小学中级奥数第26讲-完全平方数

合集下载

完全平方公式ppt课件

完全平方公式ppt课件

4. 解法:
(1)先把二次方程化为完全 平方公式的形式: ax² + bx + c = 0
完全平方公式
(2)然后将方程按照完全平方公式的标准形式:
(x + p)² + q = 0
01
(5)求出方程的根:
x1 = -p + √(-q)
04
x2 = -p - √(-q)
(3)求出p、q的值:
02
p = -b/2a q = c - b²/4a
一、完全平方公式
演讲人 2023-01-14
目录
01
02
完全平方公式
实例
完全平方公式
1. 定义:
完全平方公式,又称为对称二 次方程,指的是可以表示为一
个完全平方式的二次方程。
2. 标准形式:
ax² + bx + c = 0
3. 用途:
完全平方公式可以用来解决二 次方程,求解方程的根,从而
解决一些数学问题。
04
0 5
(1)将二次方程化为完全平方公式的形式:
x² - 10x + 25 = 0
(3)求出p、q的值:
p = -10/2 q = 25 - 100/4
实例
x1 = 5 + √24 01
03 x1 = 9
(5)求出方程 的根:x2 = 5 - √2 0204 x2 = 1
谢谢
03
(4)由求出的p、q值代入完全平方公式中:
(x + p)² + q = 0
实例
例1:解x² - 10x + 25 = 0
在右侧编辑区输入内容
(2)按照完全平方公式的标准形式:

完全平方公式ppt课件

完全平方公式ppt课件
=2x2-8x+8+3x-2x2-1
=-5x+7.
2
5.(2023 凉山)先化简,再求值:(2x+y) -(2x+y)(2x-y)-2y(x+y),其中

x=( )
2 023
,y=2

2 022
.
2
解:(2x+y) -(2x+y)(2x-y)-2y(x+y)
2
2
2
2
2
=4x +4xy+y -4x +y -2xy-2y
解:因为a-b=-4,ab=3,
所以a2+b2=(a-b)2+2ab=16+2×3=22.
所以(a+b)2=a2+b2+2ab=22+6=28,
所以a2+b2的值为22,(a+b)2的值为28.
.
完全平方公式的实际应用
[例3] 如图所示,在边长为m+4的正方形纸片上剪出一个边长为m的小
正方形后,将剩余部分剪拼成一个长方形(不重叠无缝隙),若这个长方
灵活应用完全平方公式的变形,可求相关代数式的值,主要的变形有
(1)(a+b)2-2ab=a2+b2;

2
2
2
(2)ab= [(a+b) -(a +b )];

(3)(a+b)2-(a-b)2=4ab.
新知应用
1.若(x+2y)2=(x-2y)2+A,则A表示的式子为 8xy
2.已知a-b=-4,ab=3.求a2+b2与(a+b)2的值.
=x2-(y+1)2

完全平方数

完全平方数

完全平方数(一)完全平方数的性质一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。

下面我们来研究完全平方数的一些常用性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,十位数字为偶数。

证明奇数必为下列五种形式之一:10a+1, 10a+3, 10a+5, 10a+7, 10a+9分别平方后,得(10a+1)=100+20a+1=20a(5a+1)+1(10a+3)=100+60a+9=20a(5a+3)+9(10a+5)=100+100a+25=20 (5a+5a+1)+5(10a+7)=100+140a+49=20 (5a+7a+2)+9(10a+9)=100+180a+81=20 (5a+9a+4)+1综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。

性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

证明已知=10k+6,证明k为奇数。

因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。

则10k+6=(10n+4)=100+(8n+1)x10+6或10k+6=(10n+6)=100+(12n+3)x10+6即k=10+8n+1=2(5+4n)+1或k=10+12n+3=2(5+6n)+3∴k为奇数。

推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。

推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。

性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。

小学奥数 完全平方数 知识点+例题+练习 (分类全面)

小学奥数 完全平方数 知识点+例题+练习 (分类全面)
巩固、8,88,888,8888…中有完全平方数吗?
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

完全平方公式课件ppt课件

完全平方公式课件ppt课件
1、积为二次三项式;
2、积中两项为两数的平方和;
3、另一项是两数积的2倍,且与乘式中
间的符号相同. 首平方,尾平方,
积的2倍放中央 .
4、公式中的字母a,b可以表示数,单项式和 多项式.
想一想:
下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 错 (x +y)2 =x2+2xy +y2
(2)(x -y)2 =x2 -y2 错 (x -y)2 =x2 -2xy +y2
(3) (-x +y)2 =x2+2xy +y2错
(-x +y)2 =x2 -2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2 错
(2x +y)2 =4x2+4xy +y2
例1、运用完全平方公式计算:
例2、运用完全平方公式计算:
(1) 1022 解: 1022 = (100+2)2
=10000+400+4 =10404 (2) 992 解: 992 = (100 –1)2 =10000 -200+1
=9801
思考
(a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? (a-b)2与a2-b2相等吗? 为什么?
例3.
若a b 5, ab 6,求 a 2 b2 ,a2 ab b2.
拓展练习:
1 1. 20082 2 2008 2009 20092 =_______;
2.若 x2 2kx 9 是一个完全平方公式,
则 k ____3___;

完全平方公式ppt课件

完全平方公式ppt课件

推导过程
引入
通过具体例题引入完全平方公式 的概念,让学生明确学习目标。
推导步骤
逐步详细展示完全平方公式的推 导过程,包括展开、整理、简化 等步骤,确保逻辑严密。
推导结论
公式形式
总结得出完全平方公式的标准形式, 强调公式中的重要部分,如中间项系 数、首尾项平方等。
应用举例
通过具体例题,演示如何运用完全平 方公式进行计算,帮助学生理解公式 的实际应用。
它可以帮助我们简化二次多项式,将其表示为一个 更简单的形式,便于计算和解决各种数学问题。
完全平方公式还可以用于证明一些重要的数学定理 ,如勾股定理和三角形的余弦定理等。
02
完全平方公式的推导过程
推导前的准备
知识储备
学生应具备基本的代数知识和运算能力,了解平方、乘法等基本 概念。
工具准备
准备黑板、白板或PPT等教学演示工具,以便清晰地展示推导过 程。
详细描述
该公式是二次项和一次项的完全平方 公式,其中$a$和$b$是常数,表示一 个二次多项式和一个一次多项式相加 或相减的结果。
二次项和常数的完全平方公式
总结词
表示形式为$a^2+2ac+c^2$,适用于二次项和常数的完全平方公式。
详细描述
该公式是二次项和常数的完全平方公式,其中$a$、$c$是常数,表示一个二次多项式和一个常数相加 或相减的结果。
完全平方公式ppt课件

CONTENCT

• 完全平方公式简介 • 完全平方公式的推导过程 • 完全平方公式的应用 • 完全平方公式的变种 • 完全平方公式的练习题
01
完全平方公式简介
完全平方公式的定义
01
完全平方公式是一种数学公式, 用于将一个二次多项式表示为一 个一次多项式和一个常数的乘积 的平方。

小学奥数全能解法及训练课件完全平方数


252 = 625
完全平方数
精讲2 尾数特征1
完全平方数的 个位只可能是 0,1,4,5,6,9
常用完全平方数表
尾数特征2
奇数平方 个位数字是奇数 十位数字为偶数
精讲3 尾数特征3
偶数平方 个位数字 是偶数
常用完全平方数表
尾数特征4
两个相临平方数 之间不可能再有 平方数
精讲4 余数特征1
完全平方数除 以 3 的余数只 能是 0或1。
常用完全平方数表
余数特征2
完全平方数除 以 4 的余数只 能是 0或1。
精讲5
完全平方 数的因数有
奇数个
常用完全平方数表 每个质因
数的次数都是 偶数次。
因数特征
精讲6
常用完全平方数表
102- 92 =100-81=19
102- 92 = (10+9)×(10-9)=19
平方差公式: X2-Y2=(X-Y)(X+Y)
末两位除以4的余数相同
例2 A、B是两个自然数,完全平方数的差为 51,且两个完 全平方数之间没有其他的完全平方数,求这两个数?
A、B 之差为1
A2-B2= (A-B)(A+B)
例2 A、B是两个完全平方数,平方数的差为 51,且这两个 完全平方数之间没有其他的完全平方数,求这两个数?
A2-B2=51
1008÷4=502
判断1和0的个数。
1008除以4的余数为0




练习2 100以内有且仅有 3 个因数的自然数有哪些?
参考 答案
102=100
自然数是10内的质数的平方。 自然数是2、3、5、7。
100 以内有且仅有 3 个 因 数的自然数应该是 10 以内的质数的平方。

完全平方数的性质及推论

完全平方数的性质及推论(详细)一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,… 观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。

下面我们来研究完全平方数的一些常用性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,十位数字为偶数。

证明奇数必为下列五种形式之一:10a+1, 10a+3, 10a+5, 10a+7, 10a+9 分别平方后,得(10a+1)^2=100a^2+20a+1=20a(5a+1)+1 (10a+3)^2=100a^2+60a+9=20a(5a+3)+9 (10a+5)^2=100a^2+100a+25=20 (5a+5a+1)+5 (10a+7)^2=100a^2+140a+49=20 (5a+7a+2)+9 (10a+9)^2=100a^2+180a+81=20 (5a+9a+4)+1 综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。

性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

证明已知m^2=10k+6,证明k为奇数。

因为k的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。

则10k+6=(10n+4)^2=100n^2+(8n+1)x10+6 或10k+6=(10n+6)^2=100n^2+(12n+3)x10+6 即k=10+8n+1=2(5+4n)+1 或k=10+12n+3=2(5+6n)+3 ∴ k为奇数。

推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。

完全平方数奥数题目

完全平方数奥数题目
完全平方数是指一个数可以表示为某个整数的平方的形式,例如1、4、9、16等。

下面是一个关于完全平方数的奥数题目:
题目,求小于100的所有完全平方数。

解析:
要求小于100的所有完全平方数,可以通过遍历1到100的所有数,判断每个数是否是完全平方数。

判断一个数是否是完全平方数有多种方法,下面列举两种常用的方法:
方法一,利用数学性质。

对于一个正整数n,如果它是完全平方数,那么它的平方根一定是整数。

所以,我们可以遍历1到100的所有数,判断每个数的平方根是否为整数,如果是整数,则该数是完全平方数。

方法二,利用循环遍历。

我们可以从1开始,依次判断每个数的平方是否小于100,如
果小于等于100,则该数是完全平方数。

根据上述两种方法,我们可以得到小于100的所有完全平方数
如下:
1、4、9、16、25、36、49、64、81。

以上是关于小于100的所有完全平方数的解答。

希望能帮到你!。

精选2022小升初数学知识点:完全平方数

精选2022小升初数学知识点:完全平方数
小升初数学复习大家要把学过的知识点及时的进行回顾,这样才能加深对知识的掌握程度,下面为大家分享小升初数学知识点完全平方数,希望对大家有帮助!
完全平方数特征:
1.末位数字只能是:0、1、4、5、6、9;反之不成立。

2.除以3余0或余1;反之不成立。

3.除以4余0或余1;反之不成立。

4.约数个数为奇数;反之成立。

5.奇数的平方的十位数字为偶数;反之不成立。

6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。

7.两个相临整数的平方之间不可能再有平方数。

平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
数学在人的生活中处处可见,息息相关。

以上是为大家分享的小升初数学知识点完全平方数,希望能够切实的帮助到大家!
第 1 页共1 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业
课后作业 <作业6>
从1到1997的所有自然数中,乘以90后是完全平方数的数共有多少个?
平方差公式: X2-Y2=(X-Y)(X+Y)
精讲7(20+8)2
(12-2)2
= 202 +2×20×8+ 82 = 400 +320+ 64
= 122 -2×12×2+ 22 = 144-48+ 4
= 784
= 100
完全平方和公式:
(X+Y)2=X2+2XY+Y2 完全平方差公式:
(X-Y)2=X2 - 2XY+Y2
精讲1
解法精讲
02 = 0
52 = 25
102 = 100
252 = 625
完全平方数
精讲2 尾数特征1
完全平方数的 个位只可能是 0,1,4,5,6,9
常用完全平方数表
尾数特征2
奇数平方 个位数字是奇数 十位数字为偶数
精讲3 尾数特征3
偶数平方 个位数字 是偶数
常用完全平方数表
尾数特征4
两个相临平方数 之间不可能再有 平方数
1234567654321 (1 2 3 4 5 6 7 6 5 4 3 2 1) 是 的平方。
12345678987654321×(1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1)

的平方。
写出从360到630的自然数中有奇数个因数的数。
从1到2011中有几个有偶数个因数的整数?
最小数的最小值为

一个数的完全平方有39个约数,求该数的因数个数是多少?
一个数的完全平方有93个约数,求该数的约数个数是多少?
一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?
能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?
课后作业 <作业1>
一个正整数加上132和231后都等于完全平方数,求这个正整数是多少?
精讲4 余数特征1
完全平方数除 以 3 的余数只 能是 0或1。
常用完全平方数表
余数特征2
完全平方数除 以 4 的余数只 能是 0或1。
精讲5
完全平方 数的因数有
奇数个
常用完全平方数表 每个质因
数的次数都是 偶数次。
因数特征
精讲6
常用完全平方数表
102- 92 =100-81=19
102- 92 = (10+9)×(10-9)=19
从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?
从1到2011的所有自然数中,乘以60后不是完全平方数的数共有多少个?
有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这
五个数中最小数的最小值为

有3个连续自然数,它们的和为一个立方数,中间数是平方数,则这3个数中
课后作业 <作业2>
1988与正整数a的乘积是一个完全平方数,则a的最小值是________。
课后作业 <作业3> 两个完全平方数的差为77,则这两个完全平方数的和最大是多少?最小是多少?
课后作业
<作业4> 2007与正整数a的乘积是一个完全平方数,则a的最小值是________。
<作业5> 一个数的完全平方有35个约数,求该数的约数个数是多少?
一个数与它自身的乘积称为这个数的平方。各位数字互不相同且各位数字的 平方和等于49的四有________个。
1016与正整数a的乘积是一个完全平方数,则a的最小值是________。
已知3528a恰是自然数b的平方数,a的最小值是多少?
证明:形如11,111,1111,11111, ………的数中没有完全平方数。
有一个正整数的平方,它的最后三位数字相同但不为0,试求满足上述条件 的最小的正整数。
自然数的平方按大小排成1,4,9,16,25,36,49,………,问:第612 个位置的数字是几?
不是零的自然数的平方按照从小到大的顺序接连排列,是:149162536……, 则从左向右的第16个数字是_________。
相关文档
最新文档