第一章第2讲匀变速直线运动的规律
第1章 第2讲 匀变速直线运动的规律—2022届高考物理大一轮复习讲义(人教版)

第2讲匀变速直线运动的规律一、匀变速直线运动1.定义:沿着一条直线且加速度不变的运动。
2.分类(1)匀加速直线运动,a与v0方向相同。
(2)匀减速直线运动,a与v0方向相反。
思考辨析1.匀变速直线运动是加速度均匀变化的运动。
(×) 2.匀加速直线运动是速度均匀变化的直线运动。
(√) 3.匀加速直线运动的位移是均匀增大的。
(×)基本规律速度公式:v=v0+at位移公式:x=v0t+12at2速度和位移的关系式:v2-v20=2ax推论中间时刻的速度公式:vt2=v=v0+v2位移差公式:Δx=aT2,x m-x n=(m-n)aT2思考辨析1.在匀变速直线运动中,中间时刻的速度一定小于该段时间内位移中点的速度。
(√) 2.运动学公式中物理量的正、负号是怎样确定的?提示:直线运动可以用正、负号表示矢量的方向,一般情况下,我们规定初速度v0的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值,当v0=0时,一般以加速度a的方向为正方向。
3.一物体做直线运动的v-t图像如图所示,你如何比较物体在t0时间内的平均速度v与v0+v2的大小?提示:假设物体做匀变速直线运动,其v -t 图像是一条直线,其位移等于图中虚线与坐标轴所围梯形的面积,小于该曲线与坐标轴所包围的面积,故 v >v 0+v 2。
1.1T 末、2T 末、3T 末、…、nT 末的瞬时速度之比: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n 。
2.1T 内、2T 内、3T 内、…、nT 内的位移之比: x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2。
3.第一个T 内、第二个T 内、第三个T 内、…、第n 个T 内的位移之比: x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1)。
4.通过前x 0、前2x 0、前3x 0、…时的速度之比: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n 。
高考物理一轮复习 第一章 运动的描述 匀变速直线运动的研究 第2讲 匀变速直线运动的规律学生用书

第2讲 匀变速直线运动的规律必备知识·自主排查一、匀变速直线运动的规律 1.定义和分类(1)定义:沿着一条直线,且________不变的运动叫做匀变速直线运动. (2)分类:{匀加速直线运动:a 、v 方向________.匀减速直线运动:a 、v 方向________.2.基本规律(1)速度公式:v =________. (2)位移公式:x =________.(3)速度位移关系式:v 2−v 02=______. 3.三个重要推论4.初速度为零的匀变速直线运动的四个推论,生活情境1.一辆汽车从静止出发,在交通灯变绿时从A点以2.0 m/s2的加速度在平直的公路上做匀加速直线运动,经一段时间运动到B点,速度达20 m/s,则(1)汽车在运动过程中,速度是均匀增加的.( )(2)汽车在运动过程中,位移是均匀增加的.( )(3)汽车在运动过程中,在任意相等的时间内,速度的变化量是相等的.( )(4)汽车从A点运动到B点所用时间为10 s,位移为100 m.( )(5)汽车从A点运动到B点,中间时刻的速度为10 m/s.( )(6)汽车从A点运动到B点,位移中点的速度为10√2 m/s.( )教材拓展2.[鲁科版必修1P36T1改编]关于匀变速直线运动,下列说法正确的是( )A.在相等时间内位移的变化相同B.在相等时间内速度的变化相同C.在相等时间内加速度的变化相同D.在相等路程内速度的变化相同3.[人教版必修1P43T3改编]某航母跑道长160 m,飞机发动机产生的最大加速度为5 m/s2,起飞需要的最低速度为50 m/s,飞机在航母跑道上起飞的过程可以简化为做匀加速直线运动,若航母沿飞机起飞方向以某一速度匀速航行,为使飞机安全起飞,航母匀速运动的最小速度为( )A.10 m/s B.15 m/sC.20 m/s D.30 m/s关键能力·分层突破考点一匀变速直线运动规律的应用1.运动学公式中符号的规定一般规定初速度的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值.若v0=0,一般以a的方向为正方向.2.匀变速直线运动公式的选用一般问题用两个基本公式可以解决,以下特殊情况下用导出公式会提高解题的速度和准确率;(1)不涉及时间,选择v2−v02=2ax;(2)不涉及加速度,用平均速度公式,比如纸带问题中运用v t2=v̅=xt求瞬时速度;(3)处理纸带问题时用Δx=x2-x1=aT2,x m-x n=(m-n)aT2求加速度.角度1基本公式的应用例1 ETC是电子不停车收费系统的简称,汽车分别通过ETC通道和人工收费通道的流程如图所示.假设汽车以v1=12 m/s的速度朝收费站沿直线行驶,如果过ETC通道,需要在距收费站中心线前d=10 m处正好匀减速至v2=4 m/s,匀速通过中心线后,再匀加速至v1正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过t0=20 s缴费成功后,再启动汽车匀加速至v1正常行驶,设汽车加速和减速过程中的加速度大小均为1 m/s2.求:(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)汽车过人工收费通道时,应在离收费站中心线多远处开始减速;(3)汽车过ETC通道比过人工收费通道节约的时间.教你解决问题(1)读题审题——获取信息(2)思维转化——模型建构①过ETC通道时经历三个运动阶段:②过人工收费通道经历两个运动阶段:角度2 推论的应用例2.如图所示,哈大高铁运营里程为921 km,设计时速为350 km.某列车到达大连北站时刹车做匀减速直线运动,开始刹车后第5 s内的位移是57.5 m,第10 s内的位移是32.5 m,已知10 s末列车还未停止运动,则下列说法正确的是( )A.在研究列车从哈尔滨到大连所用时间时不能把列车看成质点B.921 km是指位移C.列车做匀减速直线运动时的加速度大小为6.25 m/s2D.列车在开始刹车时的速度为80 m/s[思维方法]解决运动学问题的基本思路:跟进训练1.(多选)一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管从顶端由静止先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时加速度大小的2倍,下滑的总时间为3 s,那么该消防队员( ) A.下滑过程中的最大速度为4 m/sB.加速与减速运动过程的时间之比为1∶2C.加速与减速运动过程中平均速度之比为1∶1D.加速与减速运动过程的位移大小之比为1∶42.[2022·河南模拟]如图所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D为其运动轨迹上的四点,测得AB=2 m,BC=4 m,且物体通过AB、BC、CD所用的时间均为t=1 s,求物体的加速度大小a和OD之间的距离.考点二自由落体运动和竖直上抛运动角度1自由落体运动(一题多变)例 3.如图所示,屋檐上水滴下落的过程可以近似地看作是自由落体运动.假设水滴从10 m高的屋檐上无初速度滴落,水滴下落到地面时的速度大约是多大?(g取10 m/s2)【考法拓展】在[例3]中水滴下落过程中经过2 m高的窗户所需时间为0.2 s.那么窗户上沿到屋檐的距离为多少?角度2竖直上抛运动(一题多解)例4. 气球以10 m/s的速度匀速上升,当它上升到离地175 m的高处时,一重物从气球上脱落,则重物需要经过多长时间才能落到地面?到达地面时的速度是多大?(g取10 m/s2)[思维方法]竖直上抛运动的研究方法(1)分段研究法:(2)整体研究法:取初速度的方向为正方向,全过程为初速度为v0,加速度大小为g的匀变速直线运动.gt2v=v0−gt,v2−v02=-2gh.其规律符合h=v0t-12拓展点刹车类问题和双向可逆类问题1.刹车类问题中的两点提醒(1)分清运动时间与刹车时间之间的大小关系.(2)确定能否使用逆向思维法,所研究阶段的末速度为零,一般都可应用逆向思维法.2.双向可逆运动的特点这类运动的速度减到零后,以相同加速度反向加速.如竖直上抛、沿光滑斜面向上滑动.例5. (多选)一物体以5 m/s的初速度在光滑斜面上向上做匀减速运动,其加速度大小,设斜面足够长,经过t时间物体位移的大小为4 m,则时间t可能为( )为2ms2sA.1 s B.3 s C.4 s D.5+√412跟进训练3.如图所示,在离地面一定高度处把4个水果以不同的初速度竖直上抛,不计空气阻力,若1 s后4个水果均未着地,则1 s后速率最大的是(g取10 m/s2)( )4.有一辆汽车在能见度较低的雾霾天气里以54 km/h的速度匀速行驶,司机突然看到正前方有一辆静止的故障车,该司机刹车的反应时间为0.6 s,刹车后汽车匀减速前进.刹车过程中加速度大小为5 m/s2,最后停在故障车后1.5 m处,避免了一场事故,以下说法正确的是( )A.司机发现故障车后,汽车经过3 s停下B.司机发现故障车时,汽车与故障车的距离为33 mC.从司机发现故障车到停下来的过程,汽车的平均速度为7.5 m/sD.从司机发现故障车到停下来的过程,汽车的平均速度为10.5 m/s考点三匀变速直线运动中的STSE问题素养提升匀变速运动与交通、体育和生活等紧密联系,常见的匀变速直线运动STSE问题有行车安全、交通通行和体育运动等,解决这类问题的关键:(1)建模——建立运动的模型(列出运动方程);(2)分段——按照时间顺序,分阶段研究运动.情境1 “智能物流机器人”(多选)为解决疫情下“最后500米”配送的矛盾,将“人传人”的风险降到最低,目前一些公司推出了智能物流机器人.机器人运动的最大速度为1 m/s,当它过红绿灯路口时,发现绿灯时间是20 s,路宽是19.5 m,它启动的最大加速度是0.5m,下面是它过马路的安排方案,s2既能不闯红灯,又能安全通过的方案是( )A.在停车线等绿灯亮起,以最大加速度启动B.在距离停车线1 m处,绿灯亮起之前2 s,以最大加速度启动C.在距离停车线2 m处,绿灯亮起之前2 s,以最大加速度启动D.在距离停车线0.5 m处,绿灯亮起之前1 s,以最大加速度启动情境2 酒驾(多选)酒后驾驶会导致许多安全隐患,这是因为驾驶员的反应时间变长.反应时间是指驾驶员从发现情况到采取制动的时间.下表中“思考距离”是指驾驶员发现情况到采取制动的时间内汽车的行驶距离,“制动距离”是指驾驶员发现情况到汽车停止行驶的距离.(假设汽车制动加速度都相同)分析上表可知,下列说法正确的是( )A.驾驶员正常情况下反应时间为0.5 sB.驾驶员酒后反应时间比正常情况慢0.5 sC.驾驶员采取制动措施后汽车加速度大小为3.75 m/s2D.当车速为25 m/s时,发现前方60 m处有险情,酒驾者不能安全停车拓展点有关汽车行驶的几个概念1.反应时间:人从发现情况到采取相应的行动经过的时间叫反应时间.2.反应距离:驾驶员发现前方有危险时,必须先经过一段反应时间后才能做出制动动作,在反应时间内汽车以原来的速度行驶,所行驶的距离称为反应距离.3.刹车距离:从制动刹车开始到汽车完全停下来,汽车做匀减速直线运动,所通过的距离叫刹车距离.4.停车距离:反应距离和刹车距离之和就是停车距离.5.安全距离:指在同车道行驶的机动车,后车与前车保持的最短距离,安全距离包含反应距离和刹车距离两部分.情境3 机动车礼让行人[2021·浙江6月,19]机动车礼让行人是一种文明行为.如图所示,质量m=1.0×103kg 的汽车以v1=36 km/h的速度在水平路面上匀速行驶,在距离斑马线s=20 m处,驾驶员发现小朋友排着长l=6 m的队伍从斑马线一端开始通过,立即刹车,最终恰好停在斑马线前.假设汽车在刹车过程中所受阻力不变,且忽略驾驶员反应时间.(1)求开始刹车到汽车停止所用的时间和所受阻力的大小;(2)若路面宽L=6 m,小朋友行走的速度v0=0.5 m/s,求汽车在斑马线前等待小朋友全部通过所需的时间;(3)假设驾驶员以v2=54 km/h超速行驶,在距离斑马线s=20 m处立即刹车,求汽车到斑马线时的速度.[思维方法]解决STSE 问题的方法在解决生活和生产中的实际问题时.(1)根据所描述的情景 分析→ 物理过程 建构→ 物理模型. (2)分析各阶段的物理量.(3)选取合适的匀变速直线运动规律求解.第2讲 匀变速直线运动的规律必备知识·自主排查一、 1.(1)加速度 (2)相同 相反 2.(1)v 0+at (2)v 0t +12at 2(3)2ax 4.(1)1∶2∶3∶…∶n(2)12∶22∶32∶…∶n 2(3)1∶3∶5∶…∶(2n -1)(4)1∶(√2-1)∶(√3-√2)∶…∶(√n -√n −1) 二、静止 gt 12gt 22gh 向上 重力 v 0-gt v 0t -12gt 2-2gh 生活情境 1.(1)√ (2)× (3)√ (4)√ (5)√ (6)√ 教材拓展 2.答案:B 3.答案:A关键能力·分层突破例1 解析:(1)过ETC 通道时,减速的位移和加速的位移相等,则x 1=v 21 -v 22 2a=64 m故总的位移x 总1=2x 1+d =138 m(2)过人工收费通道时,开始减速时距离中心线为x 2=v 212a=72 m(3)过ETC 通道的时间t 1=v 1-v 2a ×2+d v 2=18.5 s过人工收费通道的时间t 2=v 1a×2+t 0=44 sx 总2=2x 2=144 m二者的位移差Δx =x 总2-x 总1=6 m在这段位移内汽车以正常行驶速度做匀速直线运动,则Δt =t 2-⎝ ⎛⎭⎪⎫t 1+Δx v 1 =25 s答案:(1)138 m (2)72 m (3)25 s例2 解析:因列车的长度远小于哈尔滨到大连的距离,故研究列车行驶该路程所用时间时可以把列车视为质点,选项A 错误;由位移与路程的意义知921 km 是指路程,选项B 错误;由x n -x m =(n -m )aT 2,解得加速度a =32.5 m -57.5 m 5×(1 s )2=-5 m/s 2,即加速度大小为5 m/s 2,选项C 错误;匀变速直线运动中平均速度等于中间时刻的瞬时速度,则第4.5 s末列车速度为57.5 m/s ,由速度公式可得v 0=v -at =57.5 m/s -(-5 m/s 2×4.5 s )=80 m/s ,选项D 正确.答案:D1.解析:钢管长L =12 m ,运动总时间t =3 s ,加速过程加速度大小2a 、时间t 1、位移x 1、最大速度v ,减速过程加速度大小a 、时间t 2、位移x 2.加速和减速过程中平均速度均为v2, vt2=L ,得v =8 m/s ,A 项错误,C 项正确;v =2at 1=at 2,t 1∶t 2=1∶2,B 项正确;x 1=vt 12,x 2=vt 22,x 1∶x 2=1∶2,D 项错误.答案:BC2.解析:由匀变速直线运动的推论Δx =aT 2可得a =ΔxT 2=Δx t 2=2 m/s 2由于CD -BC =BC -AB 代入数据有CD =6 m由中间时刻的瞬时速度等于这段时间内的平均速度,可以得到B 点的速度v B =2+42×1m/s=3 m/s由2ax =v 2-v 02得OB =v B 2−02×a=322×1m =2.25 m故OD =OB +BC +CD =(2.25+4+6) m =12.25 m故物体的加速度大小a 和OD 之间的距离分别为2 m/s 2,12.25 m.答案:2 m/s 212.25 m例3 解析:选取水滴最初下落点为位移的起点,竖直向下为正方向,由自由落体运动规律知x =12gt 2,v =gt联立得v =√2gx代入数据得v =√2×10×10m/s ≈14 m/s即水滴下落到地面的瞬间,速度大约是14 m/s. 答案:14 m/s[考法拓展] 解析:设水滴下落到窗户上沿时的速度为v 0,则由x =v 0t +12gt 2得,2=v 0×0.2+12×10×0.22解得v 0=9 m/s根据v 02=2gx ,得窗户上沿到屋檐的距离x =v 022g =922×10 m =4.05 m.答案:4.05 m例4 解析:方法一 把竖直上抛运动过程分段研究 设重物离开气球后,经过t 1时间上升到最高点, 则t 1=v0g=1010 s =1 s.上升的最大高度h 1=v 20 2g =1022×10m =5 m. 12故重物离地面的最大高度为 H =h 1+h =5 m +175 m =180 m.重物从最高处自由下落,落地时间和落地速度分别为t 2=2Hg=2×18010s =6 s. v =gt 2=10×6 m/s =60 m/s.所以重物从气球上脱落至落地共历时 t =t 1+t 2=7 s.方法二 取全过程作一整体进行研究从物体自气球上脱落计时,经时间t 落地,规定初速度方向为正方向,画出运动草图如图所示,则物体在时间t 内的位移h =-175 m. 由位移公式h =v 0t -12gt 2有,-175=10t -12×10t 2,解得t =7 s 和t =-5 s (舍去), 所以重物落地速度为v 1=v 0-gt =10 m/s -10×7 m/s =-60 m/s. 其中负号表示方向向下,与初速度方向相反. 方法三 对称法根据速度对称知,重物返回脱离点时,具有向下的速度v 0=10 m/s ,设落地速度为v ,则v 2-v 20 =2gh .解得v =60 m/s ,方向竖直向下. 经过h 历时Δt =v -v 0g=5 s. 从最高点到落地历时t 1=v g=6 s.由时间对称可知,重物脱落后至落地历时t =2t 1-Δt =7 s. 答案:7 s 60 m/s例5 解析:以沿斜面向上为正方向,当物体的位移为4 m 时, 根据x =v 0t +12at 2得4=5t -12×2t 2解得t 1=1 s ,t 2=4 s 当物体的位移为-4 m 时, 根据x =v 0t +12at 2得 -4=5t -12×2t 2解得t 3=5+√412s ,故A 、C 、D 正确,B 错误.答案:ACD3.解析:根据v =v 0+at ,v 0A =-3 m/s.代入解得v A =7 m/s ,同理解得v B =5 m/s ,v C =0 m/s ,v D =-5 m/s.由于|v A |>|v B |=|v D |>|v C |,故A 正确,B 、C 、D 错误.答案:A4.解析:v 0=54 km/h =15 m/s ,汽车刹车时间t 2v0a =3 s ,故汽车运动总时间t =t 1+t 2=0.6 s +3 s =3.6 s ,故A 项错误;司机发现故障车时,汽车与故障车的距离为x =v 0t 1+v 02t 2+1.5 m =15×0.6 m +152×3 m +1.5 m =33 m ,故B 项正确;汽车的平均速度v - =v 0t 1+v 02t 2t 1+t 2=9+22.53.6m/s =8.75 m/s ,故C 、D 两项错误,故选B 项. 答案:B情境1 解析:机器人在停车线等绿灯亮起后,需要t 1=va =10.5s =2 s 达到最大速度,位移是x 1=12a t 12=1 m ,匀速运动的位移x 2=l -x 1=18.5 m ,需要时间为t 2=x2v =18.5 s ,两次运动时间之和为20.5 s,不安全,故A不对;在距离停车线1 m处以最大加速度启动2 s,正好绿灯亮,机器人也正好到了停车线,再经过19.5 s,过了马路,这个方案是可以的,故B对;在距离停车线2 m处,机器人启动2 s后,走了1 m,距离停车线还有1 m,这时绿灯亮起,机器人距离马路另外一端还有20.5 m,需要20.5 s通过,而绿灯时间为20 s,at2=0.25 所以不安全,故C不对;在距离停车线0.5 m处,1 s后绿灯亮起,其位移为x=12m,小于0.5 m,故没有闯红灯,继续前进0.75 m,达到最大速度,共用去了2 s,绿灯还有19 s,这时剩下的距离还有19 m,正好通过马路,故D对.答案:BD情境2 解析:反应时间=思考距离÷车速,因此正常情况下反应时间为0.5 s,酒后反应时间为1 s,故A、B正确;设汽车从开始制动到停车的位移为x,则x=x制动-x思考,根据匀变速直线运动公式v2=2ax,解得a=7.5 m/s2,C错误;根据表格知,车速为25 m/s 时,酒后制动距离为66.7 m>60 m,故不能安全停车,D正确.答案:ABD情境3 解析:(1)设汽车刹车过程的加速度大小为a,所用时间为t1,所受阻力大小为F f由运动学公式得v12=2as①v1=at1②由牛顿第二定律得F f=ma③联立①②③解得t1=4 s④F f=2.5×103 N⑤(2)设汽车等待时间为t,小朋友匀速过马路所用时间为t2则由运动学公式得l+L=v0t2⑥t=t2-t1⑦联立④⑥⑦解得t=20 s⑧(3)设汽车到斑马线时的速度为v,在汽车刹车过程中由运动学有v22-v2=2as⑨联立①⑤⑨解得v=5√5 m/s⑩答案:(1)4 s 2.5×103 N (2)20 s (3)5√5 m/s。
第1章-第2讲 匀变速直线运动的规律

第2讲
匀变速直线运动的规律
抓基础
研考向
满分练
上页
下页
研考向 考点探究
试题
解析
考点一 匀变速直 线运动的基本规 律 考点二 两类特殊 的匀减速直线运 动 考点三 解决匀变 速直线运动的常 用方法 考点四 自由落体 运动
-
2
点做匀变速直线运动,应该满足公式Δ x= x2- x1= aT2,任 意相邻的 1 s 内的位移差都是 2 m,C 错误;任意 1 s 内的速 度增量实质就是指加速度大小,D 正确.
第2讲
匀变速直线运动的规律
抓基础
研考向
满分练
上页
下页
研考向 考点探究
试题
解析
考点一 匀变速直 线运动的基本规 律 考点二 两类特殊 的匀减速直线运 动 考点三 解决匀变 速直线运动的常 用方法 考点四 自由落体 运动
小题快练
2.匀变速直线运动的规律 v=v0+at . (1)速度公式:_________
1 2 (2)位移公式:x=v0t+ at . 2 2 2 v - v 0=2ax . (3)速度位移关系式:____________
第2讲
匀变速直线运动的规律
抓基础
研考向
满分练
上页
下页
抓基础 双基夯实
知识梳理
第2讲
匀变速直线运动的规律
抓基础
研考向
满分练
上页
下页
第 2讲
匀变速直线运动的规律
第一章第2讲匀变速直线运动的规律-2025年高考物理一轮复习PPT课件

答案
高考一轮总复习•物理
第24页
解析:假设 8 s 内汽车一直匀减速运动,根据 x4-x1=3a0T2,代入数据解得 a0=-6294 m/s2, 根据 x1=vT+12a0T2,代入数据解得 v=20.875 m/s,则速度减为零的时间 t=0-a0v,代入数据 解得 t≈7.3 s<8 s,可知汽车在 8 s 前速度减为零.设汽车加速度为 a,根据 x1=v0T+12aT2, 汽车速度减为零的时间为 t0=0-av0,采用逆向思维,第 4 个 2 秒内的位移为 x4=12×(- a)·-av0-6 s2=1.5 m,联立解得 a=-3 m/s2,v0=21 m/s(另一解不符合题意,舍去),选项 B、C 正确.根据 x3-x1=2aT2,甲车刹车后第 3 个 2 s 内的位移大小为 x3=x1+2aT2,代入 数据解得 x3=12 m,选项 A 正确.汽车刹车到停止的距离 x0=0-2av20,代入数据解得 x0=73.5 m<75 m,所以甲车不会撞上乙车,选项 D 错误.故选 ABC.
第17页
高考一轮总复习•物理
方法三 根据 v=gt, v =v0+2 v=xt =vt 2
v4= v 35=19.6-2×7.01.0×4 10-2 m/s=1.56 m/s g=vt44=10..5166 m/s2=9.75 m/s2. 答案:见解析
第18页
高考一轮总复习•物理
第19页
重难考点 全线突破
D.80 m/s2
解析:无人机匀加速运动的过程中,连续经过两段均为 x=120 m 的位移,第一段所 用的时间 t1=2 s,第二段所用的时间 t2=1 s,则第一段有:x=v0t1+12at21,连续两段有: 2x=v0(t1+t2)+12a(t1+t2)2,解得 a=40 m/s2,故选项 B 正确.
第一章 第2讲匀变速直线运动的规律精编版

第2讲 匀变速直线运动的规律一、匀变速直线运动的规律 1.匀变速直线运动沿一条直线且加速度不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 02=2ax .自测1 某质点做直线运动,速度随时间的变化关系式为v =(2t +4) m/s ,则对这个质点运动情况的描述,说法正确的是( ) A.初速度为2 m/s B.加速度为4 m/s 2C.在3 s 末,瞬时速度为10 m/sD.前3 s 内,位移为30 m 二、匀变速直线运动的推论 1.三个推论(1)连续相等的相邻时间间隔T 内的位移差相等. 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v2=2v t .(3)位移中点速度2x v =v 20+v 22.2.初速度为零的匀加速直线运动的四个重要推论(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)T 内、2T 内、3T 内、…、nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2. (3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n自测2 某质点从静止开始做匀加速直线运动,已知第3秒内通过的位移是x (单位:m),则质点运动的加速度为( ) A.3x2(m/s 2) B.2x3(m/s 2) C.2x5(m/s 2) D.5x2(m/s 2) 三、自由落体运动和竖直上抛运动 1.自由落体运动(1)条件:物体只受重力,从静止开始下落. (2)基本规律 ①速度公式:v =gt . ②位移公式:x =12gt 2.③速度位移关系式:v 2=2gx . (3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论. ②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)和谐地结合起来. 2.竖直上抛运动(1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动. (2)运动性质:匀变速直线运动. (3)基本规律①速度公式:v =v 0-gt ; ②位移公式:x =v 0t -12gt 2.自测3 教材P45第5题 频闪摄影是研究变速运动常用的实验手段.在暗室中,照相机的快门处于常开状态,频闪仪每隔一定时间发出一次短暂的强烈闪光,照亮运动的物体,于是胶片上记录了物体在几个闪光时刻的位置.如图1是小球自由下落时的频闪照片示意图,频闪仪每隔0.04 s 闪光一次.如果通过这幅照片测量自由落体加速度,可以采用哪几种方法?试一试.照片中的数字是小球落下的距离,单位是厘米.命题点一 匀变速直线运动的基本规律及应用1.基本思路画过程示意图―→判断运动性质―→选取正方向―→选用公式列方程―→解方程并加以讨论 2.方法与技巧除时间t 外,x 、v 0、v 、a 均为矢量,所以需要确定正方向,一般以v 0的方向为正方向. 例1 (2018·河南许昌模拟)一个物体从静止开始,以加速度a 1做匀加速直线运动,经过时间t 改为做加速度大小为a 2的减速运动,又经过时间t 物体回到开始位置,求两个加速度大小之比a 1a 2.拓展点 刹车类问题的处理技巧——逆向思维法的应用刹车类问题:指匀减速到速度为零后即停止运动,加速度a 突然消失,求解时要注意确定其实际运动时间.如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动.例2 随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍爱生命.某路段机动车限速为15 m/s ,一货车严重超载后的总质量为5.0×104 kg ,以15 m/s 的速度匀速行驶.发现红灯时司机刹车,货车立即做匀减速直线运动,加速度大小为5 m/s 2.已知货车正常装载后的刹车加速度大小为10 m/s 2. (1)求此货车在超载及正常装载情况下的刹车时间之比.(2)求此货车在超载及正常装载情况下的刹车距离分别是多大?(3)若此货车不仅超载而且以20 m/s的速度超速行驶,则刹车距离又是多少?(设此情形下刹车加速度大小仍为5 m/s2)变式1(多选)一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s内通过的位移与最后5 s内通过的位移之比为x1∶x2=11∶5,物体运动的加速度大小为a=1 m/s2,则()A.物体运动的时间可能大于10 sB.物体在最初5 s内通过的位移与最后5 s内通过的位移之差为x1-x2=15 mC.物体运动的时间为8 sD.物体的初速度为10 m/s命题点二匀变速直线运动的推论及应用方法与技巧类型1平均速度公式的应用例3质点由静止从A点出发沿直线AB运动,行程的第一阶段是加速度大小为a1的匀加速运动,接着做加速度大小为a2的匀减速运动,到达B点时恰好速度减为零.若AB间总长度为s,则质点从A到B所用时间t为()A.s(a1+a2)a1a2 B.2s(a1+a2)a1a2 C.2s(a1+a2)a1a2 D.a1a22s(a1+a2)变式2一个做匀变速直线运动的质点,初速度为0.5 m/s,第9 s内的位移比第5 s内的位移多4 m ,则该质点的加速度、9 s 末的速度和质点在9 s 内通过的位移分别是( ) A.a =1 m/s 2,v 9=9 m/s ,x 9=40.5 m B.a =1 m/s 2,v 9=9 m/s ,x 9=45 m C.a =1 m/s 2,v 9=9.5 m/s ,x 9=45 m D.a =0.8 m/s 2,v 9=7.7 m/s ,x 9=36.9 m类型2 逆向思维法和初速度为零的匀变速直线运动推论的应用例4 (多选)(2018·四川雅安模拟)如图2所示,一冰壶以速度v 垂直进入三个矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是( ) A.v 1∶v 2∶v 3=3∶2∶1B.v 1∶v 2∶v 3=3∶2∶1C.t 1∶t 2∶t 3=1∶2∶ 3D.t 1∶t 2∶t 3=(3-2)∶(2-1)∶1变式3 (多选)一物块以一定的初速度从光滑斜面底端a 点上滑,最高可滑至b 点,后又滑回至a 点,c 是ab 的中点,如图3所示,已知物块从a 上滑至b 所用时间为t ,下列分析正确的是( )A.物块从c 运动到b 所用的时间等于从b 运动到c 所用的时间B.物块上滑过程的加速度与下滑过程的加速度等大反向C.物块下滑时从b 运动至c 所用时间为22t D.物块上滑通过c 点时的速度大小等于整个上滑过程中平均速度的大小 命题点三 自由落体和竖直上抛运动1.两种运动的特性(1)自由落体运动为初速度为零、加速度为g 的匀加速直线运动. (2)竖直上抛运动的重要特性(如图4) ①对称性a.时间对称:物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .b.速度对称:物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等.②多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性. 2.竖直上抛运动的研究方法例5 (2018·湖北部分重点高中协作体联考)如图5所示是一种较精确测重力加速度g 值的方法:将下端装有弹射装置的真空玻璃直管竖直放置,玻璃管足够长,小球竖直向上被弹出,在O 点与弹簧分离,上升到最高点后返回.在O 点正上方选取一点P ,利用仪器精确测得OP 间的距离为H ,从O 点出发至返回O 点的时间间隔为T 1,小球两次经过P 点的时间间隔为T 2,求:(1)重力加速度g ;(2)当O 点距离管底部的距离为L 0时,玻璃管的最小长度.拓展点 双向可逆类问题——类竖直上抛运动如果沿光滑斜面上滑的小球,到最高点仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变,故求解时可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义. 例6 (多选)一物体以5 m/s 的初速度在光滑斜面上向上运动,其加速度大小为2 m/s 2,设斜面足够长,经过t 时间物体位移的大小为4 m ,则时间t 可能为( ) A.1 s B.3 s C.4 s D.5+412 s命题点四 多运动过程问题1.基本思路如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.可按下列步骤解题:(1)画:分清各阶段运动过程,画出草图; (2)列:列出各运动阶段的运动方程;(3)找:找出交接处的速度与各段间的位移-时间关系; (4)解:联立求解,算出结果. 2.解题关键多运动过程的转折点的速度是联系两个运动过程的纽带,因此,转折点速度的求解往往是解题的关键.例7 甲、乙两个质点都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两个质点的加速度大小不变,乙的加速度大小是甲的3倍;在接下来的相同时间间隔内,甲的加速度大小增加为原来的3倍,乙的加速度大小减小为原来的13.求甲、乙两质点各自在这两段时间间隔内走过的总路程之比.变式4 航天飞机是一种垂直起飞、水平降落的载人航天器.航天飞机降落在平直跑道上,其减速过程可简化为两个匀减速直线运动阶段.航天飞机以水平速度v 0着陆后立即打开减速阻力伞(如图6),加速度大小为a 1,运动一段时间后速度减为v ;随后在无减速阻力伞情况下匀减速运动直至停下.已知两个匀减速滑行过程的总时间为t ,求:(1)第二个匀减速运动阶段航天飞机减速的加速度大小a 2; (2)航天飞机着陆后滑行的总路程x .1.假设某无人机靶机以300 m/s 的速度匀速向某个目标飞来,在无人机离目标尚有一段距离时从地面发射导弹,导弹以80 m/s 2的加速度做匀加速直线运动,以1 200 m/s 的速度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为( ) A.3.75 s B.15 s C.30 s D.45 s2.(多选)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( ) A.v 0t -12at 2 B.v 0t C.v 0t 2 D.12at 23.(2018·广东湛江模拟)如图1所示,一骑行者所骑自行车前后轮轴的距离为L ,在水平道路上匀速运动,当看到道路前方有一条减速带时,立刻刹车使自行车做匀减速直线运动,自行车垂直经过该减速带时,对前、后轮造成的两次颠簸的时间间隔为t .利用以上数据,可以求出前、后轮经过减速带这段时间内自行车的( )A.初速度B.末速度C.平均速度D.加速度4.(2018·黑龙江哈尔滨质检)关于自由落体运动(g =10 m/s 2),下列说法中不正确的是( ) A.它是竖直向下,v 0=0、a =g 的匀加速直线运动 B.在开始连续的三个1 s 内通过的位移之比是1∶3∶5 C.在开始连续的三个1 s 末的速度大小之比是1∶2∶3D.从开始运动到距下落点5 m 、10 m 、15 m 所经历的时间之比为1∶2∶35.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s 内和第2 s 内位移大小依次为9 m 和7 m.则刹车后6 s 内的位移是( ) A.20 m B.24 m C.25 m D.75 m6.(2018·河南信阳调研)在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x 轴的原点,通过传感器发现汽车刹车后的坐标x 与时间t 的关系满足x =30t -5t 2(m),下列说法正确的是( )A.汽车刹车过程的初速度大小为30 m/s ,加速度大小为10 m/s 2B.汽车刹车过程的初速度大小为30 m/s ,加速度大小为5 m/s 2C.汽车刹车过程的初速度大小为60 m/s ,加速度大小为5 m/s 2D.汽车刹车过程的初速度大小为60 m/s ,加速度大小为2.5 m/s 27.一物体做初速度为零的匀加速直线运动,将其运动时间顺次分成1∶2∶3的三段,则每段时间内的位移之比为( )A.1∶3∶5B.1∶4∶9C.1∶8∶27D.1∶16∶818.(多选)给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g2,当滑块速度大小减为v 02时,所用时间可能是( )A.v 02gB.v 0gC.3v 0gD.3v 02g9.一物体以初速度v 0做匀减速直线运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法错误的是( ) A.初速度v 0的大小为2.5 m/s B.加速度a 的大小为1 m/s 2C.位移x 3的大小为1.125 mD.位移x 3内的平均速度大小为0.75 m/s10.(2018·甘肃天水质检)如图2所示,木杆长5 m ,上端固定在某一点,由静止放开后让它自由落下(不计空气阻力),木杆通过悬点正下方20 m 处圆筒AB ,圆筒AB 长为5 m ,取g =10 m/s 2,求:(1)木杆经过圆筒的上端A 所用的时间t 1是多少?(2)木杆通过圆筒AB所用的时间t2是多少?11.如图3所示为某型号货车紧急制动时(假设做匀减速直线运动)的v2-x图象(v为货车的速度,x为制动距离),其中图线1为满载时符合安全要求的制动图象,图线2为严重超载时的制动图象.某路段限速72 km/h,是根据该型号货车满载时安全制动时间和制动距离确定的,现有一辆该型号的货车严重超载并以54 km/h的速度行驶.通过计算求解:(1)驾驶员紧急制动时,该型号严重超载并以54 km/h的速度行驶的货车制动时间和制动距离是否符合安全要求;(2)若驾驶员从发现险情到采取紧急制动措施的反应时间为1 s,则该型号货车满载时以72 km/h 速度正常行驶的跟车距离至少应为多远.。
高三物理一轮 第一章 第二讲 匀变速直线运动的规律及应用课件

三、自由落体运动和竖直上抛运动
1.自由落体运动 (1)条件:物体只在_重__力__作用下,从_静__止__ 开始下落. (2)特点:初速度v0=0,加速度为重力加速 度g的_匀__变__速__直__线___运动.
(2)整个减速过程共用多少时间.
解析: (1)设质点做匀减速运动的加速度大小为 a,初速度为 v0.由于质点停止运动前的最后 1 s 内位移为 2 m,则 x2=12at22,所以 a=2tx222=2×12 2 m/s2=4 m/s2. 质点在第 1 s 内位移为 6 m,x1=v0t1-12at21, 所以 v0=2x12+t1at21=2×62+×41×12 m/s=8 m/s.
(3)基本规律:速度公式 v=__g_t_. 位移公式 h=___12_g_t_2 _. 2.竖直上抛运动规律 (1)特点:加速度为 g,上升阶段做匀__减__速__直__线__运 动,下降阶段做_自__由__落__体___运动. (2)基本规律 速度公式:v=__v__0-__g_t___.
位移公式:h=__v_0_t-__12_g_t_2 _. v20
(2)双向可逆类的运动 例如:一个小球沿光滑斜面以一定初速度 v0 向上运动,到达最高点后就会以原加速度匀加 速下滑,整个过程加速度的大小、方向不变, 所以该运动也是匀变速直线运动,因此求解时 可对全过程列方程,但必须注意在不同阶段 v、 x、a 等矢量的正负号.
二、对推论 Δx=aT2 的拓展 1.公式的适用条件 (1)匀变速直线运动. (2)Δx 为连续相等的相邻时间间隔 T 内的位移 差. 2.进一步的推论:xm-xn=(m-n)aT2 要注意此式的适用条件及 m、n、T 的含义.
高中物理必修一课件:第一章+第二讲 匀变速直线运动的规律

考点一
题组突破
解法二 (相对运动法)选航空母舰为参照系,则起飞过程,相对 初速度为 0,相对末速度为 v-v2min,相对加速度仍为 a,相对 位移为 L,根据 2aL=(v-v2min)2 和 2as=v2,仍可得 v2min= 2as - 2aL. [答案] (1) 2as-L (2) 2as- 2aL
目录 CONTENTS
第二讲 匀变速直线运 动的规律
1 抓基础·双基夯实 2 研考向·考点探究 3 随堂练·知能提升 4 课后练·知能提升
一、匀变速直线运动的规律 1.匀变速直线运动
⇓
2.初速度为零的匀变速直线运动的四个重要推论
(1)1T 末、2T 末、3T 末、…、nT 末瞬时速度的比为 v1∶v2∶v3∶…∶vn= 1∶2∶3∶…∶n .
(2)1T 内、2T 内、3T 内、…、nT 内位移的比为 x1∶x2∶x3∶…∶xn= 12∶22∶32∶…∶n2 .
(3)第一个 T 内、第二个 T 内、第三个 T 内、…、第 N 个 T 内位移的比为 xⅠ∶xⅡ∶xⅢ∶…∶xN= 1∶3∶5∶…∶(2N-1) . (4)从静止开始通过连续相等的位移所用时间的比为 t1∶t2∶t3∶…∶tn= 1∶( 2-1)∶( 3- 2)∶…∶( n- n-1) .
考点一 题组突破
[反思总结] 知三求二解决匀变速直线运动问题
在研究匀变速直线运动中,要把握以下四点: 1.要熟练掌握下列四个公式:v=v0+at,x=v0t+12at2,2ax=v2 -v02,x=v0+2 vt.这四个公式中,前两个是基本公式,后两个是前 两个的推论.也就是说在这四个公式中只有两个是独立的,解题时 只要适当地选择其中两个即可. 2.要分清运动过程是加速运动过程还是减速运动过程.
第1章 第2讲 匀变速直线运动的规律

第2讲匀变速直线运动的规律目标要求 1.理解匀变速直线运动的特点,掌握匀变速直线运动的公式,并理解公式中各物理量的含义.2.会灵活应用运动学公式及推论解题.考点一匀变速直线运动的基本规律及应用1.匀变速直线运动沿着一条直线且________不变的运动.如图所示,v-t图线是一条倾斜的直线.2.匀变速直线运动的两个基本规律(1)速度与时间的关系式:v=________.(2)位移与时间的关系式:x=____________.由以上两式联立可得速度与位移的关系式:______________________.3.公式选用原则以上三个公式共涉及五个物理量,每个公式有四个物理量.选用原则如下:不涉及位移,选用v=v0+at不涉及末速度,选用x=v0t+12at2不涉及时间,选用v2-v02=2ax1.匀变速直线运动是加速度均匀变化的直线运动.()2.匀加速直线运动的位移是均匀增加的.()3.匀变速直线运动中,经过相同的时间,速度变化量相同.() 1.基本思路画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以初速度v 0的方向为正方向;当v 0=0时,一般以加速度a 的方向为正方向.速度、加速度、位移的方向与正方向相同时取正,相反时取负.考向1 基本公式和速度位移关系式的应用例1 (2022·全国甲卷·15)长为l 的高速列车在平直轨道上正常行驶,速率为v 0,要通过前方一长为L 的隧道,当列车的任一部分处于隧道内时,列车速率都不允许超过v (v <v 0).已知列车加速和减速时加速度的大小分别为a 和2a ,则列车从减速开始至回到正常行驶速率v 0所用时间至少为( ) A.v 0-v 2a +L +l vB.v 0-v a +L +2l vC.3(v 0-v )2a+L +l vD.3(v 0-v )a+L +2l v听课记录:______________________________________________________________ ________________________________________________________________________ 例2 对某汽车刹车性能测试时,当汽车以36 km/h 的速率行驶时,可以在18 m 的距离被刹住;当汽车以54 km/h 的速率行驶时,可以在34.5 m 的距离被刹住.假设两次测试中驾驶员的反应时间(驾驶员从看到障碍物到做出刹车动作的时间)与刹车的加速度都相同.问: (1)这位驾驶员的反应时间为多少;(2)某雾天,该路段能见度为50 m ,则行车速率不能超过多少.考向2两种匀减速直线运动的比较两种运动运动特点求解方法刹车类问题匀减速到速度为零后停止运动,加速度a突然消失求解时要注意确定实际运动时间双向可逆类问题如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变求解时可分过程列式,也可对全过程列式,但必须注意x、v、a等矢量的正负号及物理意义例3(2023·福建师范大学附属中学高三月考)一辆汽车在平直公路上匀速行驶,遇到紧急情况,突然刹车,从开始刹车起运动过程中的位移(单位:m)与时间(单位:s)的关系式为x=30t -2.5t 2 (m),下列分析正确的是( ) A .刹车过程中最后1 s 内的位移大小是5 mB .刹车过程中在相邻1 s 内的位移差的绝对值为10 mC .从刹车开始计时,8 s 内通过的位移大小为80 mD .从刹车开始计时,第1 s 内和第2 s 内的位移大小之比为11∶9听课记录:______________________________________________________________ ________________________________________________________________________ 例4 (多选)在足够长的光滑固定斜面上,有一物体以10 m/s 的初速度沿斜面向上运动,物体的加速度大小始终为5 m/s 2、方向沿斜面向下,当物体的位移大小为7.5 m 时,下列说法正确的是( )A .物体运动时间可能为1 sB .物体运动时间可能为3 sC .物体运动时间可能为(2+7) sD .物体此时的速度大小一定为5 m/s听课记录:___________________________________________________________________考向3 逆向思维法解决匀变速直线运动问题例5 假设某次深海探测活动中,“蛟龙号”完成海底科考任务后竖直上浮,从上浮速度为v 时开始匀减速运动并计时,经过时间t ,“蛟龙号”上浮到海面,速度恰好减为零,则“蛟龙号”在t 0(t 0<t )时刻距离海面的深度为( ) A .v t 0(1-t 02t )B.v (t -t 0)22tC.v t 2D.v t 022t逆向思维法:对于末速度为零的匀减速直线运动,可把该阶段看成逆向的初速度为零、加速度不变的匀加速直线运动.考点二 匀变速直线运动的推论及应用1.匀变速直线运动的常用推论(1)平均速度公式:做匀变速直线运动的物体在一段时间内的平均速度等于这段时间内初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.即:v=v0+v2=2tv.此公式可以求某时刻的瞬时速度.(2)位移差公式:连续相等的相邻时间间隔T内的位移差相等.即:Δx=x2-x1=x3-x2=…=x n-x n-1=aT2.不相邻相等的时间间隔T内的位移差x m-x n=(m-n)aT2,此公式可以求加速度.2.初速度为零的匀加速直线运动的四个重要比例式(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.(2)前T内、前2T内、前3T内、…、前nT内的位移之比为x1∶x2∶x3∶…∶x n=1∶4∶9∶…∶n2.(3)第1个T内、第2个T内、第3个T内、…、第n个T内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶x N =1∶3∶5∶…∶(2n-1).(4)从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).3.匀变速直线运动中常见思想方法及选取技巧考向1平均速度公式例6如图的平潭海峡公铁两用大桥是世界上最长的跨海公铁两用大桥,其中元洪航道桥的A、B、C三根桥墩间距分别为AB=132 m、BC=196 m.一列高速列车匀加速通过元洪航道桥,车头经过AB和BC的时间分别为3 s和4 s,则这列高速列车经过元洪航道桥的加速度大小约为()A.0.7 m/s2B.1.4 m/s2C.2.8 m/s2D.6.3 m/s2听课记录:______________________________________________________________________________________________________________________________________考向2位移差公式例7(2023·重庆市实验外国语学校高三检测)物体从静止开始做匀加速直线运动,已知第4 s内与第2 s内的位移之差是8 m,则下列说法错误的是()A.物体运动的加速度为4 m/s2B.第2 s内的位移为6 mC.第2 s末的速度为2 m/sD.物体在0~5 s内的平均速度为10 m/s听课记录:______________________________________________________________________________________________________________________________________考向3初速度为零的匀变速直线运动比例式例8(多选)如图所示,一冰壶以速度v垂直进入三个完全相同的矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶ 3D.t1∶t2∶t3=(3-2)∶(2-1)∶1听课记录:_______________________________________________________________________________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲匀变速直线运动的规律一、匀变速直线运动的规律1.匀变速直线运动沿一条直线且加速度不变的运动.2.匀变速直线运动的基本规律(1)速度公式:v=v0+at.(2)位移公式:x=v0t+12at2.(3)位移速度关系式:v2-v02=2ax.自测1某质点做直线运动,速度随时间的变化关系式为v =(2t+4) m/s,则对这个质点运动情况的描述,说法正确的是( )A.初速度为2 m/sB.加速度为4 m/s2C.在3 s末,瞬时速度为10 m/sD.前3 s内,位移为30 m二、匀变速直线运动的推论1.三个推论(1)连续相等的相邻时间间隔T内的位移差相等.即x2-x1=x3-x2=…=x n-x n-1=aT2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v =v 0+v 2=2v t. (3)位移中点速度2xv =v 20+v 22.2.初速度为零的匀加速直线运动的四个重要推论(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)T 内、2T 内、3T 内、…、nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =)∶(2-自测2 某质点从静止开始做匀加速直线运动,已知第3秒内通过的位移是x (单位:m),则质点运动的加速度为( )A.3x 2(m/s 2)B.2x 3(m/s 2)C.2x 5(m/s 2)D.5x 2(m/s 2) 三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)基本规律①速度公式:v =gt .②位移公式:x =12gt 2. ③速度位移关系式:v 2=2gx .(3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)和谐地结合起来.2.竖直上抛运动 (1)运动特点:加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动.(2)运动性质:匀变速直线运动.(3)基本规律①速度公式:v =v 0-gt ;②位移公式:x =v 0t -12gt 2. 自测3 教材P45第5题 频闪摄影是研究变速运动常用的实验手段.在暗室中,照相机的快门处于常开状态,频闪仪每隔一定时间发出一次短暂的强烈闪光,照亮运动的物体,于是胶片上记录了物体在几个闪光时刻的位置.如图1是小球自由下落时的频闪照片示意图,频闪仪每隔0.04 s 闪光一次.如果通过这幅照片测量自由落体加速度,可以采用哪几种方法?试一试.照片中的数字是小球落下的距离,单位是厘米.命题点一 匀变速直线运动的基本规律及应用1.基本思路画过程示意图―→判断运动性质―→选取正方向―→选用公式列方程―→解方程并加以讨论2.方法与技巧除时间t外,x、v0、v、a均为矢量,所以需要确定正方向,一般以v0的方向为正方向.例1(2018·河南许昌模拟)一个物体从静止开始,以加速度a1做匀加速直线运动,经过时间t改为做加速度大小为a2的减速运动,又经过时间t物体回到开始位置,求两个加速度大小之比a1 a2 .拓展点刹车类问题的处理技巧——逆向思维法的应用刹车类问题:指匀减速到速度为零后即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间.如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零、加速度不变的匀加速直线运动.例2随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍爱生命.某路段机动车限速为15 m/s,一货车严重超载后的总质量为5.0×104 kg,以15 m/s的速度匀速行驶.发现红灯时司机刹车,货车立即做匀减速直线运动,加速度大小为5 m/s2.已知货车正常装载后的刹车加速度大小为10 m/s2.(1)求此货车在超载及正常装载情况下的刹车时间之比.(2)求此货车在超载及正常装载情况下的刹车距离分别是多大?(3)若此货车不仅超载而且以20 m/s的速度超速行驶,则刹车距离又是多少?(设此情形下刹车加速度大小仍为5 m/s2)变式1(多选)一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s内通过的位移与最后5 s内通过的位移之比为x1∶x2=11∶5,物体运动的加速度大小为a=1 m/s2,则( )A.物体运动的时间可能大于10 sB.物体在最初5 s内通过的位移与最后5 s内通过的位移之差为x1-x2=15 mC.物体运动的时间为8 sD.物体的初速度为10 m/s命题点二匀变速直线运动的推论及应用方法与技巧类型1 平均速度公式的应用例3质点由静止从A点出发沿直线AB运动,行程的第一阶段是加速度大小为a1的匀加速运动,接着做加速度大小为a2的匀减速运动,到达B点时恰好速度减为零.若AB间总长度为s,则质点从A到B所用时间t为( )A.s(a1+a2)a1a2B.2s(a1+a2)a1a2C.2s(a1+a2)a1a2D.a1a22s(a1+a2)变式2一个做匀变速直线运动的质点,初速度为0.5 m/s,第9 s内的位移比第5 s内的位移多4 m,则该质点的加速度、9 s末的速度和质点在9 s内通过的位移分别是( )A.a=1 m/s2,v9=9 m/s,x9=40.5 mB.a=1 m/s2,v9=9 m/s,x9=45 mC.a=1 m/s2,v9=9.5 m/s,x9=45 mD.a=0.8 m/s2,v9=7.7 m/s,x9=36.9 m类型 2 逆向思维法和初速度为零的匀变速直线运动推论的应用例4(多选)(2018·四川雅安模拟)如图2所示,一冰壶以速度v垂直进入三个矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是( )A.v1∶v2∶v3=3∶2∶13∶2∶1B.v1∶v2∶v3=C.t1∶t2∶t3=1∶2∶ 3D.t1∶t2∶t3=(3-2)∶(2-1)∶1变式3(多选)一物块以一定的初速度从光滑斜面底端a点上滑,最高可滑至b点,后又滑回至a点,c是ab的中点,如图3所示,已知物块从a上滑至b所用时间为t,下列分析正确的是( )A.物块从c运动到b所用的时间等于从b运动到c所用的时间B.物块上滑过程的加速度与下滑过程的加速度等大反向C.物块下滑时从b运动至c所用时间为2 2 tD.物块上滑通过c点时的速度大小等于整个上滑过程中平均速度的大小命题点三自由落体和竖直上抛运动1.两种运动的特性(1)自由落体运动为初速度为零、加速度为g的匀加速直线运动.(2)竖直上抛运动的重要特性(如图4)①对称性a.时间对称:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB=t BA.b.速度对称:物体上升过程经过A点的速度与下降过程经过A 点的速度大小相等.②多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性.2.竖直上抛运动的研究方法例5(2018·湖北部分重点高中协作体联考)如图5所示是一种较精确测重力加速度g值的方法:将下端装有弹射装置的真空玻璃直管竖直放置,玻璃管足够长,小球竖直向上被弹出,在O点与弹簧分离,上升到最高点后返回.在Array O点正上方选取一点P,利用仪器精确测得OP间的距离为H,从O点出发至返回O点的时间间隔为T1,小球两次经过P点的时间间隔为T2,求:(1)重力加速度g;(2)当O点距离管底部的距离为L0时,玻璃管的最小长度.拓展点双向可逆类问题——类竖直上抛运动如果沿光滑斜面上滑的小球,到最高点仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变,故求解时可对全过程列式,但必须注意x、v、a等矢量的正负号及物理意义. 例6(多选)一物体以5 m/s的初速度在光滑斜面上向上运动,其加速度大小为2 m/s2,设斜面足够长,经过t时间物体位移的大小为4 m,则时间t可能为( )A.1 sB.3 sC.4 sD.5+412s命题点四多运动过程问题1.基本思路如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.可按下列步骤解题:(1)画:分清各阶段运动过程,画出草图;(2)列:列出各运动阶段的运动方程;(3)找:找出交接处的速度与各段间的位移-时间关系;(4)解:联立求解,算出结果.2.解题关键多运动过程的转折点的速度是联系两个运动过程的纽带,因此,转折点速度的求解往往是解题的关键.例7甲、乙两个质点都从静止出发做加速直线运动,加速度方向一直不变.在第一段时间间隔内,两个质点的加速度大小不变,乙的加速度大小是甲的3倍;在接下来的相同时间间隔内,甲的加速度大小增加为原来的3倍,乙的加速度大小减小为原来的13.求甲、乙两质点各自在这两段时间间隔内走过的总路程之比.变式4航天飞机是一种垂直起飞、水平降落的载人航天器.航天飞机降落在平直跑道上,其减速过程可简化为两个匀减速直线运动阶段.航天飞机以水平速度v0着陆后立即打开减速阻力伞(如图6),加速度大小为a1,运动一段时间后速度减为v;随后在无减速阻力伞情况下匀减速运动直至停下.已知两个匀减速滑行过程的总时间为t,求:(1)第二个匀减速运动阶段航天飞机减速的加速度大小a2;(2)航天飞机着陆后滑行的总路程x.1.假设某无人机靶机以300 m/s的速度匀速向某个目标飞来,在无人机离目标尚有一段距离时从地面发射导弹,导弹以80 m/s2的加速度做匀加速直线运动,以1 200 m/s的速度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为( )A.3.75 sB.15 sC.30 sD.45 s2.(多选)做匀减速直线运动的质点,它的加速度大小为a,初速度大小为v0,经过时间t速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( )A.v0t-12at2 B.v0t C.v0t2D.12at23.(2018·广东湛江模拟)如图1所示,一骑行者所骑自行车前后轮轴的距离为L,在水平道路上匀速运动,当看到道路前方有一条减速带时,立刻刹车使自行车做匀减速直线运动,自行车垂直经过该减速带时,对前、后轮造成的两次颠簸的时间间隔为t.利用以上数据,可以求出前、后轮经过减速带这段时间内自行车的( )A.初速度B.末速度C.平均速度D.加速度4.(2018·黑龙江哈尔滨质检)关于自由落体运动(g=10 m/s2),下列说法中不正确的是( )A.它是竖直向下,v0=0、a=g的匀加速直线运动B.在开始连续的三个1 s内通过的位移之比是1∶3∶5C.在开始连续的三个1 s末的速度大小之比是1∶2∶3D.从开始运动到距下落点5 m、10 m、15 m所经历的时间之比为1∶2∶35.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m.则刹车后6 s内的位移是( )A.20 mB.24 mC.25 mD.75 m6.(2018·河南信阳调研)在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x轴的原点,通过传感器发现汽车刹车后的坐标x与时间t的关系满足x=30t-5t2(m),下列说法正确的是( )A.汽车刹车过程的初速度大小为30 m/s,加速度大小为10 m/s2B.汽车刹车过程的初速度大小为30 m/s,加速度大小为5 m/s2C.汽车刹车过程的初速度大小为60 m/s,加速度大小为5 m/s2D.汽车刹车过程的初速度大小为60 m/s,加速度大小为2.5 m/s27.一物体做初速度为零的匀加速直线运动,将其运动时间顺次分成1∶2∶3的三段,则每段时间内的位移之比为( )A.1∶3∶5B.1∶4∶9C.1∶8∶27D.1∶16∶818.(多选)给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g 2,当滑块速度大小减为v 02时,所用时间可能是( ) A.v 02g B.v 0g C.3v 0g D.3v 02g9.一物体以初速度v 0做匀减速直线运动,第1 s 内通过的位移为x 1=3 m ,第2 s 内通过的位移为x 2=2 m ,又经过位移x 3物体的速度减小为0,则下列说法错误的是( )A.初速度v 0的大小为2.5 m/sB.加速度a 的大小为1 m/s 2C.位移x 3的大小为1.125 mD.位移x 3内的平均速度大小为0.75 m/s10.(2018·甘肃天水质检)如图2所示,木杆长5 m ,上端固定在某一点,由静止放开后让它自由落下(不计空气阻力),木杆通过悬点正下方20 m 处圆筒AB ,圆筒AB 长为5 m ,取g =10 m/s 2,求:(1)木杆经过圆筒的上端A 所用的时间t 1是多少?(2)木杆通过圆筒AB 所用的时间t 2是多少?11.如图3所示为某型号货车紧急制动时(假设做匀减速直线运动)的v2-x图象(v为货车的速度,x为制动距离),其中图线1为满载时符合安全要求的制动图象,图线2为严重超载时的制动图象.某路段限速72 km/h,是根据该型号货车满载时安全制动时间和制动距离确定的,现有一辆该型号的货车严重超载并以54 km/h的速度行驶.通过计算求解:(1)驾驶员紧急制动时,该型号严重超载并以54 km/h的速度行驶的货车制动时间和制动距离是否符合安全要求;(2)若驾驶员从发现险情到采取紧急制动措施的反应时间为1 s,则该型号货车满载时以72 km/h速度正常行驶的跟车距离至少应为多远.。