C=50°,∴∠AEC=∠AEF+∠CEF=90°.20.【解答】解;∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:90;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;3;等量代换;角平分线的定义.21.【解答】解:(1)∵,∴的整数部分为3,的小数部分为,∴,∴;(2)由实数a在数轴上对应的位置可知,a<π,∴==.22.【解答】解:(1)如图,△A′B′C′即为所求,点C′的坐标(5,﹣2);(2)点P′的坐标(a+4,b﹣3);(3)△ABC的面积=5×5﹣3×52×52×3=.23.【解答】(1)证明:∵AD∥BC,∴∠A+∠B=180°,又∵∠B=∠D=120°,∴∠D+∠A=∠180°,∴AB∥CD.(2)解:∵AD∥BC,∠B=∠D=∠120°,∴∠DAB=60°,∵AC平分∠BAE,AF平分∠DAE,∴,,∴∠FAC=∠EAC+∠EAF==30°.(3)解:当点E在线段CD上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,∵∠EAC=,∴∠ACD:∠AED=2:3;当点E在线段DC的延长线上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,又∵,∴∠ACD:∠AED=2:1,综上,∠ACD:∠AED=2:1或∠ACD:∠AED=2:3.24.【解答】解:(1)∵a是算术平方根等于本身的正数,∴a=1,∵,∴b+2=0,c﹣3=0,∴b=﹣2,c=3,∴A(1,0),B(﹣2,3),C(0,3),连接OB,作BF⊥x轴于点F,∴BF=3,OA=1,BC=2,S△OAB=S△AOE+S△BOE,∴∴∴OE=1,∴E(0,1);(2)∵OM平分∠KOP,∴∠KOM=∠POM=α,∵OM=ON,∴∠MON=90°,∴∠PON=90°﹣α=∠AON,∵BC∥OA,∴∠OPC=∠POA=180°﹣2α,∠MOC=∠KOC﹣∠KOM=90°﹣α,∴∠OPC=2∠COM;(3)∵射线FH平分∠GFS,射线GT平分∠AGF,∴∠SFH=∠GFH=α,∠AGT=∠FGT=β,∵GQ∥FH,∴∠GFH+∠QGF=180°,∴∠QGF=180°﹣α,∴∠TGQ=∠QGF﹣∠FGT=180°﹣α﹣β,∵BC∥OA,∴∠ABC=∠KAB,由“U型”可得:∠KAB+∠AGF+∠SFG=360°,∴∠KAB=360°﹣2α﹣2β,即∠ABC=360°﹣2α﹣2β,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第一次月考试卷
(时间80分钟,满分120分)
一.选择题(每题3分,共24分)
1.∠1与∠2是两条平行直线被第三条直线所截的同旁内角,若∠1=50°,则∠2为( )
A 、50°
B 、130°
C 、50°或130°
D 、不能确定
2.下列四个算式:① ()63382x x =;②.x x x =-2
3.③.532a a a =⋅;④.()23a - =6a
其中正确的个数有:――――――――――――――――――――――― ( ) A 、1个 B 、2个 、3个 D 、4个
3. 可能出现在一个三角形的外部的是―――――――――――――――――( )
A 、角平分线
B 、高
C 、中线
D 、一边的垂直平分线
4.一辆汽车在笔直的高速公路上行驶,两次拐弯后仍在与原来的方向所在的直线平行前进,那么,这两次拐弯的角度可能是 ―――――――――――――――――( ) A.第一次向右拐80°,第二次向左拐100°B.第一次向左拐80°,第二次向左拐80° C.第一次向左拐80°,第二次向右拐100°D.第一次向右拐80°,第二次向右拐100° 5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是—————( ) A .两直线平行,同位角相等, B .内错角相等,两直线平行 C .同旁内角互补,两直线平行 D .同位角相等,两直线平行,
6.如果一个等腰三角形的两边长分别为5cm 和9cm ,则此等腰三角形的周长为cm .( )
A 、19
B 、23
C 、19或23
D 、14
7计算
()54103102⨯-⋅⨯-)(的正确结果是―――――――――――――――――( ) (A) 20106⨯ ; (B) 9106⨯ ; (C)9105⨯ ; (D)9106⨯-;
8. 如图,一块四边形绿化园地,四角都做有半径为2R 的圆形喷水池,则这四个喷水池占去
) A 、22R π B 、24R π C 、2R π D 、不能确定
二、填空题(本大题共10小题,第9题4分,其它9题每题3分,共31分) 9计算下列各题 ①;=+⋅532a a a ②=-⋅-32)(x x _______; ③();=
-3
32x 2y ④16a 2b 6=(_______)2
10. 一个多边形的内角和是1080°,则这个多边形是_______边形。
11.三角形三个内角的比为1:2:3,则这个三角形是________三角形。
12、如图,面积为6cm 2的直角三角形ABC 沿BC 方向平移至三角形DEF 的位置,平移距离是BC 的2倍,则图中四边形ABED 的面积为_______ cm 2.
13、如图,把ΔABC 沿
线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠BDF=50°则∠B=_____° 14、如图,AB ∥CD ,AF ∥BC, ∠E+
∠F=60°,则∠B=____° 15、若a m =2,a n =6,则a 3m+2n =___________;.
16.一个多边形所有内角都是1350
,则这个多边形的边数为_____ 17如图4,已知AB ∥CD ,BC ∥DE ,则00____,70=∠=∠D B
18如图5,在宽为21m ,长为31m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为 m 2
三、计算题(本大题共四小题,每题5分,共20分)
19 ① 5( m 2 )6 -3(-m 3)4 ②a 3·a 3·a 2+(a 4)2+(-2a 2)4 .
第1题图
第6题图
第7题图
图5
图4
A B
C D
③ a 2·a 3+a ·a 5
④2007
2006
522125⎛⎫⎛⎫-⨯ ⎪
⎪⎝⎭
⎝⎭
=
四、计算说理(五大题总计55分 ) 20(8分)完成下列推理:
(1)如右图,若∠1=∠3,则AB ∥ , 根据 ; (2)如右图,若∠ =∠6,则AE ∥______, 根据 。
(3)如右图,若AD ∥BC ,则∠C+∠______=180 0,根据 ; 如右图,若DC ∥AE ,则∠2=∠_____,根据 。
21、(8分)如图,中D 是边BC 上的点,F 是AD 上的点
∠CAD=30O ,∠CBF=20 O ,∠C =40 O , 求∠AFB 的度数。
22.(8分)如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF ⊥AB ,DG ∥BC ,试说明,则判断∠1与∠2的大小关系,并理由。
解:(1)
(2)理由:
1
2
B
A
E
F
D
G
A
B
E
C
D
1
6 3 4
2 5
23 (8分) 我校为创建绿色和谐校园活动中要在一块三角形花圃里种植两种不同的花草,同时拟从A 点修建一条花间小径到边BC 。
(1)若要使两种不同的花草种植面积相等,请在(a )中画出小路AD ,
你的理由是 。
(2)若要使修建小路所使用的材料最少,请在(b )中画出小路AE
(3)3月12日是植树节,图中树需进行平移,请将树根A 移到点F 处,作出平移后的树。
24.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,如图(1),AC 、AD 是五边形ABCDE 的对角线。
思考下列问题:
(1)如图(2),n边形A 1 A 2 A 3 A 4 …A n 中,过顶点A 1可以画______条对角线,它别是
_______________________________;过顶点A 2可以画_______条对角线,过顶点A 3可以画_______________条对角线。
(4分) (2)过顶点A 1的对角线与过顶点A 2的对角线有相同的吗?过顶点A 1的对角线与过顶点A 3的对角线有相同的吗?(3分)
(3)在此基础上,你能发现n 边形的对角线条数的规律吗?(3分)
(4)在此基础上,推导出n 边形的内角和(4分)。