二次函数顶点式练习题
顶点式专题训练(含答案解析)

顶点式专题训练(含答案解析)一、填空题(本大题共3小题,共9.0分)x2−x+3用配方法化成y=a(x−ℎ)2+k的形式是______ ;该二次函数图象的顶点坐标是1.把二次函数y=−14______ .2.将二次函数y=x2−2x化为顶点式的形式为:______ .3.把二次函数y=x2−2x−1配方成顶点式为______ .二、解答题(本大题共12小题,共96.0分)4.已知二次函数y=−2x2+8x−6,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k的形式,并写出它的顶点坐标、对称轴;(2)它的图象与x轴交于A,B两点,顶点为C,求S△ABC.5.已知二次函数y=−2x2+8x−4,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k形式,并写出它的顶点坐标、对称轴.(2)若它的图象与x轴交于A、B两点,顶点为C,求△ABC的面积.6.已知二次函数y=x2−6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.7.已知二次函数y=x2+2x−3.(1)将y=x2+2x−3用配方法化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的顶点坐标.8.用配方法将二次函数化成y=a(x−ℎ)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x−12②y=−0.5x2−3x+3.9.已知二次函数y=x2−6x+5.(1)将y=x2−6x+5化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当y>0时,求x的范围.10.已知二次函数y=2x2−8x+6.(1)把它化成y=a(x−ℎ)2+k的形式为:______ .(2)直接写出抛物线的顶点坐标:______ ;对称轴:______ .(3)求该抛物线于坐标轴的交点坐标.11.(1)解方程:12x(x−1)−(x−1)=0.(2)已知抛物线y=−2x2+8x−6,请用配方法把它化成y=a(x−ℎ)2+k的形式,并指出此抛物线的顶点坐标和对称轴.12.已知二次函数y=−12x2+x+32.(1)用配方法将此二次函数化为顶点式;(2)求出它的顶点坐标和对称轴方程.13.用配方法把二次函数y=x2−3x−4化成y=a(x−ℎ)2+k的形式,并写出该函数图象的开口方向、对称轴和顶点坐标.14.用配方法把函数y=−3x2−6x+10化成y=a(x−ℎ)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.15.已知二次函数y=x2−4x+3.(1)将函数化成y=(x−ℎ)2+k的形式;(2)写出该函数图象的顶点坐标和对称轴.答案和解析【答案】(x+2)2+4;(−2,4)1. y=−142. y=(x−1)2−13. y=(x−1)2−24. 解:(1)y=−2x2+8x−6=−2(x2−4x+3)=−2(x2−4x+4−4+3.=−2(x−2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2.(2)令−2(x−2)2+2=0解得:x1=3,x2=1.∴A(3,0),B(1,0)∴AB=3−1=2.∴C(2,2),×2×2=2.∴S△ABC=125. 解:(1)y=−2x2+8x−4=−2(x2−4x)−4=−2(x2−4x+4−4)−4=−2(x−2)2+4.所以,抛物线的顶点坐标为(2,4),对称轴为直线x=2.(2)令y=0得−2(x−2)2+4=0,(x−2)2=2,所以x−2=±√2,所以x1=2+√2,x2=2−√2.所以与x轴的交点坐标为A(2+√2,0),B(2−√2,0).×[(2+√2)−(2−√2)]×4=4√2.∴S△ABC=126. 解:(1)y=x2−6x+8=x2−6x+9−1=(x−3)2−1;(2)开口向上,对称轴是x=3,顶点坐标是(3,−1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.7. 解:(1)y=x2+2x−3=x2+2x+1−1−3 =(x+1)2−4.(2)∵y=(x+1)2−4,∴该二次函数图象的顶点坐标是(−1,−4).8. 解:①y=2x2+6x−12=2(x+32)2−332,则该抛物线的顶点坐标是(−32,−332),对称轴是x=−32;②y=−0.5x2−3x+3=−12(x+3)2+152,则该抛物线的顶点坐标是(−3,152),对称轴是x=−3.9. 解:(1)y=x2−6x+5=x2−6x+9−4=(x−3)2−4;(2)∵y=(x−3)2−4,∴该二次函数图象的对称轴是直线x=3,顶点坐标是(3,−4);(3)x2−6x+5=0,x1=1,x2=5,当x<1或x>5时,y>0.10. y=2(x−2)2−2;(2,−2);x=211. 解:(1)12x(x−1)−(x−1)=0,分解因式得:(x−1)(12x−1)=0,可化为:x−1=0或12x−1=0,解得:x1=1,x2=2;(2)∵y=−2x2+8x−6=−2(x2−4x+4)+8−6=−2(x−2)2+2,∴此抛物线的顶点坐标是(2,2),对称轴为直线x=2.12. 解:(1)二次函数y=−12x2+x+32=−12(x−1)2+2;(2)∵二次函数y=−12(x−1)2+2,∴二次函数的顶点坐标为(1,2),抛物线的对称轴为x=1.13. 解:y=x2−3x−4=(x−32)2−254,则函数图象的开口方向向上,对称轴是x=32,顶点坐标(32,−254).14. 解:∵y=−3x2−6x+10=−3(x+1)2+13,∴开口向下,对称轴x=−1,顶点坐标(−1,13),最大值13.15. 解:(1)y=x2−4x+4−4+3=(x−2)2−1;(2)图象的顶点坐标是(2,−1),对称轴是:x=2.【解析】1. 解:y=−14x2−x+3=−14(x2+4x)+3=−14(x+2)2+4,∴顶点(−2,4).(x+2)2+4,(−2,4).故答案为:y=−14利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式.2. 解:y=x2−2x=x2−2x+1−1=(x−1)2−1,故答案为y=(x−1)2−1.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查的是二次函数的三种形式,题目中给出的是一般形式,利用配方法可以化成顶点式.3. 解:y=x2−2x−1=(x2−2x+1)−1−1=(x−1)2−2,故选答案为y=(x−1)2−2.由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).4. (1)利用配方法整理成顶点式,然后写出顶点坐标和对称轴即可;(2)令y=0解关于x的一元二次方程,即可得到与x轴的交点坐标,然后利用三角形的面积公式计算即可;本题考查了二次函数的三种形式,二次函数的性质,二次函数图象与x轴的交点问题,熟练掌握配方法的操作整理成顶点式形式求出顶点坐标和对称轴更加简便.5. (1)利用配方法即可解决问题;(2)求出A、B、C三点坐标即可解决问题;本题考查抛物线与x轴的交点,二次函数的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6. (1)利用配方法将解析式化成顶点式;(2)根据二次函数的性质解答;(3)根据抛物线的开口方向、对称轴以及二次函数的性质解答.本题考查的是二次函数的三种形式、配方法的应用以及二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.7. 本题考查了二次函数的性质以及二次函数的三种形式.二次函数的解析式有三种形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数);②顶点式:y=a(x−ℎ)2+k;③交点式(与x轴):y=a(x−x1)(x−x2).(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;8. ①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.9. (1)利用配方法把一般式化为顶点式;(2)根据二次函数的性质解答;(3)求出x2−6x+5=0的解,解答即可.本题考查的是二次函数的三种形式、二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.10. 解:(1)y=2x2−8x+6=2(x2−4x+4)−8+6=2(x−2)2−2;(3)∵y=2x2−8x+6,∴当y=0时,2x2−8x+6=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0);当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6).故答案为y=2(x−2)2−2;(2,−2),x=2.(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数的性质,利用二次函数的顶点式即可求出抛物线的顶点坐标与对称轴;(3)把y=0代入y=2x2−8x+6,解方程求出x的值,从而得到抛物线与x轴的交点坐标;把x=0代入y=2x2−8x+6,求出y的值,从而得到抛物线与y轴的交点坐标.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).同时考查了二次函数的性质以及抛物线与坐标轴交点坐标的求法.11. (1)先将把方程左边化为两个一次因式积的形式,然后根据两数相乘积为0,两因式至少有一个为0转化为两个一元一次方程,求出方程的解即可得到原方程的解;(2)先利用配方法提出二次项系数,加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,再根据二次函数的性质即可写出抛物线的对称轴和顶点坐标.本题考查了二次函数解析式的三种形式,二次函数的性质及解一元二次方程−因式分解法,难度适中.12. (1)利用配方法将二次函数的一般式变形为顶点式,此题得解;(2)根据二次函数的顶点式,结合二次函数的性质即可得出顶点坐标以及对称轴.本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数的一般式变形为顶点式是解题的关键.13. 运用配方法把二次函数的一般式化为顶点式,根据二次函数的性质解答即可.本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键,14. (1)这个函数的二次项系数是−3,配方法变形成y=(x+ℎ)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数−3,加上一次项系数的一半,就可以变形成顶点式的形式.(2)二次函数的一般形式中的顶点式是:y=a(x−ℎ)2+k(a≠0,且a,h,k是常数),它的对称轴是x=ℎ,顶点坐标是(ℎ,k).本题主要是对抛物线一般形式中对称轴,顶点坐标的考查,是中考中经常出现的问题.15. (1)把一般式利用配方法化为顶点式即可;(2)利用顶点式求得顶点坐标和对称轴即可.此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).。
22.1.4练习1二次函数化顶点式

【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.
3.(2010•安徽)若二次函数 y=x2+bx+5 配方后为 y=(x﹣2)2+k,则 b、k 的值分别为
()
A.0,5
B.0,1
C.﹣4,5
D.﹣4,1
【分析】可将 y=(x﹣2)2+k 的右边运用完全平方公式展开,再与 y=x2+bx+5 比较,即
A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25
Байду номын сангаас
3.(2010•安徽)若二次函数 y=x2+bx+5 配方后为 y=(x﹣2)2+k,则 b、k 的值分别为
( )A.0,5 B.0,1 C.﹣4,5 D.﹣4,1
4.(2010•泰安)将 y=2x2﹣12x﹣12 变为 y=a(x﹣m)2+n 的形式,则 m•n=
A.y=﹣ (x﹣2)2+2
B.y= (x﹣2)2+4
C.y=﹣ (x+2)2+4
D.y=
2+3
【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方 式,把一般式转化为顶点式. 【解答】解:y=﹣ x2﹣x+3=﹣ (x2+4x+4)+1+3=﹣ (x+2)2+4
故选:C. 10.(2014•成都校级自主招生)将 y=(2x﹣1)•(x+2)+1 化成 y=a(x+m)2+n 的形式
(x﹣3)2﹣10 .
顶点式练习题

(2)画图略.
12.已知抛物线y=-2(x+a)2+c的顶点在第四象限,则( C) A.a>0,c>0 B.a>0,c<0 C.a<0,c<0 D.a<0,c>0
解:(1)(-3,0) (1,0); (2)由图象知,抛物线过点(-3,0),∴0=4a+2,∴a=-12;
(3)由图象知,P(-1,2),A(-3,0),B(1,0),∴S△PAB=12×4×2=4.
18.已知二次函数 y=(x+m)2+k 的顶点坐标为(1,-4). (1)求二次函数的解析式及图象与 x 轴交于 A,B 两点的坐标; (2)将二次函数的图象沿 x 轴翻折,得到一个新的抛物线,求新抛物线 的解析式.
A.h=m B.k>n C.k=n D.h>0,k>0
15.若二次函数 y=(x-m)2-1,当 x≤1 时,y 随 x 的增大而减小,则 m 的取值范围是( C )
A.m=1 B.m>1 C.m≥1 D.m≤1
16.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n 的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C,D两点(C 在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( D)
2.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+2的图象上,若 x1>x2>1,则y1与y2的大小关系是( A)
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
3.二次函数 y=-2(x+1)2+2 的图象大致是( D )
4.对于抛物线 y=-(x+1)2-3,下列结论: ①抛物线的开口向下; ②对称轴为直线 x=1; ③顶点坐标为(-1,-3); ④x>1 时,y 随 x 的增大而减小.其中正确的结论有( C ) A.1 个 B.2 个 C.3 个 D.4 个
二次函数练习顶点式练习题

得到的抛物线是。
5、把抛物线y= -(X -1)2-1向平移个单位,再向平移
2
个单位得到抛物线y= —(X十2)-3.
12
6、 抛物线y (x4)-7的顶点坐标是,对称轴是直
2
线,它的开口向,在对称轴的左侧,即当x<时,
y随x的增大而;在对称轴的右侧,即当x>时,y随x的增
大而;当x=时,y的值最,最值
15、二次函数y= —
A.(—1,3)
16、
17、
B. y=x2—3
C. y=(x+3)2
2
(x—1)+3图像的顶点坐标是(
B.(1,3)
二次函数y=x2+x—6的图象与
A.2和一3B.—2和3
二次函数y=ax2的图像开口向
,图像有最-
是
—时,y随x的增大而减小。
1
x
3
18、关于y=
A.顶点相同
点,x
D. y=(x—3)2
)
C.(—1,—3)
D.(1, —3)
x轴交点的横坐标是(
C.2和3
,对称轴是.
D.
)
—2和一3
,顶点坐标
时,y随x的增大而增大,x
2 2 2
,y = x,y=3x的图像,下列说法中不正确的是()
B.对称轴相同C.图像形状相同D.最低点相同
7、将抛物线y=3x2向左平移6个单位,再向下平移7个单位所得新抛物线的 解析式为。
,它有最
值,即当x=
达式为
一时,y=
12、边长为12cm的正方形铁片,中间剪去一个边长为x的小正方形铁片,
剩下的四方框铁片的面积y(cm2)与x(cm)之间的函数表达式为
二次函数一般式化为顶点式的例题

二次函数一般式化为顶点式的例题.
当将二次函数的一般式`f(x) = ax^2 + bx + c` 化为顶点式`f(x) = a(x - h)^2 + k` 时,需要将函数的形式转化为完全平方的形式。
下面给出一个例题来说明具体的步骤:
将二次函数`f(x) = 2x^2 - 4x + 3` 化为顶点式。
步骤1:将x 的一次项系数 b 用平方项的形式表示。
这里 b = -4,我们希望将其表示为(x - h)^2 的形式。
`(x - h)^2 = x^2 - 2hx + h^2`
步骤2:根据步骤1,需要找到h 的值。
我们可以通过公式`-b/(2a)` 来求得h。
h = -(-4) / (2*2) = 1
步骤3:将h 的值代入步骤 1 中,得到完全平方的形式。
`(x - 1)^2 = x^2 - 2x + 1`
步骤4:将步骤 3 中得到的表达式代入函数中,并将多余的常数项重新整理。
原函数:f(x) = 2x^2 - 4x + 3
= 2(x^2 - 2x) + 3
= 2(x^2 - 2x + 1 - 1) + 3
= 2((x - 1)^2 - 1) + 3
= 2(x - 1)^2 - 2 + 3
= 2(x - 1)^2 + 1
因此,将二次函数`f(x) = 2x^2 - 4x + 3` 化为顶点式得到`f(x) = 2(x - 1)^2 + 1`。
通过将二次函数从一般式化为顶点式,我们可以更清晰地看到函数的顶点位置和开口方向,方便进行图像的分析和计算。
初中数学--二次函数一般式和顶点式--练习题含答案

数学试卷一、填空题(共50小题;共250分)1.请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=.2.写出一个开口向下,顶点在第一象限的二次函数的表达式.3.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.4.抛物线的顶点在原点,且过点(3,−27),则这条抛物线的解析式为.5.二次函数y=−x2−2x+1化成y=a(x−ℎ)2+k的形式是.6.已知一抛物线与抛物线y=−1x2+3形状相同,开口方向相反,顶点坐标是3(−5,0).根据以上特点,试写出该抛物线的表达式为.7.如图,已知二次函数y=x2+bx+c的图象经过点(−1,0),(1,−2),当y随x的增大而增大时,x的取值范围是.8.若把函数y=x2+6x+5化为y=(x−m)2+k的形式,其中m,k为常数,则k−m=.9.已知抛物线与x轴交点的横坐标分别为3,1;与y轴交点的纵坐标为6,则二次函数的关系式是.10.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线对应的函数表达式:.11.若二次函数的图象开口向下,且经过(2,−3)点.符合条件的一个二次函数的解析式为.12.若把二次函数y=x2+6x+2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k=.13.将二次函数y=x2−2x−5化为y=a(x−ℎ)2+k的形式为y=.14.抛物线的顶点坐标为(1,−2),且过点(2,3),则函数的关系式:.15.如果二次函数y=x2+bx+c配方后为y=(x−2)2+1,那么c的值为.16.若抛物线y=ax2经过点(−3,4),则这函数的解析式是.17.如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.写出一个函数y=x2+c,使它的图象与正方形ABCD有公共点,这个函数的表达式为.18.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式.19.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为(表示为y= a(x+m)2+k的形式).20.把二次函数y=x2−12x化为形如y=a(x−ℎ)2+k的形式:.21.二次函数y=x2+bx+c的图象经过点(2,11)和点(−1,−7),则它的解析式为.22.将二次函数y=x2−2x化为顶点式的形式为:.23.形状与y=−1x2+3的图象形状相同,但开口方向不同,顶点坐标是(4,5)2的抛物线的解析式.24.用配方法将二次函数y=4x2−24x+26写y=a(x−ℎ)2+k的形式是.25.将二次函数y=x2−4x+5化成y=(x−ℎ)2+k的形式,则y=.26.用配方法将y=1x2−2x+1写成y=a(x−ℎ)2+k的形式,结果3为.27.若把函数y=x2−2x−3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.28.将y=2x2−12x−12变为y=a(x−m)2+n的形式,则m⋅n=.29.若抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),对称轴为直线x=1,则该抛物线对应的函数表达式为.30.将函数y=x2−2x+3写成y=a(x−ℎ)2+k的形式为.31.请写出一个图象的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式:.32.将抛物线y=x2−6x+5化为y=a(x−ℎ)2+k的形式为.33.将函数y=x2−2x+4化为y=a(x−ℎ)2+k的形式为.34.已知二次函数y=x2+bx+c的图象经过点A(−1,0),B(1,−2),该图象与x轴的另一交点为C,则AC的长为.35.把二次函数的表达式y=x2−4x+6化为y=a(x−ℎ)2+k的形式,那么ℎ+k=.36.抛物线y=−x2+bx+c的图象如图所示,则此抛物线的解析式为.37.已知二次函数y=x2+bx+c,当x=2时,y=0;当x=−1时,y=3,则这个二次函数的解析式为.38.把二次函数y=−1x2+3x+3化成y=a(x+m)2+k的形式4为.39.二次函数的图象的顶点坐标是(−2,3),它与y轴的交点坐标是(0,−3).40.将y=(2x−1)(x+2)+1化成y=a(x−ℎ)2+k的形式为.41.二次函数y=x2−2x+6化为y=(x−m)2+k的形式,则m+k=.42.将二次函数y=x2−4x+9化成y=a(x−ℎ)2+k的形式.43.一个二次函数,当自变量x=0时,函数值y=−1,当x=−2与1时,2 y=0,则这个二次函数的解析式是.44.将二次函数y=x2−4x+5化为y=(x−ℎ)2+k的形式,那么ℎ+k=.45.已知二次函数y=−x2+2x−3,用配方法化为y=a(x−ℎ)2+k的形式为.46.若将二次函数y=x2−2x+3配方为y=a(x−ℎ)2+k的形式,则y=.47.若把二次函数y=x2−2x+3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.48.抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(−1,−6)两点,则a+c=.49.把y=−1x2+6x−17配方成y=a(x+ℎ)2+k的形式是.250.设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线对应的函数表达式为.答案第一部分1.−x2+2x(答案不唯一)2.y=−3(x−2)2+3(不唯一)3.y=−x2+4x−3【解析】设抛物线的解析式为y=a(x−2)2+1,将B(1,0)代入y=a(x−2)2+1得,a=−1,函数解析式为y=−(x−2)2+1,展开得y=−x2+4x−3.4.y=−3x25.y=−(x+1)2+26.y=1(x+5)237.x≥12【解析】解析:依题意,有解得{b=−1,c=−2,∴y=x2−x−2,对称轴为x=12,时,y随x的增大而增大.∴当x≥128.−19.y=2x2−8x+610.y=x2−4x+3(答案不唯一)11.y=−x2−2x+5(答案不唯一)【解析】由题意得,二次函数的图象开口向下,且经过(2,−3)点,y=−x2−2x+5符合要求.但答案不唯一.12.−1013.(x−1)2−614.y=5(x−1)2−215.516.y=49x217.答案不惟一,如y=x2.(说明:写成y=x2+c的形式时,c的取值范围是−2≤c≤1)18.y=(x−1)(x−3),y=−(x−1)(x−3),y=15(x+1)(x−5),y=−15(x+1)(x−5)写出其中一个即可19.y=−(x−1)2+1(答案不唯一)20.y=(x−6)2−3621.y=x2+5x−322.y=(x−1)2−123.y=12(x−4)2+524.y=4(x−3)2−1025.(x−2)2+126.y=13(x−3)2−227.−328.−90【解析】y=2x2−12x−12=2(x2−6x+9)−30=2(x−3)2−30.所以m=3,n=−30.29.y=−x2+2x+330.y=(x−1)2+231.y=x2−2x+1(答案不唯一)32.y=(x−3)2−433.y=(x−1)2+334.3【解析】提示:解析式为y=x2−x−2.35.436.y=−x2+2x+337.y=x2−2x38.y=−14(x−6)2+1239.y=−32(x+2)2+340. y =2(x +34)2−17841. 642. y =(x −2)2+543. y =x 2+32x −1 44. 345. y =−(x −1)2−246. (x −1)2+247. 3【解析】y =x 2−2x +3=(x −1)2+2,∴m =1,k =2.∴m +k =3.48. −249. y =−12(x −6)2+1 50. y =18x 2−14x +2 或 y =−18x 2+34x +2 【解析】∵A (0,2),B (4,3),C 三点在抛物线上,∴c =2,16a +4b +2=3,又 ∵ 点 C 在直线 x =2 上,且点 C 到抛物线对称轴的距离等于 1, ∴ 对称轴为直线 x =1 或 x =3,当对称轴为直线 x =1 时,{−b 2a =1,16a +4b +2=3. 解得 {a =18,b =−14. ∴y =18x 2−14x +2, 当对称轴为直线 x =3 时,{−b 2a =3,16a +4b +2=3. 解得 {a =−18,b =34. ∴y =−18x 2+34x +2.。
用顶点式求二次函数解析式

一、 用顶点式求二次函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2)( 把顶点(1,3)代入得:3)1(2+-=x a y 把点(3,0)代入得:03)13(2=+-a解得:43-=a ∴抛物线解析式为:3)1(432+--=x y练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)2.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式;3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.已知二次函数m x x y +-=62的最小值为1,求m 的值.9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53 ,求这条抛物线的解析式;10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx axy ++=2把点(-1,10),(1,4),(2,7)代入得:⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪⎨⎧=-==532c b a ∴抛物线解析式为:5322+-=x x y练习11:二次函数的图象经过(0,0),(-1,-1),(1,9)12.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。
二次函数练习顶点式练习题

可编辑二次函数顶点式练习1、二次函数y=2x 2-4的顶点坐标为________,对称轴为__________。
2、二次函数1)3(22-+-=x y 由1)1(22+--=x y 向_____平移_______个单位,再向_____平移_______个单位得到。
3、抛物线3)2(32-+=x y 可由抛物线2)2(32++=x y 向 平移个单位得到. 4、将抛物线2)3(652+-=x y 向右平移3个单位,再向上平移2个单位,得到的抛物线是 。
5、把抛物线1)1(2---=x y 向 平移 个单位,再向_____平移_______个单位得到抛物线3)2(2-+-=x y .6、抛物线21(4)72y x =+-的顶点坐标是 ,对称轴是直线 ,它的开口向 ,在对称轴的左侧,即当x< 时,y 随x 的增大而 ;在对称轴的右侧,即当x> 时,y 随x 的增大而 ;当x= 时,y 的值最 ,最 值是 。
7、将抛物线y=3x 2向左平移6个单位,再向下平移7个单位所得新抛物线的解析式为 。
8、 若一抛物线形状与y =-5x 2+2相同,顶点坐标是(4,-2),则其解析式是__________________.9、两个数的和为8,则这两个数的积最大可以为 ,若设其中一个数为x ,积为y ,则y 与x 的函数表达式为 .10、一根长为100m 的铁丝围成一个矩形的框子,要想使铁丝框的面积最大, 边长分别为 .11、若两个数的差为3,若其中较大的数为x ,则它们的积y 与x 的函数表达式为 ,它有最 值,即当x= 时,y= .12、边长为12cm 的正方形铁片,中间剪去一个边长为x 的小正方形铁片,剩下的四方框铁片的面积y (cm2)与x (cm )之间的函数表达式为 .13、等边三角形的边长2x 与面积y 之间的函数表达式为 .14、 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x+3)2D. y =(x -3)215、二次函数y =-(x -1)2+3图像的顶点坐标是( )A. (-1,3)B. (1,3)C. (-1,-3)D. (1,-3)16、 二次函数y =x 2+x -6的图象与x 轴交点的横坐标是( )A. 2和-3B. -2和3C. 2和3D. -2和-3 17、二次函数2y ax =的图像开口向___,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题训练
1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.
2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值 y= 。
.
3、函数 y =12
(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、 函数y=21(x+3)2-2的图象可由函数y=2
1x 2的图象向 平移3个单位,再向 平移2个单位得到.
5.已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 。
6.如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )
A 、 x>3
B 、x<3
C 、x>1
D 、x<1
7.已知函数()3232+--=x y .
确定下列抛物线的开口方向、对称轴和顶点坐标;
当x= 时,抛物线有最 值,是 .
当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.
求出该抛物线与x 轴的交点坐标及两交点间距离;
求出该抛物线与y 轴的交点坐标;
若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;
该函数图象可由2
3x y -=的图象经过怎样的平移得到的?
该抛物线经过怎样的平移能经过原点.
※8..如图是二次函数y=a (x+1)2+2图象的一部分,该图在y 轴右侧与x 轴交点的坐标是 _________ .
9.根据图像求二次函数的解析式.
※10.抛物线y =(x -1)2+n 与x 轴交于A 、B 两点, 与y 轴负半轴交于C (0,-3)。
(1) 求抛物线的解析式;
(2)点P 为对称轴右侧抛物线上一点,以BP 为斜边作等腰直角三角形,直角顶点M 落在对称轴上,求P 点、M 点的坐标。
M y x P O C B A。