开关电源拓扑电压模式与电流模式的比较

合集下载

电压模式与电流模式的比较

电压模式与电流模式的比较

电压模式与电流模式的比较
电压模式控制
 这是最早的开关稳压器设计所采用的方法,而且多年来很好地满足了业界的需要。

基本的电压模式控制配置示于图1。

 这种设计的主要特性是只存在一条电压反馈通路,而脉宽调制是通过将电压误差信号与一个恒定斜坡波形进行比较来完成的。

电流限制必须单独执行。

 电压模拟控制的优点是:
 1. 采用单个反馈环路,因而比较容易设计和分析。

 2. 一个大幅度斜坡波形提供了用于实现稳定调制过程的充分噪声裕量。

 3 . 一个低阻抗功率输出为多输出电源提供了更加优良的交叉调制性能。


 电压模式控制的缺点可列举如下:
 1.电压或负载中的任何变化都必须首先作为一个输出变化来检测,然后再由反馈环路来校正。

这常常意味着缓慢的响应速度。

 2.输出滤波器给控制环路增加了两个极点,因而在补偿设计误差放大器时就需要将主导极点低频衰减,或在补偿中增加一个零点。

 3.由于环路增益会随着输入电压的变化而改变,因而使补偿进一步地复杂化。

开关电源拓扑结构对比(全)

开关电源拓扑结构对比(全)

开关电源拓扑结构概述(降压,升压,反激、正激)开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。

如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。

如果电感连接到输出端,就构成了降压变换器。

基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。

2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。

SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。

Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。

但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。

通过这样串联和演进,产生了新的三个电源拓扑。

同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。

4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。

可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。

将两个正激变换器进行并联,可以形成推挽拓扑。

正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。

第三节 开关电源电压型控制和电流型控制基本原理

第三节 开关电源电压型控制和电流型控制基本原理
• 1.平均电流反馈:响应速度慢 • 2.逐周过电流保护:检测瞬时电流,响应快 • 3.电压滞环的电压型控制:又称打嗝型控制 (hiccup-mode),当输出电压低于设定值时,开 关管才开通,否则开关管处于常关的状态。 • 4.常用控制芯片:TL494,SG3525
电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干

开关电源工作频率的原理分析

开关电源工作频率的原理分析
相对于十多安培的检测电流,该电流下降效应并不明显。
6、结语
电流检测在电流控制中起着重要的作用,电流检测分为电阻检测和电流互感器检测。为了减少损耗,常采用电流互感器检测。在电流互感器检测电路的设计中,要充分考虑电路拓扑对检测效果的影响,综合考虑电流互感器的饱和问题和副边电流的下垂效应,以选择合适的磁芯复位电路、匝比和检测电阻。
(三)混合调制
导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。
第三节开关电源的发展和趋势
1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
(二)控制电路
一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
2、电流检测电路的实现
在电流环的控制电路中,电流放大器通常选择较大的增益,其好处是可以选择一个较小的电阻来获得足够的检测电压,而检测电阻小损耗也小。
电流检测电路的实现方法主要有两类:电阻检测(resistivesensing)和电流互感器(currentsensetransformer)检测。

关于电力操作电源两种控制方式的比较doc-关于电力操作电

关于电力操作电源两种控制方式的比较doc-关于电力操作电

关于电力操作电源两种控制方式的比较doc-关于电力操作电引言开关电源是一个闭环的自动操纵系统,开关电源的操纵环节的设计是其设计的重要组成部分。

其常用的设计步骤是对主电路建立小信号模型,作出开环波特图,然后按照性能指标要求,运用经典自动操纵理论,设计校正系统,使系统具有良好的稳态和暂态性能。

专门多研究者对开关电源的操纵系统进行了分析[1][4]。

应用在电力领域的开关电源一样要求能工作在恒压和恒流两种模式,在操纵上有两种常用的实现方式:一种是采纳并联式双环操纵,在系统中建立两个独立的电压环和电流环。

这种操纵方式简单稳固,容易设计,稳固时只工作在某个单环操纵下,两个操纵环可不能互相干扰,能够保证专门好的恒压和恒流精度。

另一种是采纳串级式双环操纵,当系统工作在恒压模式下时是用双环操纵,工作在恒流模式下是用单环操纵。

电力操作电源一样为并联工作的模块式电源,在这种并联运行的电源中限流特性十分重要,否则当一台模块退出工作时,其它模块会因不能及时限流而引起连锁反应,相继爱护退出工作。

另外,从操纵的角度来讲,减小运行参数对操纵系统稳固性的阻碍,增强系统的鲁棒性是专门重要的。

本文通过对两种操纵方式进行建模分析,对两种操纵方式的限流速度和操纵稳固性进行了比较,并通过实验得到了验证。

2两种操纵方式分析21并联式双环操纵方式这种操纵方式电路原理图如图1所示,使用两个并联的单环分不实现电路的恒压和恒流功能,电压环PI调剂器输出和电流环PI调剂器输出均通过一个二极管接到三角波比较器的正输入端,电路工作时,若电压环PI调剂器输出UV1小于电流环PI调剂器输出UC1,则DV1导通,电路工作在电压环操纵模式;反之DC1导通,电路工作在电流环操纵模式。

这种操纵方式下,在稳固工作时,电压环和电流环只有一个环在工作,可不能互相干扰。

而且单环操纵的设计和分析都相图1并联式双环操纵方式的电路原理图图2电压环单环操纵模式下的电路方框图图3电流环单环操纵模式下的电路方框图图4电压环单环开环波特图图5电流环单环开环波特图对简单。

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。

开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。

下⾯将以反激电源为例进⾏讲解。

1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。

基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。

根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。

根据控制⽅式可分为PFM 和PWM 型反激电源。

根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。

我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。

1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。

此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。

此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。

2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。

提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。

开关电源三大拓扑

开关电源三大拓扑

开关电源三大基本拓扑1、摘要开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。

本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。

2、开关电源基础拓扑开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。

2.1Buck降压型Buck降压型电路拓扑,有时又称为Step-down电路,其典型的电路结构如下图1所示:Buck电路的工作原理为:当PWM驱动高电平使得NMOS管T导通的时候,忽略MOS管的导通压降,等效如图2,电感电流呈线性上升,MOS导通时电感正向伏秒为:当PWM驱动低电平的时候,MOS管截止,电感电流不能突变,经过续流二极管形成回路(忽略二极管电压),给输出负载供电,此时电感电流下降,如下图3所示,MOS截止时电感反向伏秒为:D为占空比,02.2Boost升压型Boost升压型电路拓扑,有时又称为step-up电路,其典型的电路结构如下图4所示:同样地,根据Buck电路的分析方式,Boost电路的工作原理为:2.3Buck-Boost极性反转升降压型Buck-Boost电路拓扑,有时又称为Inverting,其典型的电路结构如下图5所示:同样地,根据Buck电路的分析方式,Buck-Boost电路的工作原理为:3、Buck与Buck-Boost组合金升阳K78系列的产品采用了Buck降压型的电路结构进行设计,是LM78XX系列三端线性稳压器的理想替代品,效率最高可达96%,不需要额外增加散热片,同时还兼有短路保护和过热保护,值得说明的是它能够完美支持负输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源拓扑电压模式与电流模式的比较
作者:罗伯特.曼诺
Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。

在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。

由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。

但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。

此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。

要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。

下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。

电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。

这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。

电流限制必须分开进行。

电压模式控制的优点有:
1.单个反馈回路更易于设计和分析。

2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。

3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。

电压模式控制的缺点:
1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。

这通常意味着响应速度慢。

2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误
差放大器或在补偿加零。

3.补偿是通过进一步复杂化,即环增益随输入电压而变化。

电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。

如可以看到的从图2中,基本电流模式的图
控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。

而这种控制技术提供的优点包括以下内容:
1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。

2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。

这允许在可比的电压模式电路更简单补偿和更高的增益带宽。

3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。

而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。

一些这些清单已概述如下:
1.现在有两个反馈回路,使电路的分析更加困难。

2. 控制回路在50%以上的工作周期变得不稳定,除非斜率补偿。

3. 由于控制调制是基于从输出电流,谐振中导出的信号功率级可插入噪声到控制回路。

4. 特别麻烦的噪声源是前沿电流尖峰,通常是由变压器绕组间电容和输出整流器恢复电流产生的。

5. 随着控制回路迫使电流驱动,负载调节更糟糕的是和耦合电感需要得到可以接受的交叉调节具有多个输出。

因此,从以上我们可以得出这样的结论,电流模式控制将缓解很多的局限性的电压模式下,它也有助于一组设计师新的挑战。

然而,随着从最近的事态发展,获得的知识在功率控制技术,电压模式控制的重新评价表明,有替代的方法来纠正它的主要弱点,其结果是UCC3570。

重新审视电压模式控制
UCC3570对电压模式控制所做的两项主要改进是电压前馈和较高频率能力,前者用于消除输入电压变化的影响,后者则允许将输出滤波器的极点置于标准控制环路带宽范围以上。

电压前馈是通过使斜坡波形的斜率与输入电压成正比来实现的。

这提供了一个对应和校正的占空比调制,而无需反馈环路采取任何动作。

结果是获得了一个恒定的控制环路增益以及针对输入电压变化的瞬时响应。

较高频率能力是通过对该IC使用BiCMOS加工工艺而得以实现的,这产生了较小的寄生电容和较低的电路延迟。

于是,电压模式控制的许多问题都有所缓解,而并未招致电流模式控制的麻烦。

选择电路拓扑结构
以上所有的讨论均不应给您留下“电流模式控制不再有用武之地”的印象——而只应是“在当今的环境中,电流模式和电压模式这两种拓扑结构都可以是适用的选择”。


对每一种特定的应用,某些设计依据有可能表明这一种或另一种拓扑结构更加适合。

部分设计依据概述如下:
在以下场合可考虑使用电流模式:
1.电源输出将是一个电流源或非常高的输出电压。

2.对于某个给定的开关频率,需要最快的动态响应。

3.应用针对的是一个输入电压变化相对受限的DC/DC转
换器。

4.需要可并联性 (parallelability) 和负载均分的模块化应用。

5.在变压器磁通平衡很重要的推挽电路中。

6.在要求使用极少组件的低成本应用中。

而在以下场合中则可以考虑使用具前馈的电压模式:
1.有可能存在很宽的输入电压和/或输出负载变化范围。

2.特别是在低电压-轻负载条件下,此时,电流斜坡斜率过于平缓,不利于实现稳定的PWM操作。

3.高功率应用和/或噪声应用(这里,电流波形上的噪声将难以控制)。

4.需要多个输出电压以及较好的交叉调制性能。

5.可饱和电抗器控制器将被用作辅助次级侧稳压器。

6.需要避免双反馈环路和/或斜坡补偿之复杂性的应用。

按照这些设计依据,UCC3750针对中低功率、隔离、初级侧控制应用进行了优化(借助隔离型前馈)。

除了上述的控制特性之外,该器件还针对此类工作在性能方面实现了诸多的提升。

不过,鉴于这并非本文的讨论议题,感兴趣的读者可以查阅该产品的数据表以了解更多的相关信息。

重要声明
德州仪器 (TI) 及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改,
并有权随时中止提供任何产品和服务。

客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

所有产品的
销售都遵循在订单确认时所提供的 TI 销售条款与条件。

TI 保证其所销售的硬件产品的性能符合 TI 标准保修的适用规范。

仅在 TI 保修的范围内,且 TI 认为有必要时才会使用测试或其它质
量控制技术。

除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。

客户应对其使用 TI 组件的产品和应用自行负责。

为尽量减小与客户产品和应用相关
的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 产品或服务的组合设备、机器、流程相关的 TI 知识产权中授予的直接
或隐含权限作出任何保证或解释。

TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服务的许可、授
权、或认可。

使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许
可。

对于 TI 的数据手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。

在复制
信息的过程中对内容的篡改属于非法的、欺诈性商业行为。

TI 对此类篡改过的文件不承担任何责任。

在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关 TI 产品或服务的明示或暗示授权,且这是非法的、
欺诈性商业行为。

TI 对此类虚假陈述不承担任何责任。

相关文档
最新文档