第七章向量处理
微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
向量的概念与线性运算

第七章 向量代数与 空间解析几何
单/击/此/处/添/加/副/标/题
汇报人姓名
7.1 向量的概念与线性运算
01 向 量 的 概 念
单击此处添加文本 具体内容
02 向 量 的 线 性 运 算
单击此处添加文本 具体内容
一 向量的概念
向量: 既有大小又有方向的量。
M2
向量表示: a或 M1M2
பைடு நூலகம்
M 1
以 M1为起点,M 2为终点的有向线段。
向量的模: 向量的大小, 记为 | a| 或 | M1|M2 。
单位向量: 模长为1的向量。
零向量: 模长为0的向量, 记为 0,其方向是任意的。
自由向量:
不考虑起点位置的向量。
相等向量: 大小相等且方向相同的向量。
a
b
负向量: 大小相等但方向相反的向量, 记为 a 。
二 向量的线性运算
1 加法 a b c
b
c
平行四边形法则
三角形法则
a c
b
特殊地:若
a‖ b,
a
则分为同向和反向
向量的加法符合下列运算规律:
(2)结合 律:
2 减法 (3) (1)交换律:
a 与a 同向,
a 与a 反向,
3 数与向量的乘法(简称:数乘运算) 设 是一个数,它与向量 的乘积 是一向量, 规定如下: 数乘运算符合下列运算规律: (1)结合律: (2)分配律:
定理 设向量 a0,则向量
必要条件是:存在唯一的实数
b平行于
,使得
a的充分
ba.
注:一般用 a0表示与非零向量 a同方向的单位向量,
第七章 第七节 立体几何的向量方法

解析: = - ,- ,-6,2)=2(-2,- ,-3,1),∴a∥c. 解析:∵c=(-4,- = - ,- , ∥ =-2× + - × + × = , 又a·b=- ×2+(-3)×0+1×4=0,∴a⊥b. =- ⊥ 答案: 答案:C
2.如图所示,正方体ABCD-A1B1C1D1中, 如图所示,正方体 如图所示 - E,F分别是 1,CD的中点,M为AE , 分别是 分别是BB 的中点, 为 的中点 上一点. 上一点. (1)求证平面 求证平面AED⊥平面 1FD1; 求证平面 ⊥平面A (2)当AM与AE有怎样的数量关系时,A1M⊥平面 当 与 有怎样的数量关系时 有怎样的=(-2,4,0), NC =(-2,4,0), - , - , uuu uuur r ∴ DE = NC .∴DE∥NC, ∴ ∥ ,
又 NC 在平面 ABC 内,故 DE∥平面 ABC. ∥ uuu r uuuu r (2) B1 F =(-2,2,- , EF =(2,- ,- , ,-4), ,-2,- - ,- ,- ,-2), uuur AF =(2,2,0), , uuuu uuu r r B1 F · EF =(-2)×2+2×(-2)+(-4)×(-2)=0, - × + ×- +- ×- = ,
为坐标原点, 、 解:以 B 为坐标原点,BC、BB1、BA 所在 的直线分别为 x、y、z 轴建立如图所示的空 、 、 间直角坐标系, 间直角坐标系,则 B(0,0,0),C1(1,2,0),B1 , , (0,2,0). . (1)在直三棱柱 ABC-A1B1C1 中,平面 ABC 的一个法向量为 在直三棱柱 - uuur uuuu r BB1 =(0,2,0),又 BC1 =(1,2,0),设 BC1 与平面 ABC 所成的 , , 角为 θ, ,
高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
第七章第6讲 空间向量及其运算

第6讲 空间向量及其运算[学生用书P144])1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.5.空间位置关系的向量表示1.辨明四个易误点(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a ∥b ⇔存在唯一的实数λ∈R ,使a =λb 易忽视b ≠0. (3)共面向量定理中,注意有序实数对(x ,y )是唯一存在的.(4)向量的数量积满足交换律、分配律,但不满足结合律,即(a ·b )c =a (b ·c )不一定成立. 2.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直. (2)尽可能地让相关点落在坐标轴或坐标平面上. 3.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.1.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对C [解析] 因为c =(-4,-6,2)=2a ,所以a ∥c .又a ·b =0,故a ⊥b .2.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|P A |=|PB |,则P 点坐标为( )A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)C [解析] 设P (0,0,z ),则有 (1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.3.教材习题改编 在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +cA [解析] 由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .4.教材习题改编 已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为________.[解析] 因为a =(2,4,x ),|a |=6,则x =±4, 又b =(2,y ,2),a ⊥b , 当x =4时,y =-3,x +y =1. 当x =-4时,y =1,x +y =-3. [答案] 1或-35.若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.[解析] 因为α∥β,所以u 1∥u 2,所以-36=y -2=2z ,所以y =1,z =-4,所以y +z =-3. [答案] -3空间向量的线性运算[学生用书P145][典例引领]如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. (1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.【解析】 (1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA →=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 【答案】 (1)A 1A →(2)12AB →+12AD →+AA 1→若本例条件不变,结论改为:设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD→+zAA 1→,试求x ,y ,z 的值.[解] EO →=ED →+DO → =-23DD 1→+12(DA →+DC →)=12AB →-12AD →-23AA 1→,由条件知,x =12,y =-12,z =-23.用基向量表示指定向量的方法(1)应结合已知和所求向量观察图形.(2)将已知向量和未知向量转化至三角形或平行四边形中.(3)利用三角形法则或平行四边形法则,把所求向量用已知基向量表示出来.如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.[解] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 因为N 是BC 的中点, 所以NC 1→=NC →+CC 1→=12BC →+AA 1→ =12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c .共线、共面向量定理的应用[学生用书P146][典例引领]已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【证明】 (1)连接BG (图略), 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知,E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(1)证明空间三点P 、A 、B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P 、M 、A 、B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM→=13(OA →+OB →+OC →). (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解] (1)由题知OA →+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面, 从而点M 在平面ABC 内.空间向量的数量积与坐标运算[学生用书P146][典例引领](1)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i (i =1,2,…,8)是上底面上其余的八个点,则AB →·AP i →(i =1,2,…,8)的不同值的个数为( )A .1B .2C .4D .8(2)正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B .33 C.23D .63(3)已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29,且λ>0,则λ=________. 【解析】 (1)由题图知,AB 与上底面垂直,因此AB ⊥BP i (i =1,2,…,8),AB →·AP i→=|AB →||AP i →|cos ∠BAP i =|AB →|·|AB →|=1(i =1,2,…,8).故选A.(2)不妨设正方体的棱长为1,如图,建立空间直角坐标系,则D (0,0,0),B (1,1,0),B 1(1,1,1),平面ACD 1的法向量为DB 1→=(1,1,1),又BB 1→=(0,0,1),所以cos 〈DB 1→,BB 1→〉=DB 1→·BB 1→|DB 1→||BB 1→|=13×1=33, 所以BB 1与平面ACD 1所成角的余弦值为1-⎝⎛⎭⎫332=63.(3)λa +b =λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),由已知得|λa +b |=42+(1-λ)2+λ2=29,且λ>0,解得λ=3.【答案】 (1)A (2)D (3)3(1)空间向量数量积计算的两种方法 ①基向量法:a ·b =|a ||b |cos 〈a ,b 〉.②坐标法:设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则a ·b =x 1x 2+y 1y 2+z 1z 2. (2)利用数量积解决有关垂直、夹角、长度问题 ①a ≠0,b ≠0,a ⊥b ⇔a ·b =0. ②|a |=a 2. ③cos 〈a ,b 〉=a ·b|a ||b |.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.[解] 因为A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →,所以a =(1,1,0),b =(-1,0,2).(1)cos θ=a·b |a ||b |=-1+0+02×5=-1010,所以a 和b 的夹角θ的余弦值为-1010. (2)因为k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2), k a -2b =(k +2,k ,-4)且(k a +b )⊥(k a -2b ),所以(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0. 解得k =-52或k =2.利用空间向量证明平行和垂直(高频考点)[学生用书P147]空间几何中的平行与垂直问题是高考试题中的热点问题.考查形式灵活多样,可以是小题,也可以是解答题的一部分,或解答题的某个环节,是高考中的重要得分点.高考对空间向量解决此类问题有以下两个命题角度:(1)证明平行问题; (2)证明垂直问题.[典例引领](1)(2015·高考湖南卷节选)如图,已知四棱台ABCD -A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.若P 是DD 1的中点,证明:AB 1⊥PQ .(2)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .【证明】 (1)由题设知,AA 1,AB ,AD 两两垂直.以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.若P 是DD 1的中点,则P ⎝⎛⎭⎫0,92,3,PQ →=(6,m -92,-3). 又AB 1→=(3,0,6),于是AB 1→·PQ →=18-18=0, 所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)因为平面P AD ⊥平面ABCD 且ABCD 为正方形,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), 所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →, 又因为FE →与FG →不共线, 所以PB →与FE →,FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.[题点通关]角度一 证明平行问题 1.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.利用向量方法证明:直线MN ∥平面OCD .[证明] 作AP ⊥CD 于点P ,连接OP ,如图,分别以AB ,AP ,AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0,MN →=⎝⎛⎭⎫1-24,24,-1,OP →=⎝⎛⎭⎫0,22,-2,OD →=⎝⎛⎭⎫-22,22,-2. 设平面OCD 的一个法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0.取z =2,得n =(0,4,2).因为MN →·n =⎝⎛⎭⎫1-24,24,-1·(0,4,2)=0,所以MN →⊥n ,且MN ⊄平面OCD ,所以MN ∥平面OCD .角度二 证明垂直问题2.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . [证明] (1)如图所示,以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4),BC →=(-8,0,0), 所以AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)连接MB ,MC .由(1)知AP =5, 又AM =3,且点M 在线段AP 上,所以AM →=35AP →=⎝⎛⎭⎫0,95,125,又BA →=(-4,-5,0), 所以BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, 所以AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .[学生用书P360(独立成册)]1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2D [解析] 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.2.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直B [解析] 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB →与CD →没有公共点.所以AB ∥CD .3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( )A.627 B .9 C.647D .657D [解析] 由题意知存在实数x ,y 使得c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2), 由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y .解得x =337,y =177,所以λ=997-347=657.4.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定B [解析] 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.5.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为( )A .(1,1,1)B .⎝⎛⎭⎫1,1,12 C.⎝⎛⎭⎫1,1,32 D .(1,1,2)A [解析] 设P (0,0,z ),依题意知A (2,0,0),B (2,2,0),则E ⎝⎛⎭⎫1,1,z2, 于是DP →=(0,0,z ),AE →=⎝⎛⎭⎫-1,1,z 2, cos 〈DP →,AE →〉=DP →·AE →|DP →||AE →|=z 22|z |·z24+2=33. 解得z =±2,由题图知z =2,故E (1,1,1).6.(2017·唐山统考)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC→1,N为B 1B 的中点,则|MN →|为( ) A.216a B .66a C.156a D .153a A [解析] 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a ,0,0),C 1(0,a ,a ), N ⎝⎛⎭⎫a ,a ,a2.设M (x ,y ,z ), 因为点M 在AC 1上且AM →=12MC 1→,所以(x -a ,y ,z )=12(-x ,a -y ,a -z ),所以x =23a ,y =a 3,z =a3. 所以M ⎝⎛⎭⎫2a 3,a 3,a 3,所以|MN →| =⎝⎛⎭⎫a -23a 2+⎝⎛⎭⎫a -a 32+⎝⎛⎭⎫a 2-a 32=216a . 7.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ ,点Q 在平面yOz 上,则垂足Q 的坐标为________.[解析] 由题意知点Q 即为点P 在平面yOz 内的射影, 所以垂足Q 的坐标为(0,2,3). [答案] (0,2,3)8.在空间直角坐标系中,以点A (4,1,9),B (10,-1,6),C (x ,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为__________.[解析] 由题意知AB →=(6,-2,-3), AC →=(x -4,3,-6).又AB →·AC →=0,|AB →|=|AC →|,可得x =2. [答案] 29.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.[解析] 由题意得,(2a +b )·c =0+10-20=-10. 即2a ·c +b ·c =-10,又因为a ·c =4,所以b ·c =-18, 所以cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,所以〈b ,c 〉=120°,所以两直线的夹角为60°. [答案] 60°10.已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a 、b 、c 表示向量MN →=________.[解析] 如图所示,MN →=12(MB →+MC →)=12[(OB →-OM →)+(OC →-OM →)]=12(OB →+OC →-2OM →)=12(OB →+OC →-OA →)=12(b +c -a ). [答案] 12(b +c -a )11.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →; (2)EG 的长.[解] 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22.12.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB ,AC 为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. [解] (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2), 所以cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.所以sin 〈AB →,AC →〉=32,所以以AB ,AC 为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3. (2)设a =(x ,y ,z ), 由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1,所以向量a 的坐标为(1,1,1)或(-1,-1,-1).13.有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3D .4B [解析] ①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立.③正确.④中若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.14.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.[解析] 对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),说明当x =x 0,y =y 0时,|b -(x e 1+y e 2)|取得最小值1.|b -(x e 1+y e 2)|2=|b |2+(x e 1+y e 2)2-2b ·(x e 1+y e 2)=|b |2+x 2+y 2+xy -4x -5y ,要使|b |2+x 2+y 2+xy -4x -5y 取得最小值,需要把x 2+y 2+xy -4x -5y 看成关于x 的二次函数,即f (x )=x 2+(y -4)x +y 2-5y ,其图象是开口向上的抛物线,对称轴方程为x =2-y2,所以当x=2-y 2时,f (x )取得最小值,代入化简得f (x )=34(y -2)2-7,显然当y =2时,f (x )min =-7,此时x =2-y2=1,所以x 0=1,y 0=2.此时|b |2-7=1,可得|b |=2 2.[答案] 1 2 2 2 15.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[证明] (1)设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a ,0,0), B (0,0,a ),D (a ,3a ,0), E (a ,3a ,2a ). 因为F 为CD 的中点, 所以F ⎝⎛⎭⎫32a ,32a ,0.AF →=⎝⎛⎭⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a ,0,-a ).因为AF →=12(BE →+BC →),AF ⊄平面BCE ,所以AF ∥平面BCE .(2)因为AF →=⎝⎛⎭⎫32a ,32a ,0,CD →=(-a ,3a ,0),ED →=(0,0,-2a ),所以AF →·CD →=0,AF →·ED →=0, 所以AF ⊥CD ,AF ⊥ED .又CD ∩DE =D ,所以AF ⊥平面CDE . 又AF ∥平面BCE ,所以平面BCE ⊥平面CDE .16.如图,正三角形ABC 的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)AB ∥平面DEF ,理由如下: 在△ABC 中,由E 、F 分别是AC 、BC 的中点, 得EF ∥AB .又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .(2)以点D 为坐标原点,直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),故DE →=(0,3,1). 假设存在点P (x ,y ,0)满足条件,则AP →=(x ,y ,-2), AP →·DE →=3y -2=0, 所以y =233.又BP →=(x -2,y ,0),PC →=(-x ,23-y ,0), BP →∥PC →,所以(x -2)(23-y )=-xy , 所以3x +y =2 3.把y =233代入上式得x =43,所以BP →=13BC →,所以在线段BC 上存在点P 使AP ⊥DE ,此时BP BC =13.。
《高等数学》第7章空间向量与空间解析几何

d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z
Ⅲ
Ⅱ
Ⅳ
Ⅰ
O
Ⅶx
Ⅴ
Ⅷ
Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第
高等代数07向量空间

本征值和本征向量
定义1 定义1 中一个数,如果存在 中非零向量ξ 设λ是F中一个数 如果存在 中非零向量ξ,使得 中一个数 如果存在V中非零向量 (1) )=λξ σ(ξ)=λξ . 那么λ就叫做σ的一个本征值, 叫做σ 那么 λ 就叫做 σ 的一个本征值 , 而 ξ 叫做 σ 的属于本 征值λ的一个本征向量. 征值λ的一个本征向量.
定义2 定义2 是数域F上一个 阶矩阵,行列式 设A=(aij)是数域 上一个 阶矩阵 行列式 是数域 上一个n阶矩阵 行列式: x-a11 (x)=det(xIfA(x)=det(xI-A)= -a21 -an1 叫做矩阵A的特征多项式. 叫做矩阵A的特征多项式. -a12 … -a1n -a2n x-ann
命题 7.3.3 设数域F上的向量空间V的一个线性变换σ关于V 的一个取定的基的矩阵是A,那么σ可逆必要且只要A可逆,并且 σ-1关于这个基的矩阵就是A-1.
不变子空间
定义 V的一个子空间W说是在线性变换σ之下不变(或稳 的一个子空间W说是在线性变换σ之下不变( ),如果 定),如果 σ (W ) W . 如果子空间W在σ之下不变,那么W就叫做σ的一个不 如果子空间W 之下不变,那么W就叫做σ 变子空间. 变子空间.
命题 7.1.1 设V和W是数域F上向量空间,而σ:V→W是一个线性 映射.那么V的任意子空间在σ之下的像是W的一个子空间,而W 的任意子空间在σ之下的原像是V的一个子空间.
命题 7.1.2 设V和W是数域F上向量空间,而σ:V→W是一个线 性映射,那么 Im(σ)=W. (Ⅰ) σ是满射 (Ⅱ) σ是单射 Ker(σ)=|0|.
推论 7.6.3 令σ是数域F上n维向量空间V的一个线性变换. 如果σ的特征多项式fσ(x)在F内有n个单根,那么存在V的一个 基,使σ关于这个基的矩阵是对角形式.
第七章第1节向量及其线性运算

定义1
由n个数 a1, a2,…, an 所组成的有序数组
= (a1, a2,…, an)
称为n维向量. 数 a1, a2,… an 称为向量 的分量 (坐标),aj 称为向量 的第 j 个分量(坐标). 一般地,我们用, , 表示向量,a, b, c 或 x, y, z 表示其分量.
线性相关.
定理3. 任意 n+1 个 n 维向量都是线性相关的.
推论3. 若1, 2,… m为 n 维向量.且 m > n
则此向量组 线性相关.
定义3. 设 T 是 n 维向量所组成的向量组.
如果 T 的部分组 1, 2,…,r 满足
(i) 1, 2,…, r 线性无关; (ii) T, 可由1, 2,…, r 线性表出, 即 , 1, 2,…,r 线性相关. 则称向量组1, 2,…, r为向量组T的一个极大线性无 关向量组,也称极大无关组.
0= 1 (1 + 2 )+ 2 (2+ 3 )+ 3(3 + 1 ) = (1+ 3)1 + (1 +2)2 + (2 +3 )3.
1+3 =0, 1+ 2 =0,
2+3 =0.
1+2+ 3=0, 1=2= 3=0. 故 1 , 2 , 3 线性无关. 证毕.
且 1, 2,…, r, 0, …, 0 不全为零,
即1, 2, …, r , r+1 ,…,m 线性相关.
推论1. 若1, 2,…, r 线性无关. 则其部分组 (由1, 2,…, r 中某些向量组成的向量组)
也线性无关.
推论2. 若向量组中含有零向量, 则 此向量组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机体系结构 7. 4
Operation & Instruction Count: RISC v. Vector Processor
(from F. Quintana, U. Barcelona.)
Spec92fp Operations (Millions) Instructions (M)
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1
set vector mask
计算机体系结构 7. 9
Program RISC Vector R / V RISC Vector R / V
swim256 115 95 1.1x 115 0.8 142x
hydro2d 58 40 1.4x 58 0.8
71x
nasa7
69 41 1.7x 69 2.2
31x
su2cor
51 35 1.4x
51 1.8
scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• Scalar registers: 存放单个元素用于标量处理或存储地址 • 用交叉开关连接(Cross-bar to connect) FUs , LSUs,
registers
计算机体系结构 7. 7
计算机体系结构 7. 8
“DLXV” Vector Instructions
Instr. Operands eration
SCALAR (1 operation)
VECTOR (N operations)
r1 r2 + r3
add r3, r1, r2
v1 v2
+
v3 vector
length
add.vv v3, v1, v2
计算机体系结构 7. 3
向量处理机的基本特性
• 向量处理机的基本思想:把两个向量的对应分量进行运算,产生一个 结果向量。
• 简单的一条向量指令包含了多个操作 => fewer instruction fetches
• 每一结果独立于前面的结果 => 长流水线,编译器保证操作间没有相关性 =>硬件仅需检测两条向量指令间的相关性 => 较高的时钟频率
• 向量指令以已知的模式访问存储器 => 可有效发挥多体交叉存储器的优势 => 可通过重叠减少存储器操作的延时 64 elements => 不需要数据Cache! (仅使用指令cache)
第七章 向量处理
主要参考:Professor David A. Patterson的讲稿
计算机体系结构 7. 1
传统指令级并行技术的问题
• 挖掘ILP的传统方法的主要缺陷:
1) 提高流水线的时钟频率: 提高时钟频率,有时导
致CPI随着增加 (branches, other hazards)
2) 指令预取和译码: 有时在每个时钟周期很难预取
和译码多条指令
3) 提高Cache命中率 : 在有些计算量较大的应用
中(科学计算)需要大量的数据,其局部性较差, 有些程序处理的是连续的媒体流(multimedia),其 局部性也较差。
计算机体系结构 7. 2
Alternative Model:Vector Processing
• 向量处理机具有更高层次的操作,一条向量指令可以处理N 个或N对操作数(处理对象是向量)
计算机体系结构 7. 10
Memory operations
• Load/store 操作成组地在寄存器和存储器之间移 动数据
• 三类寻址方式
– Unit stride (单步长) »Fastest
– Non-unit (constant) stride (常数步长) – Indexed (gather-scatter) (间接寻址)
• Vector Functional Units (FUs): 全流水化的,每一个clock 启动一个新的操作
– 一般4到8个FUs: FP add, FP mult, FP reciprocal (1/X), integer add, logical, shift; 可能有些重复设置的部件
• Vector Load-Store Units (LSUs): 全流水化地load 或store 一个向量,可能会配置多个LSU部件
• memory-memory vector processors: 所有的向量操作 是存储器到存储器的
• vector-register processors: 除了load 和store操作外, 所有的操作是向量寄存器与向量寄存器间的操作
– 向量机的Load/Store结构 – 1980年以后的所有的向量处理机都是这种结构:
Cray, Convex, Fujitsu, Hitachi, NEC – 下面我们也主要针对这种结构
计算机体系结构 7. 6
向量处理机的基本组成单元
• Vector Register: 固定长度的一块区域,存放单个向量
– 至少2个读端口和一个写端口 – 典型的有8-32 向量寄存器,每个寄存器存放64到128个64位的元素
Comment
• ADDV V1,V2,V3 V1=V2+V3
vector + vector
• ADDSV V1,F0,V2 V1=F0+V2
scalar + vector
• MULTV V1,V2,V3 V1=V2xV3
vector x vector
• MULSV V1,F0,V2 V1=F0xV2
29x
tomcatv 15 10 1.4x 15 1.3
11x
wave5
27 25 1.1x 27 7.2
4x
mdljdp2 32 52 0.6x 32 15.8
2x
Vector reduces ops by 1.2X, instructions by 20X
计算机体系结构 7. 5
向量处理机的基本结构