球类组合体的求解方法

合集下载

第讲简单多面体球与组合体

第讲简单多面体球与组合体
又 R A 在 t 中 H SS 2 , H S2 A A2H
所 以SH2x2 (3x) 22x2

33
2
S
联 立 ① ②得
2 3xR
(3x) 29 3
解得 x2 6
h 4
即正四面体的高为4.
O
C
A
H
B
【回顾与反思】
球与多面体的切、接问题,要弄清位置 关系,选择最佳角度作出截面,以使空 间问题能转化为平面问题解决.
O4 O3
【回顾与反思】遇到一些比较陌生,正面不易求解的试题 时,考生应注意认真审题,尽量转化为自己比较熟悉的典 型习题,结合熟悉的背景,化繁为简、化陌生为熟悉.
谢谢!
令y=1,则z=-2, x=4, 故n=(4, 1, -2).
又由(1)知,A1C⊥平面BED
D1 z A1
故 n, A1C 等于二面角A1-DE-B的平面角,

cos
n,A1CnnA A11C C
14. 42
D
A
所以二面角A1-DE-B的大小为
arccos
14 42
x
C1
B1
E
C
y
B
典例精析
(1)求A1A与底面ABC所成的角; (2)证明A1E∥平面B1FC; (3)求经过A1、A、B、C四点的球的体积.
【分析】本题是一道立体几何的综合 题,以三棱柱为载体,考查了线面角、
A1
线面平行、外接球等内容.本题中求外
接球的体积关键是根据已知条件确定
外接球的球心,再求出半径.
C1 B1
解析 (1) 过A1作A1H⊥平面ABC,垂足为H. 连结AH, 并延长交BC于G,连结EG,

多面体与球的组合体问题的求解策略

多面体与球的组合体问题的求解策略

多面体与球的组合体问题的求解策略如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 策略一:公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为_________. 【解析】设正六棱柱的底面边长为x ,高为h ,则有263,936,84x x h =⎧⎪⎨=⨯⎪⎩∴1,23x h ⎧=⎪⎨⎪=⎩. ∴正六棱柱的底面圆的半径12r =,球心到底面的距离32d =.∴外接球的半径221R r d =+=,43V π∴=球 【小结】本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式策略二:多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A .16πB .20πC .24πD .32π【解析】设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴222222426,6R R =++=∴= .∴这个球的表面积是2424R ππ=.选C .【小结】本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 策略三:补形法例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是_________.【解析】据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()()()()222223339R =++=.∴294R =. 故其外接球的表面积249S R ππ==.【小结】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.策略四:寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长都为2,点S A B C D 、、、、都在同一球面上,则此球的体积为_________.CDA B SO 1图3【解析】设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由22SA SC AC ===,,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 【小结】根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.CA O DB 图4策略五:确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为( )A .12512πB .1259πC .1256πD .1253π 【解析】设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示,∴外接球的半径52R OA ==.故3412536V R ππ==球,故选C .。

“球放盒子里”的排列组合解题策略

“球放盒子里”的排列组合解题策略

分析
题 目要求 每个 盒子不空 , 且盒 子和球都 相 同, 因
此, 只有一种放法 , 事实上也 可以看成是将 4拆 分成正 整数
的和 : 4 = 1 + 1 + 2 , 而且 只有 这一 唯一 的拆 法 , 像这 类 问题
都可 以用拆数 的方法来解 决. 变题 把 7个相 同 的球 放 入 4个 相 同的盒 子里 , 要 求 每个盒子至少一个球 , 共有 多少 种放法. ( 解: 7=l+1 +l +
以用球 放盒子中这类 问题来解 决 , 为此 , 下 面我们 简单地 介
绍 球放 盒子 中有 限制条件 的排 列组 合问题的处理办法. 问题 : 把 4个相 同或 不相 同 的球放 入相 同 或不 相 同的
分析
先找 出空盒 子 , 然 后转 化 为例 3的情 形 , 共有
C X 3=1 2种不 同放法. 例 5 把 4个不 同的球放入 3个相 同的金子里 , 要求每 个盒子至少一个球 , 共有 多少种放法.
的和.
分析
本题应先 取后 排 , 根据 题 意有 一个 盒子 放 2个
球, 其余盒 子各 放 1 个球 , 因此 , 有c 2 乙 : I 乙 1 。 = 7 2 种.
把 7个相 同 的球 放人 4个 相 同的 盒子里 , 要求 例 8 把 4个 不同的球 放入 4个 不同的盒子里 。 要求有 1个盒子 空, 共有 多少种放法? 分析 先将空 盒子取出来 , 然 后转 化为例 7问题 , 共有
7 3 + 3 有 : 7 o : 2 + 2 + 3 有 擎 : l 0 5
2 ^2
种, 共有 3 0 1 种. ) 例 6 把 4个不 同的球 放入 4个 相同的盒子里 , 要求有 1个盒子 空, 共有多少种放法? 分析 先拆数 : 4= 0+l +1 +2 , 只要取 2个球 即可 , 因

专题14 与球有关的组合体(解析版)

专题14 与球有关的组合体(解析版)

培优14 与球有关的组合体一、侧面与地面垂直的几何体的外接球问题例1:已知在三棱锥C ABD -中,ABD △是等边三角形,BC CD ⊥,平面ABD ⊥平面BCD ,若该三棱锥的外接球表面积为4π,则AC =( )A .3 B .6 C .3D .32【答案】C【解析】根据题意,画出图形,设且外接球球心为O ,半径为R , 根据题意,有24π4πR =,解得1R =,根据题意,有球心O 为正三角形ABD △的中心, 因为1OD =,所以1AO =,12OF =,所以正三角形ABD △3, BC CD ⊥,所以1322CF BD ==, 因为平面ABD ⊥平面BCD ,所以π2AFC ∠=, 所以2239344AC CF AF =+=+= 二、通过投影找外接球球心例2:已知球O 内接正四面体P ABC -,E 为棱PA 的中点,F 是棱PB 上的一点, 且2FC EF =,则球O 与四面体P EFC -的体积比为( ) A .3πB .3πC .183πD .3π【答案】D【解析】如图,正四面体P ABC -中,顶点P 在底面的射影为1O ,球心O 在1PO 上. 设正四面体的棱长为2a , 则正四面体高222211232()62()3PO PC O C a a a =-=-=.设外接球半径为R ,在直角三角形1OO C 中,22211OC OO O C =+,即2222623()()R a R a =-+,解得6R a =. 令PF λ=,在PEF △中,由余弦定理得222222cos60EF PE PF PE PF a a λλ=+-⋅⋅︒=+-①,同理,在PFC △中,由余弦定理得222222cos6042FC PC PF PC PF a a λλ=+-⋅⋅︒=+-②,由题设2FC EF =,解得23a λ=. 由于P 到平面ABC 的距离与C 到平面PAB 的距离相等,都等于1||PO ,213||||sin 6026PEF S PE PF a =︒=△, 故231113262||33639P EFC PEF V S PO a a a -=⋅=⨯⨯=△,33446ππ()6π33OV R a a ===球,所以336π93π2O P EFC V a V a -==球.三、内切球相关问题例3:阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为( )A .4πB .16πC .36πD .64π3【答案】C【解析】设球的半径为R ,根据题意圆柱的表面积为22π2π254πS R R R =+⨯=,解得3R =, 所以该球的体积为3344ππ336π33V R ==⨯⨯=.增分训练一、选择题1.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线, 依题意可知OA l ⊥,AB 是晷针所在直线,m 是晷面的截线, 依题意,晷面和赤道平面平行,晷针与晷面垂直, 根据平面平行的性质定理可得可知//m CD , 根据线面垂直的定义可得AB m ⊥.由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 2.如图为某水晶工艺品示意图,该工艺品由一个半径为R 的大球放置在底面半径和高均为R 的圆柱内,球与圆柱下底面相切为增加观赏效果,设计师想在圆柱与球的空隙处放入若干大小相等的实心小球,且满足小球恰好与圆柱底面、圆柱侧面及大球都相切,则该工艺品最多可放入( )个小球.A .14B .15C .16D .17【答案】B【解析】如图,过球心与圆柱体底面圆心的平面截得该图形的平面图,设球的半径为R,实心小球的半径为r,由题意可得22r r R R++=,解得(322)R r=+,因为小球球心在以E为圆心,EF为半径的圆上,2R rEF+=,周长为2πEF,所以22πrn EF≤,即2π2π2π()2π[(322)]2(222)π15.16 2222R rEF R r r rnr r r r++++≤====+≈,故该工艺品最多可放入15个小球.3.如图,一个盛满溶液的玻璃杯,其形状为一个倒置的圆锥,现放一个球状物体完全浸没于杯中,球面与圆锥侧面相切,且与玻璃杯口所在平面相切,则溢出溶液的体积为()A83π27B43π27C163π27D323π27【答案】D【解析】由题意,设球的半径为r,作出球的组合体的轴截面,可得一个半径为r的圆内切与一个边长为4的等边三角形,此时正三角形的高线为23h=根据中心(重心)的性质可得,球的半径为2433r h==,所以球的体积为334443323ππ()π33327V r ==⨯=,即溢出溶液的体积为323π27,故选D .4.某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为43的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),若其中一个截面圆的周长为4π,则该球的半径是( )A .2B .4C .26D .46【答案】B【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半,即23, 根据截面圆的周长可得4π2πr =,得2r =,故由题意,知222(23)R r =+,即2222(23)16R =+=,所以4R =.5.(多选题)已知A ,B ,C 三点均在球O 的表面上,2AB BC CA ===,且球心O 到平面ABC 的距离等于球半径的13,则下列结论正确的是( ) A .球O 的半径为32B .球O 的表面积为6πC .球O 6D .球O 6【答案】BD【解析】设球O 的半径为r ,ABC △的外接圆圆心为O ',半径为R , 可得23R =, 因为球心O 到平面ABC 的距离等于球O 半径的13,所以221493r r -=,得232r =,所以A 不正确; 所以球O 的表面积234π4π6π2S r ==⨯=,选项B 正确; 球O 的内接正方体的棱长a 2r =,显然选项C 不正确; 球O 的外切正方体的棱长b 满足2b r =,显然选项D 正确.6.(多选题)已知ABC △的三边长分别是3AC =,4BC =,5AB =.则下列说法正确的是( )A .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以AB 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为48π5C .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的全面积为25πD .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为16π 【答案】ABD【解析】以BC 所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为π3515π⨯⨯=,故A 正确;以AB 所在直线为旋转轴,所得旋转体是具有同底的两个圆锥体的组合体, 其半径为345⨯, 故所得旋转体的体积211248ππ()5355V =⨯⨯=,故B 正确; 以AC 所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥, 侧面积为π4520π⨯⨯=,体积为21π4316π3⨯⨯⨯=,故C 错误,D 正确. 7.(多选题)下列说法中不正确的是( ) A .棱柱的侧面可以是三角形B .正方体和长方体都是特殊的四棱柱C .所有几何体的表面都能展开成平面图形D .棱柱的各条棱都相等【答案】ACD【解析】棱柱的侧面都是四边形,A 不正确; 正方体和长方体都是特殊的四棱柱,B 正确;不是所有几何体的表面都能展开成平面图形,球不能展开成平面图形,C 不正确; 棱柱的各条棱并不是都相等,应该为棱柱的侧棱都相等,所以D 不正确.8.(多选题)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下30.02cm 的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为31024πcm 81B .沙漏的体积是3128πcmC .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是1985秒(π 3.14≈) 【答案】ACD【解析】根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径284cm 33r =⨯=, 所以体积2312164π161024ππcm 3339381h V r =⋅⋅=⋅⋅=; 沙漏的体积223112562π()2π48πcm 3233h V h =⨯⨯⨯⨯=⨯⨯⨯⨯=; 设细沙流入下部后的高度为1h ,根据细沙体积不变可知211024π1(π())8132h h =⨯⨯, 所以11024π16π813h =,所以1 2.4cm h ≈; 因为细沙的体积为31024π8cm 1,沙漏每秒钟漏下30.02cm 的沙, 所以一个沙时为1024π1024 3.14815019850.0281⨯=⨯≈秒.二、填空题9.已知等边三角形ABC 的边长为M ,N 分别为AB ,AC 的中点,将AMN △沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,四棱锥A MNCB -外接球的半径为______,点P 到平面MNCB 距离的最大值为______.【答案】2,12+【解析】如图所示,设MN 的中点为Q ,1O ,2O 分别为等边三角形AMN 和梯形MNCB 的外接圆圆心.在ABC △中,N 为AC 的中点,所以BN CN ⊥, 则BC 为梯形MNCB 外接圆的直径.连接1O Q ,2O Q .由题意,当四棱锥A MNCB -的体积最大时,平面AMN ⊥平面MNCB , 过1O 作平面AMN 的垂线,过2O 作平面MNCB 的垂线,两条垂线交于点O , 则点O 即为四棱锥A MNCB -外接球的球心. 四边形12OO QO 为矩形,则21OO O Q =.在等边三角形AMN 中,MN =,则32AQ =,112O Q =, 即212OO =.又2O B ,所以四棱锥A MNCB -外接球的半径2R OB ====,所以点P 到平面MNCB 距离的最大值2212O P R OO =+=.10.三棱锥A BCD -的顶点都在同一个球面上,满足BD 过球心O ,且22BD =,则三棱锥A BCD -体积的最大值为________;三棱锥A BCD -体积最大时,平面ABC截球所得的截面圆的面积为________.【答案】223,4π3【解析】依题意可知,BD 是球的直径,所以当OC BD ⊥,OA BD ⊥, 即2OC OA ==时,三棱锥A BCD -体积取得最大值为1112222223323BCD S OA ⨯⨯=⨯⨯⨯⨯=△,此时2BC AC AB ===, 即三角形ABC 是等边三角形, 设其外接圆半径为r ,由正弦定理得22π3sin 3r r =⇒=, 所以等边三角形ABC 的外接圆的面积,也即平面ABC 截球所得的截面圆的面积为224π4π4π()33r =⨯=.11.已知正三棱锥P ABC -,Q 为BC 中点,2PA =2AB =,则正三棱锥P ABC-的外接球的半径为________;过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为________.【答案】6,[π3,π2] 【解析】因为正三棱锥P ABC -,2PB PC PA ===,2AC BC AB ===,所以222PB PA AB +=,即PB PA ⊥,同理PB PC ⊥,PC PA ⊥,因此正三棱锥P ABC -可看作正方体的一角,如图, 记正方体的体对角线的中点为O ,由正方体结构特征可得,O 点即是正方体的外接球球心, 所以点O 也是正三棱锥P ABC -外接球的球心,记外接球半径为R ,则162222R =++=, 因为球的最大截面圆为过球心的圆,所以过Q 的平面截三棱锥P ABC -的外接球所得截面的面积最大为2max 3ππ2S R ==; 又Q 为BC 中点,由正方体结构特征可得1222OQ PA ==, 由球的结构特征可知,当OQ 垂直于过Q 的截面时,截面圆半径最小为221r R OQ =-=,所以2min ππS r ==,因此,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为[π3,π2].12.某地球仪上北纬30︒纬线的长度为12π(cm),该地球仪的半径是________cm ,表面积是________2cm . 【答案】3192π【解析】设北纬30︒所在圆面的关系为r ,由题可得2π12πr =,解得6r =,设地球仪的半径为6cos30R ==︒24π192πR =.。

球与多面体的组合体问题

球与多面体的组合体问题

问题一:多面体与球的组合体问题 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==; 二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==; 三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则13A O R '==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为() A .22 B .1 C .212+ D .2【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A .2πB .4πC .8πD .16π1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A. B.4π C. D.【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+. 例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,3SE a CE ==则有2222233a R r a R r CE +=-=,=,解得:66,.R r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.C.3πD.2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125B.π9125C.π6125D.π3125例8三棱锥A BCD -中,AB CD ====AC AD BD BC ==A BCD -的外接球的半径是.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R的球内放入大小相等的4个小球,则小球半径r的最大值为()A.(-1)RB.(-2)RC.RD.R四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.l03cm B.10cmC.102cm D.30cm五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A .5πB .12πC .20πD .8π 【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.πB.πC.πD.π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.【针对训练】1.【2016届云南省玉溪市一中高三第四次月考】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒则此球的表面积等于()A .952πB .π20C .π8D .352π 2.【2016届河北省衡水二中高三上学期期中】已知四面体P -ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC,23AC =,若四面体P -ABC 的体积为32,则该球的体积为() A .3πB .433C .83πD .8333.【2016届河北省衡水二中高三上学期期中考试】某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A .4πB .283πC .443πD .20π4.【2016届福建省三明一中高三上第二次月考】如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为()A .2B .22C .2D .1 5.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为()(A )π(B )2π(C )3π(D )4π6.【河北省“五个一名校联盟”2015届高三教学质量监测(一)】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )A. B. C. D.7.【2016届贵州省贵阳市六中高三元月月考】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为.8.【2016届陕西省渭南市白水中学高三上第三次月考】一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是.9.【2016届重庆市巴蜀中学高三上学期一诊模拟】已知S A B C ,,,都是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,2SA =,3AB =,4BC =,则球O 的表面积等于______.10.【2016届黑龙江省哈尔滨师大附中高三12月考】利用一个球体毛坯切削后得到一个四棱锥P ABCD -,其中底面四边形是边长为1的正方形,1PA =,且PA ⊥平面ABCD ,则球体毛坯体积的最小值应为.11.【2016届河北省邯郸市一中高三一轮收官考试】如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为.12.正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为.13.已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.14.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是?,则这个三棱柱的体积为.15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为.。

解排列组合题的两种方法

解排列组合题的两种方法

解排列组合题的两种方法一、基本计数原理与排列组合公式法基本计数原理是解排列组合题最基本的方法之一,通过分步骤求解问题中的每个小步骤,然后将结果相乘来得到最终的答案。

排列组合公式法是另一种常见的解题方法,通过应用排列组合计算公式来解决问题。

在排列组合问题中,我们经常会遇到排列数、组合数、多重集合的排列与组合等问题。

下面通过几个具体的例子来说明这两种方法的应用。

例1:有5个不同的球,将其放入3个不同的盒子中,要求每个盒子至少放一个球。

问有多少种放法?基本计数原理方法:1.第一个球有3种放置方法,放入三个盒子中的任一个;2.第二个球有3种放置方法,放入三个盒子中的任一个;3.第三个球有3种放置方法,放入三个盒子中的任一个;4.第四个球有3种放置方法,放入三个盒子中的任一个;5.第五个球有3种放置方法,放入三个盒子中的任一个。

根据基本计数原理,将每个步骤的种类数相乘,即可得到最终的答案:3×3×3×3×3=3^5=243排列组合公式法:将问题转化为将5个球放进3个盒子中,每个盒子可以为空的情况下根据排列组合公式,可以得到答案:C(5+3-1,3-1)=C(7,2)=7!/(2!×5!)=7×6/(2×1)=21例2:由4个字母A、B、C、D组成2位或3位的字母排列。

基本计数原理方法:有两种情况:1.2位字母排列:第一位字母有4种选择,第二位字母有3种选择,共有4×3=12种排列;2.3位字母排列:第一位字母有4种选择,第二位字母有3种选择,第三位字母有2种选择,共有4×3×2=24种排列。

根据基本计数原理,将每个情况的种类数相加,即可得到最终的答案:12+24=36种排列。

排列组合公式法:将问题转化为选择2位字母排列和选择3位字母排列两种情况根据排列组合公式,可以得到答案:P(4,2)+P(4,3)=4!/2!+4!/1!=12+24=36种排列。

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)

立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。

球的组合体问题1(球的组合体问题最全分类和解法研究)

球的组合体问题1(球的组合体问题最全分类和解法研究)

球的组合体研究(球中的截面问题 及 球与其它几何体的切接问题)王宪良[学习目标]1.学习球与其它几何体切接的直观图的画法。

2.掌握球的截面的性质;3.理解掌握球的切接题目的类型和解法;4.培养空间想象能力,能根据题意正确画出组合体的直观图。

一、基础知识与概念: 1.有关定义(1)球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.空间中到定点的距离等于定长的点的集合(轨迹)叫球面,(2)外接球:若一个多面体的各个顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 如图(3)内切球:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.如图(4)大圆:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等(它是截面圆中最大的圆); (5)小圆:不过球心的截面所截得的圆叫小圆. 2.外接球的有关知识与方法 (1)性质:性质1:球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 性质2:经过小圆的直径与且小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:球心和截面圆心的连线垂直于截面(类比:圆的垂径定理);性质4:在同一球中,过两不平行截面圆的圆心且垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心);性质5:球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+. (2)结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体截得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;ca b初图2初图1NOO 1PEFOO 1D 1C 1B 1DCA 1O 2ABM结论4:圆柱体的外接球球心在上下两底面圆的圆心连线段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱与该棱柱的外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥与该棱锥的外接圆锥有相同的外接球.(3)终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度); 3.内切球的有关知识与方法(1)若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).(2)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等(类比:与多边形的内切圆、外接圆) (3)正多面体的内切球和外接球的球心重合.(4)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 4.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 二、理清位置,学会画图 先画一个大圆与一个或两个小圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球类组合体的求解方法
与球有关的组合体问题具有一定的灵活性和隐蔽性,加之其组合体的立体几何图形有一定的复杂性,故能很好考查学生的空间思维能力.许多学生在处理与球有关的组合体问题时,由于受到球本身的限制,不善于从组合体问题中挖掘关键点,而显得不够简捷. 1.由球面定义定球心
球心是球的灵魂,抓住了球心就抓住了球的位置.球面上任意一点到球心的距离都相等,这是确定球心位置的基本策略
例1 (20XX 年安徽高考题) 表面积为
在同一个球面上,则此球的体积为( )
A 、
B 、13π
C 、23π
D 、
分析 如图所示: 正八面体的各个顶点P ,A ,B ,C ,D ,Q 都 在
同一个球面上,球 心O 到P ,A ,B ,C ,D , Q 六点的距离相
等, 因为正八面体的各个面都是正三角形,结合球的内接正八面体的对称性可知:正八面体的顶点A ,B ,C,D 在球O 的同一个大圆上 ,
且四边形ABCD 为正 方形.所以
=
2R AB ,即AB . 又因为正
八面体的表面积为且正八面体的各个面都是正三角形, 所

28=14AB AB ⨯
=,1=,即
2R =
所以此球的体积为
334433V R ππ== 因此答案应选A.
评注:解此题的关键是确定球心O 恰好是正方形ABCD 的中心,再结
合正八面体的各个面都是正三角形以及正八面体的表面积为可求出球O 的体积.
2 .利用割补思想定球心
在直接将球心定位较困难时,利用分割或补形的思想方法去探寻球心的位置,是解决与球有关的组合体问题一种常用策略.
例2 (20XX 年全国高考题)一个四面体的所有棱长都为2,四个顶点
在同一球面上,则此球的表面积为 ( )
(A)3π (B)4π (C) (D)6π
分析 法1(分割): 如图3所示,连结球心 O 与正四面体11C A BD 的四个顶点,则四面体 被分割成四个相同的 小正三棱锥,由
1114C A BD
O A BD
V V --=得各小棱锥的高为原正四面体高 的1
4 ,进而可求得
外接球的半径
R =
,球的 表面积为3π.故答案应选(A). 法2 (补形):如图3所示,构造棱长为1的正方体1111ABCD A B C D -,
则11C A BD ,正方体1111ABCD A B C D -的外接球
也为正四面体11C A BD 的外接球,此时球的直径2R ==球
的表面积为3π,故答案应选(A).
3.利用正四面体、正方体的外接球球心与内切球球心重合
利用正四面体、正方体的外接球球心与内切球球心重合这一性质,寻求内切球半径与外接球半径的方程,算出半径的值,即可解决问题.
例3 (20XX 年山东高考题)正方体的内切球与其外接球的体积之比为( )
(A) 1(B)1:3 (C) 1 分析:如图,由图形的对称性知,正方体的中心O 既是内切球的球心又
是外接球的球心.
设正方体的棱长为a, 内切球半径为 r , 外接球半径为 R ,
则 1=22CC a r =

12AC R ==
.
所以=3312()V r V R =故答案应选(C).
4.构造球心骨架图
在许多与球有关的组合体问题中,要画 出实际空间图形比较困难,但我们可以通过球心、球面上的点以及切点等的连线构造多面体(俗称“骨架图”),把与球有关的组合体问题转化为多面体问题来加以解决.
例 4 (20XX 年陕西高考题)水平桌面α上放有4个半径为2R 的球,且相邻的球都相切 ( 球心的连线构成正方形). 在这4个球的上面放1个半径为R 的小球,它和下面的4个球恰好都相切,则小球的球心到水平桌面α的距离是 .
分析 如右图所示
: 水平桌面α上放有4
个 半径为2R 的球的球心1234,,,O O O O 与半径为 R 的小球的球心5O 五点构成正四棱锥51234O O O O O -. 依题设可
知: 122334144O O O O O O O O R ====,152535453O O O O O O O O R ====. 点5O 在平面1234O O O O 的射影O 恰好为正方形1234O O O O 的中心,连结
52,OO OO . 在25Rt OO O ∆中
, 2OO =,253O O R =

5OO R
==. 因此,小球的球心5O 到水平桌面α的距离
为523OO R R +=.
5.利用球的轴截面(大圆)解题
画出球的大圆及其所在的截面图形是解决与球有关的相切或相接组合体问题的基本策略.因此,我们可以把与球有关的相切或相接组合体问题转化为与圆有关的平面几何问题,使空间问题平面化. 例5 (20XX 年漳州质量检测题)甲球内切于某正方体的各个面,乙球内切于该正方体的各条棱,丙球外接于该正方体,则甲、乙、丙球表面面积之比是( )
(A)1:2:3
(B)
(C)
(D)
分析 设正方体1111ABCD A B C D -的棱长 为a,甲、乙、丙球的半径分
别为123,,r r r . 如右图: 正方体的 内切球甲与正方体的 六个面有六个公共点, 点的位置分别在六个 正方形的中心,经过四 个切点的轴截面(大圆) 是正方体的截面EFGH 的内切圆. ∵12r a =,∴
12a
r =
, ∴22
114S r a ππ==.
如右图, 乙球 与正方体各棱的切点 在每条棱的中点,经过 四个切点的球的轴截 面(大圆)是正方形EFGH 的外接
圆∵22r EG ===, ∴
2r =
,∴
222242S r a ππ==.
如右图, 正方体的 各个顶点在球面上,球 的一个
大圆是正方体 的对角面 (矩形 11A ACC )的外接圆. ∵
312r AC ==
=, ∴
3r =
,∴
223343S r a ππ== . 由上可知: 123::1:2:3S S S =,故答案应选(A)
评注 解决几何体的相切或相接组合题问题,常常利用截面来暴露这两个几何体之间的相互关系,从而使空间问题转化为平面问题来解决。

相关文档
最新文档