圆好题精选20题
圆测试题及答案解析

圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。
2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。
二、填空题1. 半径为7的圆的面积是 __________。
答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。
2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。
答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。
将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。
三、简答题1. 描述圆的切线的性质。
答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。
解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。
四、计算题1. 已知圆的半径为8,求圆的面积。
答案:圆的面积为200π。
解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。
2. 已知圆的直径为20,求圆的周长。
答案:圆的周长为20π。
解析:圆的周长公式是C = πd,其中d为直径。
将直径20代入公式得C = π × 20 = 20π。
六年级圆的练习题及答案

六年级圆的练习题及答案一、选择题(每题2分,共20分)1. 圆的半径是5厘米,那么圆的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米2. 圆的周长公式是:A. C = 2πrB. C = πdC. C = πr²D. C = 2πd3. 一个圆的半径增加2厘米,其面积将增加:A. 4π平方厘米B. 8π平方厘米C. 12π平方厘米D. 16π平方厘米4. 圆的面积是28.26平方厘米,那么它的半径是:A. 3厘米B. 4厘米C. 5厘米D. 6厘米5. 圆的直径是10厘米,那么它的半径是:A. 5厘米B. 6厘米C. 7厘米D. 8厘米二、填空题(每题2分,共20分)6. 一个圆的半径为4厘米,它的周长是________厘米。
7. 圆的面积公式是________。
8. 如果一个圆的直径是8厘米,那么它的半径是________厘米。
9. 圆的周长是50.24厘米,它的直径是________厘米。
10. 一个圆的半径增加1厘米,它的面积将增加________平方厘米。
三、计算题(每题10分,共30分)11. 已知一个圆的半径是7厘米,求它的周长和面积。
12. 一个圆的周长是31.4厘米,求它的直径和半径。
13. 一个圆的面积是78.5平方厘米,求它的半径。
四、解答题(每题15分,共30分)14. 一个圆形花坛的直径是20米,如果绕花坛走一圈,需要走多少米?花坛的占地面积是多少平方米?15. 一个圆环,内圆半径是3厘米,外圆半径是5厘米,求圆环的面积。
答案:1. A2. A3. B4. B5. A6. 25.127. S = πr²8. 49. 1610. π11. 周长:2 × 3.14 × 7 = 43.96厘米;面积:3.14 × 7² = 153.86平方厘米。
12. 直径:50.24 ÷ 3.14 = 16厘米;半径:16 ÷ 2 = 8厘米。
六年级数学圆练习题

六年级数学圆练习题一、选择题(每题2分,共20分)1. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 4πrD. C = πd2. 如果圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米3. 圆的面积公式是:A. A = πr²B. A = 2πrC. A = πd²D. A = πr²/24. 一个圆的半径是4厘米,那么它的面积是:A. 50.24平方厘米B. 100.48平方厘米C. 200.96平方厘米D. 314平方厘米5. 圆周角定理指出,一个圆周角的度数是它所对弧的度数的:A. 一半B. 两倍C. 三倍D. 四倍二、填空题(每题2分,共20分)6. 一个圆的直径是12厘米,那么它的半径是________厘米。
7. 圆的周长是64π厘米,那么它的半径是________厘米。
8. 如果一个圆的面积是78.5平方厘米,那么它的半径是________厘米。
9. 一个圆的半径增加1厘米,它的面积将增加________平方厘米。
10. 圆内接四边形的对角线互相________。
三、计算题(每题10分,共30分)11. 已知一个圆的半径是7厘米,请计算它的周长和面积。
12. 如果一个圆的周长是44厘米,请计算它的直径和面积。
13. 一个圆的面积是200平方厘米,求它的半径。
四、解答题(每题15分,共30分)14. 一个圆环,内圆半径为3厘米,外圆半径为5厘米。
求这个圆环的面积。
15. 在一个半径为10厘米的圆中,有一个圆心角为60度的扇形。
求这个扇形的面积和弧长。
【参考答案】1. B2. A3. A4. B5. A6. 6厘米7. 10厘米8. 5.3厘米9. 6π平方厘米10. 垂直平分11. 周长:2πr = 2 × 3.14 × 7 = 43.96厘米面积:πr² = 3.14 × 7² = 153.86平方厘米12. 直径:C/π = 44/3.14 ≈ 14厘米半径:r = 14/2 = 7厘米面积:πr² = 3.14 × 7² = 153.86平方厘米13. 面积:πr² = 200r² = 200/πr = √(200/π) ≈ 4.57厘米14. 圆环面积 = 外圆面积 - 内圆面积= π(5² - 3²) = 3.14 × (25 - 9) = 3.14 × 16 = 50.24平方厘米15. 扇形面积= (60/360) × πr² = (1/6) × 3.14 × 10² = 52.34平方厘米弧长= (60/360) × 2πr = (1/6) × 2 × 3.14 × 10 = 10.47厘米。
初三数学圆精选练习题及答案

初三数学圆精选练习题及答案1.正确答案为C。
圆的切线垂直于圆的半径。
2.正确答案为A。
AB>2CD。
3.图中能用字母表示的直角共有4个。
4.正确答案为B。
CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。
5.正确答案为120°。
圆周角等于弧所对圆心角的两倍,2×60°=120°。
6.正确答案为130°。
圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。
7.正确答案为B。
根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。
由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。
又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。
9.正确答案为A。
根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。
10.正确答案为225°。
圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。
11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。
12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。
13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。
中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
圆好题精选20题

《圆》好题精选20题1.如图1,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2=________A图1 图22.如图2,AB 为半圆O 的直径,C 、D 是⊙O 上的三等分点,若⊙O 的半径为1,E 为线段AB 上任意一点,则图中阴影部分的面积为__________。
3.如图3,Rt △ABC 中∠C =90°,∠A =30°,在AC 边上取点O 画圆使⊙O 经过A 、B 两点,下列结论中: ①AO =2CO ; ②AO =BC ; ③以O 为圆心,以OC 为半径的圆与AB 相切; ④延长BC 交⊙O 于 点D ,则A 、B 、D 是⊙O 的三等分点, 正确的序号是(多填或错填不给分,少填或漏填酌情给分)B图3 图4 图54.如图4,在△ABC ,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E,F ,则线段EF 长度的最小值是( )A .B .4.75C .4.8D .55.如图5,△ABC 中,︒=∠60BAC ,︒=∠45ABC ,AB =22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 。
6.如图6,在标有刻度的直线l 上,从点A 开始. 以AB =1为直径画半圆,记为第1个半圆 以BC =2为直径画半圆,记为第2个半圆 以CD =4为直径画半圆,记为第3个半圆 以DE =8为直径画半圆,记为第4个半圆……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______. (结果保留π)图67.如图7,AB 是⊙O 的直径,CD 是弦,若AB =10cm ,CD =6cm ,那么A 、B 两点到直线CD 的距离之和为 ( ) A .6cmB .8cmC .10cmD .12cm图78.如图8,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从O 出发,沿O C D O →→→的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下面图像中表示y 与t 之间的函数关系最恰当的是( )tttA .B .C .D . 图89.小翔在如图9所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过点B跑到点C,共用时30秒,他的教练选择了一个固定的位置观察小翔的跑步过程,设小翔跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y与t的函数关系的图像大致如图2,则这个固定位置可能是图1的()A.点M B.点N C.点P D.点Q图910.如图10,平行四边形ABCD中,BC=4,BC边上高为3,M为BC中点,若分别以B、C为圆心,B M长为半径画弧,交AB、CD于E、F两点,则图中阴影部分面积是。
六年级数学圆的练习题30题

六年级数学圆的练习题30题1. 圆的周长是圆的直径的倍数。
这个倍数是:a) 2b) 3c) π2. 圆的直径是10 cm,求圆的周长。
a) 10 cmb) 20 cmc) 31.4 cm3. 圆的直径是8 cm,求圆的周长。
a) 8 cmb) 16 cmc) 25.12 cm4. 圆的直径是12 cm,求圆的周长。
a) 12 cmb) 24 cmc) 37.68 cm5. 圆的半径是5 cm,求圆的周长。
a) 5 cmb) 10 cmc) 31.4 cm6. 圆的半径是3 cm,求圆的周长。
a) 3 cmb) 6 cmc) 18.84 cm7. 圆的半径是7 cm,求圆的周长。
a) 7 cmb) 14 cmc) 43.96 cm8. 圆的半径是4 cm,求圆的周长。
a) 4 cmb) 8 cmc) 25.12 cm9. 圆的半径是6 cm,求圆的周长。
a) 6 cmb) 12 cmc) 37.68 cm10. 圆的半径是9 cm,求圆的周长。
a) 9 cmb) 18 cmc) 56.52 cm11. 圆的半径是10 cm,求圆的面积。
a) 10 cm²b) 20 cm²12. 圆的半径是6 cm,求圆的面积。
a) 6 cm²b) 12 cm²c) 113.04 cm²13. 圆的半径是8 cm,求圆的面积。
a) 8 cm²b) 16 cm²c) 201.06 cm²14. 圆的直径是14 cm,求圆的面积。
a) 49 cm²b) 98 cm²c) 153.86 cm²15. 圆的直径是12 cm,求圆的面积。
a) 36 cm²b) 72 cm²c) 113.04 cm²16. 圆的直径是18 cm,求圆的面积。
a) 81 cm²b) 162 cm²c) 254.34 cm²17. 圆的半径是3.5 cm,求圆的面积。
初三数学【圆】试题及答案

圆一.选择题(共20小题)1.到圆心的距离大于半径的点的集合是()A.圆的内部B.圆的外部C.圆D.圆的外部和圆【分析】根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决.【解答】解:根据点和圆的位置关系,知圆的外部是到圆心的距离大于的所有点的集合;故选:B.【点评】此题考查圆的认识问题,理解圆上的点、圆内的点和圆外的点所满足的条件.2.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是()A.8B.16 C.32D.32【分析】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=OA,推出△AOD 是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【解答】解:过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,∵AB∥CD,∴EF⊥CD,∵分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形,∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=AD=4,∴四边形ABCD的面积是16,故选:B.【点评】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解题的关键.3.《九章算术》是我国古代著名数学暮作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,由AB=10可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,把求出的半径代入即可得到答案.【解答】解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x,则OC=OD=x∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.【点评】此题考查了垂径定理的应用,注意利用圆的半径,弦的一半及弦心距所构成的直角三角形来解决实际问题,做此类题时要多观察,多分析,才能发现线段之间的联系.4.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O 的半径为()A.B.C.D.【分析】作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,利用等角的余角相等得到∠DOE=∠AOC,则DE=AC=2,利用三角形内角和可计算出∠BDE=135°,所以∠BDF=45°,从而可计算出DF=BF=2,利用勾股定理计算出BE=2,然后根据△BOE为等腰直角三角形可得到OB的长.【解答】解:作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,∵∠DOC=90°,∠BOE=90°,∴∠DOE=∠AOC,∴DE=AC=2,∵∠BDE=180°﹣×90°=135°,∴∠BDF=45°,∴DF=BF=BD=×2=2,在Rt△BEF,BE==2,∵△BOE为等腰直角三角形,∴OB=×2=.故选:D.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.5.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()①AC=CD;②AD=BD;③+=;④CD平分∠ACBA.1B.2C.3D.4【分析】根据折叠的性质可得AD=CD;根据线段中点的定义可得AD=BD;根据垂径定理可作判断③;延长OD交⊙O于E,连接CE,根据垂径定理可作判断④.【解答】解:过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;∵点D是AB的中点,∴AD=BD,∵AC=CD',故②正确;∴=,由折叠得:=,∴+=;故③正确;延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.6.如图,四边形ABCD为⊙O的内接四边形,∠BCD=110°,则∠BOD的度数是()A.70°B.120C.140°D.160°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=110°,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•P A【分析】利用相似三角形的性质即可解决问题.【解答】解:∵∠P=∠P,∠A=∠D,∴△P AB∽△PDC,∴=,∴PB•PD=PC•P A,故选:D.【点评】本题考查相似三角形的判定,相交弦定理等知识,解题的关键是正确寻找相似三角形解决问题.8.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>8【分析】首先确定OB的取值范围,然后根据点A所表示的实数写出a的取值范围,即可得到正确选项.【解答】解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.9.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④三点确定一个圆.A.1个B.2个C.3个D.4个【分析】利用确定圆的条件、垂径定理及圆心角、弧、弦之间的关系逐一作出判断即可得到答案.【解答】解:①同圆或等圆中,相等的圆心角所对的弧相等,故不符合题意;②平分弦(弦不是直径)的直径垂直于弦;故不符合题意;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;故符合题意;④不在一条直线上的三点确定一个圆,故不符合题意,故选:A.【点评】本题考查了确定圆的条件、垂径定理及圆心角、弧、弦之间的关系等有关的基础知识,虽然不很难,但很容易出错.10.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2﹣x﹣6=0的一个根,则直线l与圆O的位置关系为()A.相切B.相交C.相离D.不能确定【分析】先根据d是方程x2﹣x﹣6=0的一个根求出d的值,再由直线和圆的位置关系即可得出结论.【解答】解∵d是方程x2﹣x﹣6=0的一个根,∴d=3.∵当d=3,r=6时,d<r,∴直线于圆相交.故选:B.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l 的距离为d.当d<r时,直线l和⊙O相交;当d=r时直线l和⊙O相切;当d>r时,直线l和⊙O相离是解答此题的关键.11.下列语句中,正确的是()A.同一平面上三点确定一个圆B.菱形的四个顶点在同一个圆上C.三角形的外心是三角形三边垂直平分线的交点D.三角形的外心到三角形三边的距离相等【分析】根据确定圆的条件,三角形的外心的定义,以及圆内接四边形的对角互补的性质对各选项分析判断后利用排除法.【解答】解:A、同一平面上三点必须不在同一直线上才可以确定一个圆,故本选项错误;B、菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故本选项错误;C、三角形的外心是三角形三边中垂线的交点,是外心定义,正确;D、三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故本选项错误.故选:C.【点评】本题主要考查了三角形的外心的定义,确定圆的条件,圆内接四边形的对角互补的性质,都是基础知识,需熟练掌握.12.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.3cm C.6cm D.6cm【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的半径.【解答】解:设圆心为O,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°,∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故选:B.【点评】此题考查了切线的性质,切线长定理,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.13.下列说法中,正确的是()A.经过半径的端点并且垂直于这条半径的直线是这个圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.90°的圆周角所对的弦是直径D.如果两个圆心角相等,那么它们所对的弦相等【分析】根据切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系判断即可.【解答】解:A、经过半径的外端并且垂直于这条半径的直线是圆的切线,故不符合题意;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故不符合题意;C、90°的圆周角所对的弦是这个圆的直径,故符合题意;D、在同圆或等圆中,如果两个圆心角相等,那么它们所对的弦相等,所对的弧也相等,故不符合题意;故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.用到的知识点有切线的判定定理,垂径定理,圆周角定理以及弧、弦、圆心角之间的关系.判断命题的真假关键是要熟悉课本中的性质定理.14.如图,四边形ABCD是矩形,点P是△ABD的内切圆的圆心,过P作PE⊥BC,PF⊥CD,垂足分别为点E、F,则四边形PECF和矩形ABCD的面积之比等于()A.1:2B.2:3C.3:4D.无法确定【分析】延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD=c,⊙P的半径为r,利用平行线的性质得到PM⊥AD,PN⊥AB,再根据切线的性质得到PM =PN=r,根据直角三角形的内切圆半径的计算方法得到r=,所以PE•PF=•,利用完全平方公式和平方差公式得到PE•PF=ab,然后计算四边形PECF和矩形ABCD的面积之比.【解答】解:延长EP交AD于M,延长FP交AB于N,如图,设AD=a,AB=b,BD =c,⊙P的半径为r,∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∵PE⊥BC,PF⊥CD,∴PM⊥AD,PN⊥AB,∵点P是△ABD的内切圆的圆心∴PM=PN=r,∴r=,∴PF=a﹣=,PE=b﹣=,∴PE•PF=•==,而a2+b2=c2,∴PE•PF==ab,∴四边形PECF和矩形ABCD的面积之比=ab:ab=1:2.故选:A.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线的性质和矩形的性质.15.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C 的半径长是()A.11B.10C.9D.8【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【点评】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.16.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=()A.100°B.40°C.80°D.70°【分析】在优弧AB上取一点E,连接AE,BE,AO1,BO1.利用圆周角定理,圆内接四边形的性质即可解决问题.【解答】解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.【点评】本题考查圆周角定理,圆内接四边形的性质,相交两圆的性质等知识,教育的关键是学会添加常用辅助线,属于中考常考题型.17.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°【分析】由正五边形的性质即可得出答案.【解答】解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.【点评】本题考查了正多边形和圆、正五边形的性质;熟记正五边形的中心角的计算方法是解题的关键.18.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9C.3πD.6π【分析】直接利用弧长公式计算即可.【解答】解:该莱洛三角形的周长=3×=3π.故选:C.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.19.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π【分析】根据阴影的面积=△ABC的面积﹣两个扇形的面积和扇形的面积公式计算即可.【解答】解:∵∠B=90°,∴∠A+∠C=90°,设∠A=α,∠B=C=β,则α+β=90°,∵∠B=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式:S=是解题的关键.20.已知圆锥的底面半径为2cm,母线长为3cm,则该圆锥的侧面积为()A.18πB.12πC.6πD.3π【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径是2cm,则底面周长=4πcm,圆锥的侧面积=×4π×3=6πcm2.故选:C.【点评】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.二.填空题(共6小题)21.如图,在矩形ABCD中,AB=4cm,AD=12cm,动点P以每秒1cm的速度从点C 沿折线C﹣D﹣A匀速运动,到点A运动停止.以P为圆心作半径为cm的⊙P,当⊙P 与对角线BD相切时,点P的运动时间为4﹣2或6s.【分析】由矩形的性质和直角三角形的性质得出∠ADB=30°,∠BDC=60°,分两种情况①当⊙P与对角线BD相切,点P在CD上时;②当⊙P与对角线BD相切,点P 在AD上时;由直角三角形的性质即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠A=90°,CD=AB=4,∴BD===8=2AB,∴∠ADB=30°,∠BDC=60°,①当⊙P与对角线BD相切,点P在CD上时,如图1所示:设QD为E,连接PE,则PE⊥BD,∴∠DPE=30°,∴DE=PE=1,∴PD=2DE=2,∴CP=4﹣2,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为4﹣2(秒),②当⊙P与对角线BD相切,点P在AD上时,如图2所示:设QD为F,连接PF,则PF⊥BD,∵∠ADB=30°,∴PD=2PF=2,∴CD+PD═6,∵动点P以每秒1cm的速度从点C沿折线C﹣D﹣A匀速运动,∴点P的运动时间为6秒;综上所述,⊙P与对角线BD相切时,点P的运动时间为4﹣2(秒)或6秒;故答案为:4﹣2或6.【点评】本题考查了切线的性质、矩形的性质、直角三角形的性质等知识;熟练掌握切线的性质和直角三角形的性质是解题的关键.22.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.【分析】作辅助线,构建直角△AOB,分别计算OA、OB的长,根据面积法可得OE的长.【解答】解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,∵⊙O内切于菱形ABCD,∴OE=OF,∴OB平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,同理得∠BAO=60°,∴∠AOB=90°,∴AO=AB=2,OB=2,∴S△AOB=AB•OE=AO•OB,4OE=2×,OE=,故答案为:.【点评】本题考查切线的性质、菱形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.如图,已知⊙O与Rt△AOB的斜边交于C,D两点,C、D恰好是AB的三等分点,若⊙O的半径等于5,则AB的长为3.【分析】过O作OH⊥AB,由陈经理得到CH=DH,推出△AOB是等腰直角三角形,得到OH=AH,设AC=CD=BD=x,根据勾股定理即可得到结论.【解答】解:过O作OH⊥CD,∴CH=DH,∵AC=BD=AB,∴AH=BH,∴△AOB是等腰直角三角形,∴OH=AH,设AC=CD=BD=x,∴AH=OH=1.5x,∴CH2+OH2=OC2,∴(x)2+(x)2=52,∴x=,∴AB=3,故答案为:3.【点评】本题考查了勾股定理,等腰直角三角形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.24.已知⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,r的长为2.【分析】根据两圆的位置关系和数量之间的联系解答即可.【解答】解:∵⊙O1的半径长为4,⊙O2的半径长为r,圆心距O1O2=6,当⊙O1与⊙O2外切时,∴r+4=6,解得:r=2,故答案为:2;【点评】本题考查的是圆与圆的位置关系与数量之间的联系,关键是根据两圆外切⇔d =R+r解答.25.一个圆柱的高缩小2 倍,底面半径扩大2 倍,表面积不变.错误.(判断对错)【分析】根据圆柱的表面积即可得到结论.【解答】解:设原圆柱的高为h,底面半径为r,现在的圆柱的高为h,底面半径为2r,∴原表面积=2πr2•h,现在的表面积=2π•(2r)2h=4πr2h,∴表面积发生了变化,故答案为:错误.【点评】本题考查了圆柱的计算,正确的计算圆柱的表面积是解题的关键.26.如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F 与点C的最小距离为3﹣1.【分析】如图取AB的中点G,连接FG,FC,GC,由△F AG∽△EAD,推出FG:DE =AF:AE=1:3,因为DE=3,可得FG=1,推出点F的运动轨迹是以G为圆心1为半径的圆,再利用两点之间线段最短即可解决问题.【解答】解:如图取AB的中点G,连接FG.FC.GC.∵∠EAF=90°,tan∠AEF=,∴=,∵AB=6,AG=GB,∴AG=GB=3,∵AD=9,∴==,∴=,∵四边形ABCD是矩形,∴∠BAD=∠B═∠EAF=90°,∴∠F AG=∠EAD,∴△F AG∽△EAD,∴FG:DE=AF:AE=1:3,∵DE=3,∴FG=1,∴点F的运动轨迹是以G为圆心1为半径的圆,∵GC==3,∴FC≥GC﹣FG,∴FC≥3﹣1,∴CF的最小值为3﹣1.故答案为3﹣1.【点评】本题考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.三.解答题(共1小题)27.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,过A作AD⊥CD,D为垂足.(1)求证:∠DAC=∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的直径.【分析】(1)连接BC,OC,根据圆周角定理和弦切角定理可证得∠DAC=∠BAC;(2)根据已知条件得,从而求得AB的长.【解答】证明:(1)连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵直线CD与⊙O相切于点C,∴∠ACD=∠B,∠OCD=90°,∵AD⊥CD,∴∠D AC+∠ACD=90°,∴∠DAC=∠BAC;(2)∵cos∠BAC=,∴=,∵AC=6,∴AB=10,故⊙O的直径为10.【点评】本题考查了弦切角定理和圆周角定理以及解直角三角形,是基础知识要熟练掌握.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》好题精选20题
1.如图1,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2=________
A
图1 图2
2.如图2,AB 为半圆O 的直径,C 、D 是⊙O 上的三等分点,若⊙O 的半径为1,E 为线段AB 上任意一点,则图中阴影部分的面积为__________。
3.如图3,Rt △ABC 中∠C =90°,∠A =30°,在AC 边上取点O 画圆使⊙O 经过A 、B 两点,下列结论中: ①AO =2CO ; ②AO =BC ; ③以O 为圆心,以OC 为半径的圆与AB 相切; ④延长BC 交⊙O 于 点D ,则A 、B 、D 是⊙O 的三等分点, 正确的序号是
(多填或错填不给分,少填或漏填酌情给分)
B
图3 图4 图5
4.如图4,在△ABC ,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E
,F ,则线段EF 长度的最小值是( )
A .
B .4.75
C .4.8
D .5
5.如图5,△ABC 中,︒=∠60BAC ,︒=∠45ABC ,AB =22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 。
6.如图6,在标有刻度的直线l 上,从点A 开始. 以AB =1为直径画半圆,记为第1个半圆 以BC =2为直径画半圆,记为第2个半圆 以CD =4为直径画半圆,记为第3个半圆 以DE =8为直径画半圆,记为第4个半圆
……,按此规律,继续画半圆,
则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______. (结果保留π)
图6
7.如图7,AB 是⊙O 的直径,CD 是弦,若AB =10cm ,CD =6cm ,那么A 、B 两点到直线CD 的距离之和为 ( ) A .6cm
B .8cm
C .10cm
D .12cm
图7
8.如图8,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从O 出发,沿O C D O →→→的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下面图像中表示y 与t 之间的函数关系最恰当的是( )
t
t
t
A .
B .
C .
D . 图8
9.小翔在如图9所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过点B跑到点C,共用时30秒,
他的教练选择了一个固定的位置观察小翔的跑步过程,设小翔跑步的时间为t(单位:秒),他与教练距离为y(单
位:米),表示y与t的函数关系的图像大致如图2,则这个固定位置可能是图1的()
A.点M B.点N C.点P D.点Q
图9
10.如图10,平行四边形ABCD中,BC=4,BC边上高为3,M为BC中点,若分别以B、C为圆心,B M长为半径画弧,交AB、CD于E、F两点,则图中阴影部分面积是。
(用含π的式子表示)
D
图10 图11
11.如图11,已知∠ABC=90°,AB=πr,
2
r
BC
π
=,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C 时停止。
请你根据题意,在图11上画出圆心O运动路径的示意图;圆心O运动的路程是. 12.如图12,矩形ABCD中,AB=π,点E、F分别为AD、BC的中点,以A为圆心,AE为半径画弧,交BF 于点G,以E为圆心,AE为半径画弧,交FC于点H,交EF的延长线于点M,若两个阴影部分的面积相等,则AD的长为_______________.
图12
13.如图1所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相较于点I,延长AI交圆O于点D,连接BD、DC。
(1)求证:BD=DC=DI
(2)如图2,若圆O的半径为10cm,∠BAC=120°,求△BDC的面积。
B
图1 图2
13.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上的一点,且AC平分PAE
,过C 作CD丄P A,垂足为D。
(1)求证:CD为⊙O的切线。
(2)若DC+DA=6,⊙O的直径为10,求AB的长度。
14.如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.
(1)求证:直线MN是⊙O的切线;
(2)过点A作AD⊥MN于点D,交⊙O于点E,已知AB=6,BC=3,求阴影部分的面积.
N
15.已知A、B、C、D是⊙O上的四个点.
(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;
(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径
.
图
16.已知:如图,⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,弦CD 交AB 于E ,
∠BCD =∠BAC . (1)求证:AC =AD ;
(2)过点C 作直线CF ,交AB 的延长线于点F ,若∠BCF =30°,则结论“CF 一定是⊙O 的切线”是否正确?若
正确,请证明;若不正确,请举反例.
17.在直角坐标系中,一条弧经过网格点A 、B 、C ,其中点B 的坐标为(4,4),则该圆弧所在圆的圆心的坐标为 ;
18.如图,△ABC 是
O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设OAB α∠=,C β∠=
(1)当35α
=时,求β的度数;
(2)猜想α与β之间的关系为
19.正方形ABCD 的四个顶点都在O 上,E 是O 上一点。
(1)如图①,若点E 在AB 上,F 是DE 上的一点,DF BE =。
求证:△ADF ≌△ABE ;
图①
(2)在(1)的条件下,小明还发现线段DE 、BE 、AE 之间满足等量关系:DE BE -=
,请你说明理由。
图①
(3)如图②,若点E 在AD 上,写出线段DE 、BE 、AE 之间的等量关系。
(不必证明)
图②
20.阅读下面的情境对话,然后回答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形一定不是奇异三角形!
(1)根据“奇异三角形”的定义,请你判断小明提出的命题:“直角三角形一定不是奇异三角形”是真命题还是假命题?若是真命题,请给以证明;若是假命题,请举一个反例.
(2)如图,AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D是半圆ADB的中点,C、D在直径AB 的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC是度数.
A
B。