直线与圆(专题训练
直线与圆练习题(附答案)

直线与圆一、填空题1.若函数1()ax f x e b=-的图象在x =0处的切线l 与圆C:221x y +=相离,则P(a ,b)与圆C 的位置关系是2.实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是_____________.3.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++a c b a_____________.4.已知点A (3,2),B (-2,7),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:1,则a 的值为5.设E 为平面上以 (4,1),(1,6),(3,2)A B C ---为顶点的三角形区域(包括边界 ),则Z =4x -3y 的最大值和最小值分别为_____________.6.实数y x z y x y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+则满足条件,0,0,022,04,的最大值为_____________.7.由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为_____________. 8.圆()2211y x +=-被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为_____________.9.设定点A (0,1),动点(),P x y 的坐标满足条件0,,x y x ≥⎧⎨≤⎩则PA 的最小值是_____________.10.直线2)1(0122=+-=++y x y x 与圆的位置关系是_____________.11.设实数y x ,满足线性约束条件⎪⎩⎪⎨⎧≥≥-≤+013y y x y x ,则目标函数y x z +=2的最大值为 _____________.12.直线()23--=x y 截圆422=+y x 所得的劣弧所对的圆心角为_____________.13.已知点()y x P ,在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域内运动,则y x z -=的取值范围是_____________. /的值是_____________.二、解答题:1.求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.2. 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?3.已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.4.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程5. 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.6. 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程参考答案1.在圆内2.[-1,1)3.-24.-95.14 , -186.47.8.1∶39.根号2/2 10.相切 11.612.π/3 13.[]2,1-14.2或-2设圆的标准方程为222)()(rb y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(ry a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .16.符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即6431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.17.∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-kk解得43=k所以()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .4.则题意,设所求圆的方程为圆222)()(rb y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆42422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x5.由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有)2(9)6)(2(31222=++-+++y x m y x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得12)3(4))(274(2=++-+-m x ym x y m .∴OPk ,OQk 是上述方程两根.故1-=⋅OQ OP k k .得127412-=-+m m ,解得3=m .经检验可知3=m 为所求.6.设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为)()(212121=-+-+-F F y E E x D D。
直线和圆解答题专题练习(含详细答案)

(2011陕西理17)如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的摄影,M 为PD 上一点,且45MD PD =(Ⅰ)当P 在圆上运动时,求点M 的轨迹C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的长度解:(Ⅰ)设M 的坐标为(x,y )P 的坐标为(xp,yp )由已知得,5,4xp x yp y =⎧⎪⎨=⎪⎩∵P 在圆上, ∴ 225254x y ⎛⎫+= ⎪⎝⎭,即C 的方程为2212516x y +=(Ⅱ)过点(3,0)且斜率为45的直线方程为()435y x =-,设直线与C 的交点为()()1122,,,A x y B x y将直线方程()435y x =-代入C 的方程,得()22312525x x -+= 即2380x x --=∴12x x == ∴ 线段AB 的长度为415AB ====注:求AB 长度时,利用韦达定理或弦长公式求得正确结果,同样得分。
(2011福建理17)已知直线l :y=x+m ,m ∈R 。
(I )若以点M (2,0)为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (II )若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线C :x2=4y 是否相切?说明理由。
本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。
满分13分。
解法一:(I )依题意,点P 的坐标为(0,m )因为MP l ⊥,所以01120m-⨯=--,解得m=2,即点P 的坐标为(0,2)从而圆的半径||r MP ===故所求圆的方程为22(2)8.x y -+= (II )因为直线l 的方程为,y x m =+所以直线'l 的方程为.y x m =--由22',4404y x m x x m x y =--⎧++=⎨=⎩得 244416(1)m m ∆=-⨯=-(1)当1,0m =∆=即时,直线'l 与抛物线C 相切 (2)当1m ≠,那0∆≠时,直线'l 与抛物线C 不相切。
高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。
完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。
45,1B。
不存在C。
不存在D。
-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。
a+b=1B。
a-b=1C。
a+b=√2D。
a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。
2x+y-1=0B。
2x+y-5=0C。
x+2y-5=0D。
x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。
4x+2y=5B。
4x-2y=5C。
x+2y=5D。
x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。
平行B。
垂直C。
斜交D。
与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。
4B。
13√10C。
26√5D。
207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。
-1/3B。
-3C。
1D。
38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。
2/3B。
-3/2C。
-2D。
-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。
3x+y-6=0B。
x-3y+2=0C。
x+3y-2=0D。
3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1+2√2D。
1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。
解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。
点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。
因为 distance = 5 > 4,所以点A在圆外。
高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。
2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。
3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。
三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。
2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。
3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。
4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。
5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。
高二数学 专题训练11 直线与圆 试题

专题训练11 直线与圆制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
根底过关1. 圆x 2+y 2-4x +6y =0的圆心坐标是( ) A. ()2,3B. ()-2,3C. ()-2,-3D. ()2,-32. 直线l 过点()-1,2且与直线2x -3y +1=0垂直,那么l 的方程是( ) A. 3x +2y -1=0 B. 3x +2y +7=0 C. 2x -3y +5=0D. 2x -3y +8=03. 假设圆C 的半径为1,圆心坐标为(2,1),那么该圆的HY 方程是( ) A. ()x +22+()y +12=1 B. (x -2)2+(y -1)2=1 C. ()x -12+()y -22=1D. ()x +12+()y +22=14. 经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0平行的直线方程是( ) A. x +y +1=0 B. x +y -1=0 C. x -y +1=0D. x -y -1=05. 圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,那么圆C 2的方程为( ) A. (x +2)2+(y -2)2=1 B. (x -2)2+(y +2)2=1 C. (x +2)2+(y +2)2=1D. (x -2)2+(y -2)2=16. “a =2”是“直线ax +2y =0平行于直线x +y =1”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 圆x 2+y 2-2x =0和圆x 2+y 2-4y =0的位置关系是( ) A. 相离B. 相交C. 外切D. 内切8. 圆x 2+y 2=1与直线y =kx +2没有公一共点的充要条件是( ) A. k ∈(-2,2) B. k ∈(-∞,-2)∪(2,+∞) C. k ∈(-3,3)D. k ∈(-∞,-3)∪(3,+∞)9. 由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,那么切线长的最小值为( ) A. 1B. 22C. 7D. 310. 圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,那么圆C 的方程为( ) A. (x +1)2+(y -1)2=2 B. (x -1)2+(y +1)2=2 C. (x -1)2+(y -1)2=2D. (x +1)2+(y +1)2=211. 直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A. y =-13x +13B. y =-13x +1C. y =3x -3D. y =13x +112. 假设过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公一共点,那么直线l 的斜率的取值范围为( ) A. [-3,3] B. (-3,3) C. [-33,33]D. (-33,33) 13. 直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,弦AB 的中点为(0,1),那么直线l 的方程为( ) A. x -y +1=0 B. x +y +1=0 C. x -y -1=0D. x +y -1=014. 直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,那么实数m 等于( ) A. 3或者- 3B. -3或者3 3C. -33或者 3D. -33或者3 3 15. 直线l :x -y +4=0与圆C :()x -12+()y -12=2,那么圆C 上各点到直线l 的间隔 的最小值为( ) A. 1B. 2C. 2D. 2 216. 经过圆C :x 2+2x +y 2=0的圆心,且与直线x +y =0垂直的直线方程是 ______________.17. 以点(2,-1)为圆心且与直线x +y -6=0相切的圆的方程是______________.18. 两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A ,B 两点,那么直线AB 的方程是______________.19. 圆C 的圆心与点P (-2,1)关于直线y =x +1对称.直线3x +4y -11=0与圆C 相交于A ,B 两点,且||AB =6,求圆C 的HY 方程.20. 直线l :y =kx +1,圆C :()x -12+()y +12=12. (1)求证:不管k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.冲刺A 级21. 圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,那么四边形ABCD 的面积为( ) A. 10 6B. 206C. 30 6D. 40 622. 假如点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,2y -1≥0上,且点O 在圆x 2+(y +2)2=1上,那么|PQ |的最小值为( )A. 32B.45-1C. 22-1D. 2-123. 假设圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公一共弦长为23,那么a =________. 24. 过点A (11,2)作圆x 2+y 2+2x -4y -164=0的弦,其中弦长为整数的弦一共有________条.25. 圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)假设直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P 的坐标.专题训练11 直线与圆根底过关 1. D2. A [提示:由题可得l 的斜率为-32,∴l :y -2=-32(x +1),即3x +2y -1=0.]3. B4. A [提示:易知点C 为(-1,0),而直线与x +y =0平行,我们设待求的直线的方程为x +y +b =0,将点A 的坐标代入得出参数b 的值是b =1,故待求的直线的方程为x +y +1=0.]5. B [提示:设圆C 2的圆心为(a ,b ),那么依题意,得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,对称圆的半径不变,为1,应选B.]6. C7. B8. C9. C [提示:设圆心为C ,直线上一点A 向圆引切线长=AC 2-r 2,故当AC 最小时切线长最小.AC 的最小值即圆心C 到直线的间隔 d =||3+12=22,所以切线长最小值=()222-1=7.]10. B [提示:圆心在x +y =0上,排除C ,D ;再结合图象,或者者验证A ,B 中圆心到两直线的间隔 等于半径2即可.] 11. A [提示:直线y =3x 绕原点逆时针转90°得到直线y =-13x ,再向右平移一个单位得直线y =-13()x -1,应选A.]12. C 13. A 14. C15. B [提示:圆心到直线的间隔 减去半径即可.] 16. x -y +1=017. (x -2)2+(y +1)2=252 [解析:圆的半径r =|2-1-6|1+1=52,所以圆的方程为(x -2)2+(y +1)2=252.]18. x +3y =019. 解:设圆心C ()a ,b ,半径为r ,那么由可得⎩⎪⎨⎪⎧b -1a +2=-1,b +12=a -22+1,解得⎩⎪⎨⎪⎧a =0,b =-1,故圆心到直线3x +4y -11=0的间隔 d =||-4-115r2=⎝ ⎛⎭⎪⎫||AB 22+d 2=18,∴圆C 的HY 方程为x 2+()y +12=18. 20. (1)证明:由可得直线l 过定点(0,1),点(0,1)到圆心C 的间隔 =1+22=5即点(0,1)在圆C 内,所以直线l 与圆C 总有两个交点. (2)解:当圆心到直线的间隔 最大时截得的弦长最短,∵直线l 过定点(0,1),∴圆心C 到直线l 的最大间隔 d =5,由垂径定理可得截得的弦长最短为212-5=27.冲刺A 级21. B [提示:将方程化成HY 方程(x -3)2+(y -4)2=25,过点(3,5)的最长弦(直径)为AC =10,最短弦为BD =252-12=46,S =12AC ·BD=20 6.]22. A [提示:作出平面区域及圆,那么||PQ 的最小值等于圆心()0,-2到直线2y -1=0的间隔 减去半径的值.]23. 1 [提示:由,两个圆的方程作差可以得到相交弦的直线方程为y =1a,利用圆心(0,0)到直线的间隔 d =⎪⎪⎪⎪⎪⎪1a 1为22-〔3〕2=1,解得a =1.]24. 32 [提示:圆的HY 方程为()x +12+()y -22=132,由垂径定理可得过点A 的最短弦长为2132-()11+12=10,最长弦长为直径26,故弦长为整数的有长为11,12,13,…,25的弦,且长为11,12,13,…,25的弦各有两条,故一共有1+1+2×()25-10=32(条).]25. (1)设直线l 的方程为y =k (x -4),即kx -y -4k =0,由垂径定理得:圆心C 1到直线l 的间隔 d =42-〔232〕2=1,结合点到直线间隔 公式,得|-3k -1-4k |k 2+1=1,化简得24k 2+7k =0,k =0或者k =-724,∴所求直线l 的方程为y =0或者y =-724(x -4),即y =0或者7x +24y -28=0.(2)设点P 坐标为(m ,n ),直线l 1,l 2的方程分别为y -n =k (x -m ),y -n =-1k (x -m ),即kx -y +n -km =0,-1k x -y +n +1km ,两圆半径相等,由垂径定理,得:圆心C 1到直线与直线的间隔 相等.故|-3k -1+n -km |k 2+1=|-4k -5+n +1k m |1k2+1,化简得(2-m -n )k =m -n -3,或者(m -n +8)k =m +nk 的方程有无穷多解,那么:⎩⎪⎨⎪⎧2-m -n =0,m -n -3=0,或者⎩⎪⎨⎪⎧m -n +8=0,m +n -5=0,解得:点P 的坐标为(52,-12)或者⎝ ⎛⎭⎪⎫-32,132.制卷人:打自企; 成别使; 而都那。
(完整版)直线与圆综合练习题含答案

直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆1.已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3C.33或0 D.3或0 解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k2=1,解得k =0或k =3,故选D. 2.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2 解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y=2距离的最大值为d +1=2+1.3.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB|=2=|OA|2+|OB|2等价于圆心O到直线l的距离等于22,即有1k2+1=22,k=±1.因此,“k=1”是“|AB|=2”的充分不必要条件.4.若三条直线l1:4x+y=3,l2:mx+y=0,l3:x-my=2不能围成三角形,则实数m的取值最多有( )A.2个 B.3个C.4个 D.6个5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,5为半径的圆的方程为( )A.x2+y2-2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0 D.x2+y2-2x-4y=0解析:选C 由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,由x+1=0且x+y-1=0,解得x=-1,y=2,即该直线恒过点(-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5,即x2+y2+2x-4y=0.6.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是( )A.(x+2)2+(y-2)2=2B.(x-2)2+(y+2)2=2C.(x+2)2+(y+2)2=2D .(x -2)2+(y -2)2=27.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎪⎫y ±332=43 B .x 2+⎝⎛⎭⎪⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎪⎫x ±332+y 2=43D.⎝⎛⎭⎪⎪⎫x ±332+y 2=13 解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎪⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎪⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎪⎫x ±332+y 2=43,故选C.8.设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( ) A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B. 9.关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心; ②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4 B .3 C .2 D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π×12<S<2×2,即π<S<4,故④是真命题.综上,真命题的个数为4.10.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( )A.2 B.4 2C.6 D.210解析:选C 由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,∴圆心C(2,1)在直线x+ay-1=0上,∴2+a-1=0,解得a=-1,∴A(-4,-1),|AC|2=(-4-2)2+(-1-1)2=40.又r=2,∴|AB|2=40-4=36,即|AB|=6.11.两个圆C1:x2+y2+2ax+a2-4=0(a∈R)与C2:x2+y2-2by-1+b2=0(b∈R)恰有三条公切线,则a+b的最小值为( )A.3 2 B.-3 2C.6 D.-612.若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离等于1,则半径r的取值范围是( )A.(4,6) B.[4,6]C.(4,5) D.(4,5]解析:选A 设直线4x-3y+m=0与直线4x-3y-2=0之间的距离为1,则有|m+2|5=1,m=3或m=-7.圆心(3,-5)到直线4x-3y+3=0的距离等于6,圆心(3,-5)到直线4x-3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.13.若直线x-y+m=0被圆(x-1)2+y2=5截得的弦长为23,则m的值为() A.1 B.-3C.1或-3 D.2解析:因为圆(x-1)2+y2=5的圆心C(1,0),半径r= 5.又直线x-y+m=0被圆截得的弦长为2 3.所以圆心C到直线的距离d=r2-(3)2=2,因此|1-0+m|12+(-1)2=2,所以m=1或m=-3.答案:C14.已知过点(-2,0)的直线与圆C:x2+y2-4x=0相切于点P(P在第一象限内),则过点P且与直线3x-y=0垂直的直线l的方程为()A.x+3y-2=0 B.x+3y-4=0C.3x+y-2=0 D.x+3y-6=0解析:圆C:x2+y2-4x=0的标准方程(x-2)2+y2=4,所以圆心C(2,0),半径r=2.又过点(-2,0)的直线与圆C相切于第一象限,所以易知倾斜角θ=30°,切点P(1,3),设直线l的方程为x+3y+c=0,把点P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 答案:B15.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43 B .-34 C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43. 16.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( ) A .3x +y -5=0 B .x -2y =0 C .x -2y +4=0 D .2x +y -3=0解析:选D 直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0,故选D.17.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5解析:选D 设圆心坐标为C ⎝ ⎛⎭⎪⎫a ,2a (a >0),则半径r =2a +2a +15≥22a ×2a +15=5,当且仅当2a =2a ,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2),所以面积最小的圆的方程为(x -1)2+(y -2)2=5.18.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( ) A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]解析:选A 由圆的方程可知圆心为O (0,0),半径为2,因为圆上的点到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <2+1=3,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32),故选A.19.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( ) A .2 6 B .4 C. 6 D .2解析:选B 根据约束条件画出可行域,如图中阴影部分所示,设点P 到圆心的距离为d ,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P 点,其坐标为(1,3),则d =1+32=10,此时|AB |min =214-10=4,故选B.20.过原点且与直线6x-3y+1=0平行的直线l被圆x2+(y-3)2=7所截得的弦长为________.解析:由题意可得l的方程为2x-y=0,∵圆心(0,3)到l的距离为d=1,∴所求弦长=2R2-d2=27-1=2 6.答案:2 621.已知f(x)=x3+ax-2b,如果f(x)的图象在切点P(1,-2) 处的切线与圆(x-2)2+(y+4)2=5相切,那么3a+2b=________.22.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x-a)2+(y-b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=x2+4x+20+x2+2x+10的最小值为________.解析:∵f(x)=x2+4x+20+x2+2x+10=(x+2)2+(0-4)2+(x+1)2+(0-3)2,∴f(x)的几何意义为点M(x,0)到两定点A(-2,4)与B(-1,3)的距离之和,设点A(-2,4)关于x轴的对称点为A′,则A′为(-2,-4).要求f(x)的最小值,可转化为|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|≥|A′B|=(-1+2)2+(3+4)2=52,即f(x)=x2+4x+20+x2+2x+10的最小值为5 2.答案:5 223.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9, 所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=024.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 解:(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为 y -5=k (x -3), 即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0, 点C 到直线OA 的距离为。