几种沼气厌氧发酵工艺比较剖析

几种沼气厌氧发酵工艺比较剖析
几种沼气厌氧发酵工艺比较剖析

塞流式工艺

塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。

1.塞流式反应器(PFR)

图1

(1)原理

PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。

(2)特点

优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。

缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。

2. 高浓度塞流式工艺(HCF)

(1)原理

HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。

(2)特点

进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

升流式固体反应器

升流式固体反应器(Upflow Solid Reactor,简称USR)适用于处理高悬浮固体原料、总固体含量(TS)为5%畜禽粪污,在当前畜禽养殖行业粪污资源化利用方面有较多的应用。

1. 原理

USR的下部是含有高浓度厌氧微生物的固体床。发酵原料从反应器底部进入,依靠进料和所产沼气的上升动力按一定的速度向上升流。料液通过高浓度厌氧微生物固体床时,有机物被分解发酵,上清液从反应器上部排出。未消化的生物质固体颗粒和沼气发酵微生物靠自然沉降滞留于消化器内,上清液从消化器上部溢出,这样可以得到比水力滞留期(HRT)高得多的固体滞留期(SRT)和微生物滞留期(MRT),从而提高了固体有机物的分解

率和消化器的效率。USR反应器内设有布水系统,底部是高浓度厌氧菌床,上部设置挡渣板。本工艺不使用机械搅拌,浓度较高时可有局部强化搅拌装置,其结构及反应原理见下图。

经过USR处理后产生的沼液属于高浓度有机废水,具有有机物浓度高、可生化性好、易降解的特点,不能达到排放标准,因此除用于花卉蔬菜等的肥料外,剩余沼液须回流至集水池,经过好氧处理后达标回用或排放。针对该沼液含氨氮较高的特点,通过预处理可将溶于水的挥发性氨氮部分去除。沼液中的有机物则通过生物法进行处理。

许多大中型沼气工程均采用该工艺,对国内沼气工程而言,单体池容可加大到2000立方米。

2. 特点

(1)优点

①在重力的作用下,比重较大的固体与微生物靠自然沉降作用积累在反应器下部,使反应器内始终保持较高的固体量和生物量,即有较长的SRT和MRT,这是USR在较高负荷条件下能稳定运行的根本原因。由于SRT较长,出水带出的污泥不需回流,固体物能够得到较为彻底的消化,悬浮固体(SS)去除率在60%~70%。

②当超负荷运行时,污泥沉降性能变差,出水化学需氧量(COD)升高,但一般不会造成酸化。

③产气效率高。

(2)缺点

①进料固形物悬浮物含量为5%~6%, 浓度再提高易出现堵塞布水管等问题,单管布水易短流。

②对含纤维素较高的料液,如以牛粪为发酵原料,应在发酵罐液面增加破浮渣设施,以防表面结壳。

③沼渣沼液COD浓度含量很高,不适宜达标排放,一般用于农田施肥进行生态化处理。

全混合消化器

全混合消化器(Continuous Stirred Tank Reactor ,简称CSTR)也称连续搅拌反应器系统,是一种完全混合消化器。本工艺可以直接处理悬浮固体含量较高或颗粒较大的料液。该工艺的反应原理及反应器内部结构如下所述。

1. 原理

反应器采用上进料下出料或者下进料上出料的方式,内设立式搅拌机。消化器内的搅拌装置不仅可以使原料在消化器的流动

呈全混合状态,而且能够让发酵原料和微生物完全混合。该反应器采用恒温连续投料或半连续投料运行。与常规消化器相比,CSTR使活性区遍布整个消化器,传质效果与微生物活性明显提高,发酵效率比较高,还缩短了水力滞留期(HRT),中温条件下,HRT约15d~30d。

2. 特点

(1)原料适应性广。广泛适用于畜禽粪便和各种有机垃圾,适合于城市污水厂污泥稳定化处理,也用于高浓度、高悬浮物、难降解有机废水的处理。

(2)抗冲击负荷。

(3)消化池具有完全混合的流态,原料与底物的接触充分,发酵速率高,容积产气率较高。

(4)消化器内温度分布均匀。

(5)无法分离水力停留时间和固体停留时间,不能滞留微生物。

(6)厌氧消化反应与固液分离在同一个池内实现,结构简单、能耗低、运行管理方便。

(7)由于有强制机械搅拌,在高浓度状态仍可有效控制原料的沉淀、分层以及表层浮渣结壳、气体溢出不畅和短流等问题。

(8)消化池体积大。

由于CSTR反应器在高浓度进料时,搅拌可能会导致部分生物料随出液排出,因此,为了获得更高的物料利用率一般会设

置二次发酵罐,工艺组成为CSTR与二次发酵一体化,即在二次发酵池顶部装配双层膜气囊,CSTR和二次发酵池产生的沼气统一收集在气囊中,供后续发电或者供气使用。

上流式厌氧污泥床

上流式厌氧污泥床(Up-flow Anaerobic Sludge Bed ,简称UASB)工艺适用于处理含有较低悬浮固体的可溶性废水。

1. 原理

该工艺装置的特点为在消化器上部安装有气、液、固三相分离器。消化器内所产沼气在分离器下被收集起来,污泥和污水升流进入沉淀区,由于该区不再有气饱上升的搅拌作用,悬浮于污水中的污泥则发生絮凝和沉降,它们沿分离器斜壁滑回消化器内,使消化器内可以积累大量活性污泥。这些活性污泥在消化器的底部浓度很高,并具有良好沉降性能,进而形成污泥床。有机污水从反应器底部进入污泥床并与活性污泥混合,污泥中的微生物分解有机物生成沼气,沼气以小气泡形式不断放出,在上升过程中逐渐合并成大气泡。由于气泡上升的搅动作用,使消化器上部的污泥呈悬浮状态,形成逐渐稀薄的污泥悬浮层。有机污水自下而上经三相分离器后从上部溢流排出。UASB发酵原理见下图。

升流式厌氧污泥床的良好性能依赖于高活性污泥床层的形成。活性污泥实际上是沼气发酵微生物的天然固化。这些污泥呈絮状或颗粒状,具有较高的产甲烷活性和良好的沉降性能,对消化器负荷的提高和运转的稳定性均有明显作用。

2. 特点

(1)优点

①UASB在反应器中设有气、液、固三相分离器,具有产气和均匀布水形成的良好自然搅拌,并在反应器内形成沉降性能良好的颗粒污泥或絮状污泥。

②UASB内污泥浓度高,平均污泥浓度为20VSS/L ~40VSS/L(VSS为挥发性悬浮固体)。

③长的SRT和MRT使其具有很高的负荷率。有机负荷高,水力停留时间短(1d~5d),中温发酵,容积COD负荷一般为5 kg/m3~10kg/m3左右。

④一般不设沉淀池,一般不需污泥回流设备。

⑤消化器结构简单,除三相分离器外,没有搅拌装置及供微生物附着的填料,节约造价及避免因填料发生堵塞的问题。

⑥出水的悬浮物固体含量低。

(2)缺点

①进料中不能含有较高的悬浮固体,一般控制在1000mg/L以下。如果进水中悬浮固体含量较高,会造成无生物活性固体物在污泥床层的积累,大幅度降低污泥活性并使床层受到破坏。

②需要有效的布水器使进料能均匀分布于消化器的底部。

③对水质和负荷突然变化比较敏感,耐冲击能力稍差。

④污泥床内有短流现象,影响处理能力。

⑤当冲击负荷或进料中悬浮固体含量升高,以及遇到过量有毒物质时,会引起污泥流失。

常用工艺对比分析和工艺类型选择

本文前面介绍了塞流式反应器(PFR)、高浓度塞流式工艺(HCF)、升流式固体反应器(USR)、完全混合式厌氧反应器(CSTR)和上流式厌氧污泥床(UASB)共5种工艺,其中的HCF是近几年在PFR的基础上改进发展的新工艺,这两种工艺同为塞流式厌氧消化工艺。

一、常用工艺对比分析

上述4种工艺是应用最广泛的、也是现阶段发展比较快的沼气厌氧发酵工艺,下面将这4种工艺进行分析对比,见下表。

二、工艺类型选择

厌氧消化器工艺的选择是决定畜禽粪便沼气工程能否长期、高效、稳定运行的关键。根据以上分析,可以看出4种工艺有着自身的原料适应性,适合于不同的工程类型。

对于高悬浮固体(SS)浓度、高固体发酵原料,选择CSTR、USR和PFR,此3种工艺适用于“能源生态型”沼气工程。在悬浮物含量较高的情况下,经济效益和技术最合适的为CSTR与USR,而CSTR尤其适合于热电肥联产(CHP)零排放模式。另外,在沼气工程工艺选择时要考虑到与各工艺参数之间的配合,在一定的HRT条件下,设法延长SRT和MRT,并使微生物与原料充分混合是厌氧消化器发展的主要方向。

对于“能源环保型”沼气工程中处理低SS浓度的溶解性废水应选择UASB,而此模式不适合养殖场沼气工程。

沼气发酵

第一章概论 1.1引言 沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种可燃气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,即被种类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。沼气是有机物经微生物厌氧消化而产生的可燃性气体。 沼气是一种可持续利用的生态资源。利用沼气,可以节省大量的秸秆、干草等物料,有助于发酵出更多动物饲料和制作更多的纸张;沼气还可以用来做饭、照明、发电等,大大的节省了农民家庭的开支,减少了生活负担;沼气剩下的沼渣和沼液可以当作有机肥料,用于农作物和田地的施肥,增强农作物的抵抗力,减少农作物的病虫发生率,促进营养成分的吸收,改善土壤的板结,持续的保肥保水。 沼气工程技术,是一项以开发利用养殖场粪污为对象,以获取能源和治理环境污染为目的,实现农业生态良性循环的农村能源工程技术。它包括厌氧发酵主体及配套工程技术,主要是通过厌氧发酵及相关处理降低粪水有机质含量,达到或接近排放标准并按设计工艺要求获取能源—沼气:沼气利用产品与设备技术,主要是利用沼气或直接用于生活用能,或发电、或烧锅炉、或直接用于生产供暖、或作为化工原料等:沼肥制成液肥和复合肥技术,则主要是通过固液分离,添加必

要元素和成份,使沼肥制成液肥或复合肥,供自身使用或销售。 1.2我国沼气工程发展现状 随着城镇工业和农村集约化养殖业的发展, 生产过程中排出的各种有机废弃物的污染治理及其资源的综合利用, 已成为当今国际社会普遍关注的问题。在过去20 多年里, 我国利用厌氧消化技术处理工农业有机废弃物取得了较好的能源、环保和经济效益, 并逐步形成了沼气一能源环保工程规模。据报道, 全国现有大中型沼气工程60 0 多处, 总池容21 万多立方米, 年产沼气3 6 7 8万立方米, 年处工业废水和禽畜粪便能力达50 0 多万吨。我们自19 9 2年开始收集大中型沼气工程资料, 并对近百座工程进行了书面调查或实地考察。调查结果表明: “我国大中型沼气工程技术日趋成熟, 工程的整体技术水平和资源利用率近些年提高幅度较大, 各类的沼气工程, 都已从过去单纯追求能源效益, 转入注重发挥沼气技术多功能优势, 为配合菜篮子工程和改善农业生态环境, 为发展农村经济服务, 广泛地开展了沼气及发酵残余物在种植业和养殖业等生产方面的综合利用, “八五”期间建设的沼气工程与“六五”、“七五”期间作比较其工程运行稳定率提高了20 % 一3 0 %, 工程投资回收年限缩短了10 %一20 %。 当前, 大中型沼气工程存在的主要问题是: 有的工程处理技术不完善, 设备匹配不尽合理, 工程运转故障较多; 有的工程采用的厌氧消化工艺及装置与所处理的原料不相适应, 工程处理能力低, 经济效益差; 还有的工程由于原料不足, 造成设备利用率低。认真分

几种沼气厌氧发酵工艺比较剖析

塞流式工艺 塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。 1.塞流式反应器(PFR) 图1 (1)原理 PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。 (2)特点 优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。 缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。 2. 高浓度塞流式工艺(HCF) (1)原理 HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。 (2)特点 进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

沼气正常发酵的工艺条件

R U RAL EN ER GY No.42000(92Issue i n All)?20? 沼气正常发酵的工艺条件 孙进杰赵丽兰(山东省蓬莱市农业局蓬莱265600) (1)厌养环境在厌氧发酵过程中,大多数不产甲烷微生物为厌氧菌,须要在无氧条件下,将复杂的有机物质分解成简单的有机酸等。产甲烷菌则是专性厌养菌,氧对产甲烷菌不仅不会起促进作用,相反会起到毒害、抑制作用。因此,修建沼气池要确保池壁不渗水、不漏气。 (2)发酵原料在厌氧发酵过程中,原料既是产生沼气的基质,又是沼气发酵微生物赖以生存的养料来源。除了矿物油和木质素外,自然界中的有机物质一般都能被微生物发酵产生沼气,但不同的有机物有不同的产气量和产气速度。较难分解的有机物质,在投料前要进行切碎、堆沤等预处理。若有机物已经过牲畜肠胃消化、阴沟厌养消化及工业发酵,因此,粪便、阴沟污泥、酒厂废液、酵母厂废水、豆制品厂废水及纸浆废水等都是较好的沼气发酵原料。 (3)发酵温度沼气发酵与温度有密切的关系,在一定温度范围内,温度越高,产气量也越高。但是产气量并不与温度的增高呈正比,在30~60℃之间有两个产气高峰:一个介于30~40℃之间,另一个介于50~60℃之间,这是因为有两个不同的微生物群在起作用。另外,沼气发酵温度突然上升或下降,对产气量有明显的影响。若温度突然上升或下降5℃,产气量会显著降低,若变化过大,则产气过程停止。为防止沼气发酵温度的突变,沼气池应采取必要的保温措施。将沼气池建于温室大棚内(夏季遮阴),是防止温度突变的有效措施之一。 (4)p H值沼气微生物的正常生长、代谢需要适中的p H值(6.5~7.5),p H值在6.4以下和7.6以上都会对产气产生抑制作用。p H值在5.5以下时,产甲烷菌的活动完全受到抑制。在沼气发酵过程中,池内p H值会有规律地发生变化。在发酵初期,池内产生大量的酸,p H值下降。随后,氨化作用产生的一部分氨,会中和掉一部分酸,同时,由于产甲烷活动利用了大量的挥发酸,会使p H 值恢复正常。这就是说,在正常情况下,沼气发酵过程中的p H值变化是一个自然平衡过程,一般不须要进行人为的调节。但如果配料不当,或操作管理不合理,可能会导致大量挥发酸积累,从而使p H值下降。在日常管理中,可能会遇到p H值过高或过低影响产气的情况,此时便须要进行人为调节。调节方法有以下几种,一是经常换料(少量),以稀释发酵液中的挥发酸,提高p H值;二是向池中加入适量的草木灰或氨水,调节p H值;三是适当加入牛、马粪便,并加水冲淡,此法可用于p H值过高时。 (5)接种物在发酵过程中,菌种质量的好坏、数量的多少将直接影响到产气率的高低。实际操作中,要视发酵原料的不同,决定是否须要接种。如果原料是粪便及其他已发酵过的原料,由于本身含有大量的发酵微生物,不须要接种。如果原料是工、农业废水,由于这些物质不含有发酵微生物或数量太少,入池后,必须加入足够量的接种物。接种物可以从自然界中方便地获得,阴沟污泥、粪坑底脚污泥等都可作接种物。如果条件允许,在沼气池大换料时,采用发酵液作为接种物,可以取得同样好的结果。加入接种物的数量,要视接种物的来源确定。如果采用沼气池发酵液作接种物,接种量应占总发酵料液的30%以上;若采用沼

秸秆厌氧干发酵产沼气的研究

科学研究 秸秆厌萤干发酵产沼与的研皇℃九 陈智远姚建刚 杭州能源环境工程有限公司 摘要:本试验以玉米秸、稻草、烟叶杆、木薯杆为代表的秸秆作为原料,在温度38"C,采用批量发酵工艺进行高浓度厌氧发酵产气研究。试验结果表明,玉米秸、稻草、烟叶杆及木薯杆的Ts产气 率分别为413ml/g、330n1/g、333m]/g、222m1/g,而vs产气率分别为470m1/g、387ml/g、426Tll/g、241m1/u。 关键词:秸秆干发酵产气率 农业固体废弃物是指在整个农业生产过程中被丢弃 的有机类物质,主要包括农业生产和加工过程中产生的 植物残余类废弃物、动物残余类废弃物和农村城镇生 活垃圾等…。据孙永明【11等报道,我国每年产生固体废 弃物高达几十亿吨,而每年产生农作物秸秆总量约7亿 吨,除去用于造纸、饲料及造肥还田外,还有一大部分 未充分利用,大量剩余秸秆的随地堆弃和任意焚烧,造成了大气污染、土壤污染、火灾事故、堵塞交通等大量社会、经济和生态问题【2习j。但实际上秸杆可以通过干发酵工艺得到有效利用,既以固体有机废弃物为原料(总固体含量在20%以上),利用厌氧菌将其分解为CH。、CO。、H。S等气体的发酵工艺【4J。与湿发酵相比,主要优点是可以适应各种来源的固体有机废弃物、运行费用低并提高容积产气率、需水量少或不需水、产生沼液少后续处理费用低等[5】。本文对玉米秸、稻草、烟叶杆及木薯杆的高浓度厌氧发酵产气潜力进行研究。 1.材料与方法 1.1材料与试验装置 玉米秸和稻草取自杭州郊区某农场,烟叶杆与木薯杆分别取自云南昆明郊区某卷烟厂和某农场,经切碎后(2~3cm)左右待用。污泥则取自杭州市种猪试验场的沼气站。原料的TS与VS见表1。厌氧装置采用自制的1.5L发酵装置。采用排水法计量气体,试验装置见图1。 表1原料的TS与VS 项目玉米秸稻草烟叶杆木薯杆污泥TS(%)84.4286.3387.9623.9011.64VS(%)73.9675.0268.6822.007.32 1、止水夹2、胶管3、盖子4、发酵瓶5、胶管 6、集气瓶7、集水瓶 图1反应装置示意图 1.2试验设计 试验设4个试验组和1个为空白组.每组3个平行,在38℃的恒温间内发酵。将1009t-米秸、稻草、烟叶杆分别和8009污泥混合均匀后加入发酵瓶中,将1009木薯杆与6009污泥混合均匀后也加入发酵瓶中,空白则将10009污泥加入发酵瓶中。 1.3分析项目及方法 TS测定是将待测混合物置于已烘干、称重的硬质玻璃杯中,(105±2)℃烘干至恒重,称重计算,而VS测定是将待测混合物置于已烘干、称重的坩埚中.(550-I-10)℃灼烧至恒重,称重计算【6】。PH值采用精密试纸法。 每天定时测定发酵产气量,即测定集水瓶中水的体积量为日产气量。利用沼气分析仪(武汉四方沼气分析仪)及根据沼气燃烧的火焰颜色参照CH。含量标准卡联合检测CH。浓度|7J。 2.结果与讨论 2.1发酵前后的相关测定及分析 从图2可以看出,各试验组发酵前后的TS及VS均有所下降,这说明原料被消耗并生产沼气。图中数据表明玉米秸、稻草、烟叶杆及木薯杆的TS降解率分别为 24 wⅥ唧.ehome.gov.en 万方数据

[沼气,废弃物,固体]有机固体废弃物厌氧发酵产生沼气的脱硫技术分析

有机固体废弃物厌氧发酵产生沼气的脱硫技术分析 0引言 随着工农业废弃物厌氧生物处理技术的广泛应用,沼气作为一种可再生能源,越来越受到人们的关注和重视。沼气是一种特殊的生物质能源,因为它的低位发热值较高,所以其经常被用作汽车燃料,还有一些被用作动力能源(如水泵和发电机),也有被用作化工原料(如合成有机玻璃脂和制造甲醛和甲醇等);还有一些国家的沼气净化技术较高,如瑞典将净化后的沼气直接并入国家气网使用。因此,沼气完全可以作为一种绿色能源被开发利用,这种新兴的产业也被人们越来越重视。由于沼气来源于厌氧发酵工艺,因此这种工艺也得到越来越多的产业化应用,不仅能缓解当前存在的能源危机问题,而且能很好地达到保护环境的目的。 各种厌氧发酵微生物在厌氧的条件下,将有机物分解消化的过程中会产生沼气,此时也伴随有H2S的产生。因此,沼气是一种混合气体,其中CHQ和CO2的含量较高,H2, H2S, NH 的含量比较少。发酵原料的种类、各种原料的相对含量、厌氧发酵的条件(温度、时间、pH等)以及厌氧发酵的各个阶段都是影响沼气成分的因素。 硫化氢(H2S)是一种能危害人体健康的有毒性气体,其物理性质上最大的特点是无毒和有强烈的臭鸡蛋气味。另外,大气中H2S的存在是造成酸雨的主要原因之一。由于H2S在化学性质上能与许多金属离子反应,产物是硫化物沉淀,而这些产物又不溶于水或者酸,所以其对铁等金属类物质有很强的腐蚀性。除此之外,当沼气燃烧时,H2S会被氧化成亚硫酸,从而对环境造成严重的污染,也会严重腐蚀设备、管道和仪器仪表等。因此,在利用沼气之前必须将其中的H2S去除,而国家对沼气中H2S含量的标准有严格的规定,不能超过0. 02g/亩。目前,最常用的脱除H2S的方法有干式脱硫、湿式脱硫和生物脱硫。 1.干法脱硫 干法脱硫的具体反应过程是首先通过物理吸附将H2S吸附在吸附剂的表面,然后是吸附剂与H2S发生化学反应生成单质硫的过程。因为干法脱硫所使用的脱硫剂大多数是粉末状或者颗粒状,其整个过程是在完全干燥的环境下进行的,所以脱硫过程不会对设备和管道等产生腐蚀和结垢的影响。干法脱硫的适用范围是含有较低浓度H2S的气体,其优点在于脱硫工艺设备比较简单及工艺技术方面比较成熟。因此,干法脱硫工艺在工业上应用较广。目前,最常用的干法脱硫方法有氧化铁法、氧化锌法、活性炭吸附法和膜分离法等。 1.1氧化铁法脱硫 氧化铁沼气脱硫法是使用较早的一种方法,早在19世纪40年代就开始逐步发展起来了,而此时煤气工业也孕育而生。氧化铁法脱硫的反应原理:常温下沼气到达脱硫机床的表面,此时沼气中的H2S与Fe203发生氧化还原反应,生成的产物为Fe2S3和Fe2;之后,含硫的脱硫剂再被空气中的氧氧化为Fe2 03和SO这也说明了这种脱硫剂是可再生的,可以循环使用很多次;但是如果脱硫剂表面的空隙被大部分覆盖以后,氧化铁脱硫剂就失去了活性。由此可见,影响脱硫效果的因素有沼气的流速和沼气与脱硫剂接触的时间。 氧化铁法脱硫过程中发生的化学反应是不可逆的。反应方程式的反应速率很大,要将沼

沼气发酵

沼气发酵 食品院轻化071 肖小根 目录 ?课程感言 ?沼气发酵简介 ?沼气发酵机理 ?沼气发酵工艺 ?沼气发酵工艺条件 ?沼气池的类型 ?沼气的利用与前景 ?中国发展沼气产业的现实意义 课程感言 “发酵工程原理与技术”这门课程内容分为五篇,前三篇从原料到产物阐述了发酵的整个过程后两篇是对发酵工程的延伸。第五篇讲述的“发酵工厂废物处理和清洁生产技术”是目前我们国家及至全世界都在致力于发展的技术,以应对日趋严重的能源、资源和环境危机。 整本书的主要内容侧重于对发酵工程原理的介绍,大部分内容与“工业微生物学”和“生物化工”相类似,可以说是以往学习的相关知识的综合,在学习过程中也是一种巩固。我认为学习这门课程的目的最重要还是要知道如何去运用它。在本教中关于发酵工程的应用内容不多主要集中在第五篇:关于发酵工厂废物处理和清洁生产技术的介绍。这部分内容我也大略地看过,由于全球环境污染日趋严重,节能减排、防污治污技术必然成为全球的聚集点。对于这方面的内容我也比较感兴趣,我希望能找到一种技术,通过查找一些资料来系统地它认识和了解,同时也希望以此作为一根主线用具体的例子来串连起教材的所有内容,最终我选择了沼气发酵。选择它的理由有三点:1、更贴近于实际生活;2、它能够在节能减排、资源循环利用的条件下有效地改善农村居民的生活;3、该技术已经成熟,相关资料比较多,但亟待大力推广,学习它在将来更有可能用得上。 在介绍沼气发酵这一技术中,我主要引用了:《微生物学教程》(第二版高教出版社周德庆主编)和《发酵工程》(科学出版社韦革宏杨祥主编)和百度关于沼气发酵的内容。 我希望能够通过对“沼气发酵”的全面了解,以后自己可以来建造沼气池。

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

农业废弃物厌氧发酵制取沼气技术的研究进展

农业废弃物厌氧发酵制取沼气技术的研究进展 摘要:为了研究中国农业废弃物制取沼气的研究及利用现状,笔者结合自身及前人的研究成果,通过描述中国农业废弃物的利用现状及厌氧发酵制取沼气技术的机理,产甲烷菌的基本研究以及3种常见农业废弃物厌氧发酵产沼气的研究结果,概括了利用厌氧发酵处理农业废弃物的必要性及技术上的可行性。但同时发现,很多研究成果没有在中国农业废弃物的利用上得到充分利用,本研究的成果在今后对农业废弃物进行合理有效的利用及处理上有很大的参考作用。 0引言 中国每年产生的农业废弃物,仅农作物秸秆的量就约为7亿t,大中城市郊区的集约化养殖场产生的畜禽粪便因超过农田环境自身消纳的能力,也对城市郊区环境造成了较大的污染。本研究通过倡导利用厌氧发酵生沼气技术处理农业废弃物,能有效保护农村及城市郊区的环境,同时能改善当前中国能源利用领域过分依赖煤炭,污染严重,能源利用率低等不合理现象,对解决中国经济发展的瓶颈有重要意义。 当前农业废弃物的利用技术有很多,主要包括:能源化、肥料化、饲料化和材料化技术,而能源化是当前研究的重点,如将玉米秸秆通过等离子体热裂解液化制取生物油,厌氧微生物利用麦麸产氢以及利用甜高粱茎秆汁液发酵制取生物酒精等。与其他农业废弃物能源化的技术相比,厌氧发酵生产沼气技术目前比较成熟,可以实现产业化。如北方“四位一体”沼气生态模式和南方的“猪、沼、果”生态模式等。 与此同时,大量的利用农业废弃物发酵产沼气的基础研究也在进行,如碱预处理对稻草发酵产沼气的效果,同时刘荣厚等还发现蔬菜废弃物用厌氧发酵工艺处理制取沼气是可行的。沼液及沼渣作为沼气发酵的一种副产物,也有很大的作用,50%浓度的沼液能提高草莓的果实品质,添加煤油和洗衣粉的沼液混合物是一种防治菜青虫的良好杀虫剂。 本研究针对农业废弃物制取沼气技术在处理废弃物的实际应用上的不足,与其比较成熟的研究现状脱节的问题,通过全面地概括论证利用厌氧发酵处理农业废弃物的必要性及技术上的可行性,倡导积极发展厌氧发酵制取沼气技术,并在实际中大量应用该技术处理中国的农业废弃物,相信在厌氧发酵制取沼气技术的广发推广上能起到非常积极的作用。 1厌氧发酵制取沼气技术的机理 目前为止,对厌氧发酵制取沼气技术机理的研究比较成熟。沼气发酵的过程,实际上是微生物的物质代谢和能量转换过程,在分解代谢过程中微生物获得能量和物质,以满足自身生长繁殖,同时大部分物质转化为甲烷和二氧化碳。 其基本过程通常可分为液化、产酸、产甲烷3个阶段,前2个阶段合称为不产甲烷阶段,不过目前比较权威的是把沼气发酵理论分为2阶段厌氧发酵理论和3阶段厌氧发酵理论。 2阶段理论主要针对一些可溶性的复杂有机物,第1阶段是在产酸菌的作用下,有机物被分解为低分子的中间产物如有机酸如乙酸、丁酸等及氢气、二氧化碳等气体;第2阶段是产甲烷菌将第1阶段产生的中间产物继续分解为甲烷和二氧化碳。3阶段理论主要针对不溶性的复杂有机物,相对2阶段理论,主要是多了1个水解和发酵的阶段,在这一阶段,复杂有机物在微生物(发酵菌)作用下进行水解和发酵:多糖先水解为单糖,再通过酵解途径进一步发酵成乙醇和脂肪酸等;蛋白质则先水解为氨基酸,再经脱氨基作用产生脂肪酸和氨;脂类转化为脂肪酸和甘油,再转化为脂肪酸和醇类。 也有研究将产甲烷的3阶段理论中的第1阶段拆分为2步,认为沼气发酵应具体分为4个步骤,分别是:聚合物的水解、水解产生的单体发酵生成挥发性脂肪酸酸和乙醇等、中间产物转换为乙酸和氢气、甲烷的形成。 2产甲烷菌的研究 2.1产甲烷菌的种类与基本性质 产甲烷菌是一类能够将无机或有机化合物厌氧消化转化成甲烷和二氧化碳的古细菌,它们生长在严格厌氧的环境中,不能利用复杂的有机物作为能量来源,只能利用氢气、二氧化碳、甲酸、甲醇、甲基胺、乙酸等简单物质合成甲烷进行能量代谢,是厌氧发酵过程的最后一个成员。

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

常见沼气发酵工艺类型汇总

常见沼气发酵工艺类型汇总 对于沼气发酵工艺,从不同角度有不同的分类方法。一般从投料方式、发酵温度、发酵阶段、发酵级差、料液流动方式等角度,可作如下分类: (一)以投料方式划分 根据沼气发酵过程中的投料方式不同,可将发酵工艺分为连续发酵、半连续发酵和批量发酵三种工艺。 1、连续发酵工艺 沼气池发酵启动后,根据设计时预定的处理量,连续不断地或每天定量地加人新的发酵原料,同时排走相同数量的发酵料液,使发酵过程连续进行下去。发酵装置不发生意外情况或不检修时,均不进行大出料。采用这种发酵工艺,沼气池内料液的数量和质量基本保持稳定状态,因此产气量也很均衡。 这种工艺流程是先进的,但发酵装置结构和发酵系统比较复杂,造价也较昂贵,因而适用于大型的沼气发酵系统,如大型畜牧场粪污、城市污水和工厂废水净化处理,多采用连续发酵工艺。 该工艺要求有充分的物料保证,否则就不能充分有效地发挥发酵装置的负荷能力,也不可能使发酵微生物逐渐完善和长期保存下来。因为连续发酵不会因大换料等原因而造成沼气池利用率上的浪费,从而使原料消化能力和产气能力大大提高。 2、半连续发酵工艺 沼气发酵装置发酵启动初始,一次性投入较多的原料(一般占整个发酵周期投料总固体量的1/4?1/2),经过一段时间,开始正常发酵产气,随后产气逐渐下降,此时就需要每天或定期加入新物料,以维持正常发酵产气,这种工艺就称为半连续沼气发酵。 我国农村的沼气池大多属于半连续发酵。其中的“三结合”沼气池,就是将猪圈、厕所里的粪便随时流入沼气池,在粪便不足的情况下,可定期加人铡碎并堆怄后的秸秆等纤维素原料,起到补充碳源的作用。这种工艺的优点是比较容易做到均衡产气和计划用气,能与农业生产用肥紧密结合,适宜处理粪便和秸秆等混合原料。 3、批量发酵工艺 发酵原料成批量地一次投入沼气池,待其发酵完后,将残留物全部取出,又成批地换上新料,开始第二个发酵周期,如此循环往复。农村小型沼气干发酵装置和处理城市垃圾“卫生填埋法”均采用这种发酵工艺,这种工艺的优点是投料启动成功后,不再需要进行管理,简单省事,其缺点是产气分布不均衡,高峰期产气量高,其后产气量低,因此所产沼气适用性较差。 (二)以发酵温度划分 沼气发酵的温度范围一般在10?60℃,温度对沼气发酵的影响很大,温度升高,产气率也随之提高,通常以沼气发酵温度区分为:高温发酵、中温发酵和常温发酵工艺。 1、高温发酵工艺 高温发酵工艺指发酵料液温度维持在46?60℃。实际控制温度多在53℃±2℃,该工艺的特点是

秸秆沼气发酵工艺流程汇总

沼气发酵工艺流程 从全社会能源消费与供给的发展趋势,随着工业化发展进程使得矿物质能源日趋枯竭,尽管这是未来将会发生的事,当然也是历史发展的必然结果,将会引起全社会的关注。世界各国都在寻求可再生的替代能源,虽然探矿开采不会立即结束,但是可再生能源的试生产也要立即开始,甚至早已经开始了。沼气工程作为即可处理废弃的有机物又可从中回收能源,这是采用现代化技术开发生物质能源利用的重要组成部分,也是沼气工程产业将会乘胜发展的必然。 我国的沼气产业已从单纯的能源利用发展成为废弃物处理和生物质多层次综合利用,并与养殖、种植业广泛结合,在农村生产和生活中发挥了重要作用 沼气发酵技术确切的应该称为厌氧发酵技术,是指从发酵原料到产出沼气的整个过程,所采用的技术和方法。沼气发酵技术主要包括原料的预处理,接种物的选取和富集,发酵器(在厌氧发酵过程中的发酵器也称反应器,是沼气发酵罐、沼气池、厌氧发酵装置的统称)结构的设计,工程起动和日常运行管理等一系列技术措施。其流程图如下所示: 进料池 青贮 秸秆 粉碎预处理 沼液沼渣(再利用) 1.秸秆预处理: 1.1.预处理: 农作物秸秆通常是由木质素、纤维素、半纤维素、果胶和蜡质等化合物组成,其产气特点是分解速度较慢,产气周期较长。使用这种原料在入池前需进行预处理,以提高产气效果。 常用的预处理方法有物理、化学与生物方法等。物理方法主要有切碎、粉碎、汽爆等。生物法的研究主要集中在菌种的筛选和发酵条件优化方面。目前研究最多的微生物是白腐真菌。生物方法具有环境友好、处理效率高等优点,但需要无菌操作条件和专门的培养设施,目前有关研究较多,实际应用很少。化学法主要利用酸和碱等化学物质对秸秆进行预处理,通过化学作用破坏秸秆的内部结构,从而提高秸秆的厌氧消化性能。化学法具有处理方法简单、时间短、效果好等优点,但化学处理剂有可能产生二次污染。 1.2.青贮:青贮池设计以为矩形,若有多个青贮池可并联或串联使用。 粉碎的秸秆贮入青贮池后应轧实,减少内部氧气存有量,避免原料浪费。 秸秆含水量控制在65%左右,密度以大于500㎏/m3为宜。

沼气干发酵工艺

沼气干发酵工艺 干发酵是指以有机废弃物为原料(干物质浓度在20%以上) ,利用水解产酸菌、产氢产乙酸细菌和产甲烷菌将其分解为CH4、CO2、H2 S等气体的发酵工艺。由于固体浓度太高难以采用连续投料或半投料的投料方式,绝大多数均采用批量投料。 许多研究表明,干发酵由于其总固体含量较高,容易在发酵初期产生大量的有机酸,造成酸中毒现象,最终导致启动失败。许多研究都针对加大接种量或预处理等调控措施而展开,而对造成不同底物快速酸化的主要原因研究很少。 比如像以秸秆为原料的干发酵方法(同时也适合于粪草混合发酵)要点的关键:①添加足够的优质接种物;②秸秆要切碎并且用石灰水预处理,并进行池内外堆沤;③添加适量氮源,发酵浓度为20%——30%。 一、配料和预处理 1.秸秆用量和预处理 风干秸秆(TS=85%)切成150毫米左右的小段,加石灰水泼湿,再将接种物总用量的1/3混入,进行池外堆沤,堆沤时间为2~3天。堆沤的目的是初步破环秸秆的纤维——木质结构,并增加秸秆容重,以提高单位池容的秸秆处理量。堆沤结束后加入其余接种物和氮肥,入池再堆沤24小时,用以增加启动的料温。 这时平均体积产气率可超过0.2米 /(米·天)。如果增加粪便,则由于平均体积有机负荷率增加,可以提高平均体积产气率。 2.接种物 对接种物的要求与其他发酵工艺相同,接种物的数量应为秸秆质量的1.5倍以上。它是保证干发酵正常进行的关键。池外堆沤时先用1/3的量,其余的入池时再加入。 3.添加氮源 由于采用的是批量投料方法,平时没有含氮丰富的粪尿流入,而秸秆本身含氮量不足,因此必须再入池时补充氮源。但由于干发酵的水分含量较少,太多的氮易造成发酵抑制。所以加碳酸氢铵时用量为秸秆用量的2%,加尿素时为秸秆用量的1%。 4.用石灰水预处理 石灰的用量应为秸秆质量的5%,此项措施的目的在于破环秸秆的木质纤维结构,并中和发酵过程中产生的酸,以防止pH值下降。 二、浓度控制 用加水量来控制料液的浓度,石灰5千克加水100千克配成石灰水用于预处理;接种物(TS%=10%)按1:1加水稀释;氮肥每千克加水50千克溶解后使用。由于堆沤过程中水分会损失,按上述比例加水,一般可将浓度控制在20%——30%。 三、发酵周期 为了充分利用沼气池和积造有机肥,南方地区在冬春季可以采用一个发酵周期,约150——200天;夏秋季(5—10月)可采取两个发酵周期,每个周期约为90——100天。各地区应该把发酵周期和农事用肥密切结合起来考虑。 四、贮气问题 干发酵池必须附有贮气设施,如塑料贮气袋、分离浮罩或水压式贮气池。不过采用每户一个干发酵池和一个水压式池最简便。 干发酵是指以有机废弃物为原料(干物质浓度在20%以上) ,利用水解产酸菌、产氢产乙酸细菌和产甲烷菌将其分解为CH4、CO2、H2 S等气体的发酵工艺。由于固体浓度太高难以采用连续投料或半投料的投料方式,绝大多数均采用批量投料。 许多研究表明,干发酵由于其总固体含量较高,容易在发酵初期产生大量的有机酸,造成酸中毒现象,最终导致启动失败。许多研究都针对加大接种量或预处理等调控措施而展开,

沼气厌氧发酵

沼气厌氧发酵 中国知识资源总库——CNKI 系列数据库输出格式:简单详细引文格式自定义查新RefWorks 自定义:题名作者中文关键词单位中文摘要基金刊名ISSN年期第一责任人 处理结果: 1题名The Relationship Among pH,VFA and Biogas Production in Anaerobic Fermentation of Mixed Manure and Straw with Different Ratios 作者张彤;李伟;李文静;李轶冰;杨改河; 刊名农业环境科学学报 单位西北农林科技大学林学院;陕西省循环农业工程技术研究中心;西北农林科技大学农学院; 中文摘要为探索发酵原料产气量与pH值、挥发性脂肪酸之间的关系,确定最佳原料配比以及发酵温度是关键。通过试验在恒温条件下以不同配比的鸡粪、麦秆混合物为原料,在25~40℃范围内进行厌氧发酵,研究pH值和挥发性脂肪酸对沼气产量的影响。结果显示,在约50d的发酵过程中,以40℃、鸡粪和麦秸3∶1处理的(简称鸡麦3∶1)累积产气量最高,达11492mL,25℃、鸡麦3∶1处理的累积产气量最低,为6227mL。在25、30℃发酵条件下,随着麦秆比例的增加,产气量逐渐增加;在35、40℃发酵条件下,随着麦秆比例的减少,产气量逐渐增加。pH值与日产气量成正比,而挥发性脂肪酸与日产气量成反比。 2题名Study on Characteristics of Anaerobic Fermentation with Wheat Straw and Sweet Potato Vine 作者石勇;邱凌;邵艳秋;罗涛;任虎林; 刊名西北农业学报 单位西北农林科技大学机械与电子工程学院;农业部沼气西北分中心;西北农林科技大学农学院;西北农林科技大学资源与环境学院; 中文摘要在(30±1)℃恒温条件下,按C/N=20∶1,C/N=25∶1,C/N=30∶1的3个不同水平将小麦秸秆和红薯藤叶分别配置成2 000 mL发酵液,其总固体含量TS为8%。对3个不同水平C/N的发酵液进行厌氧发酵试验,测定厌氧发酵过程中的日产气量,pH、CH4和CO2体积分数等动态指标的变化,探究2种物料在不同C/N水平下的发酵特性。结果表明在TS为8%的条件下,C/N为25∶1水平时产气效果最佳,产气量和CH4体积分数都具有明显优势。 3题名Research on the essence and the mechanism of method about fermented soybean in Qi-Min-Yao-Shu (Important Arts for the People,s Welfare) 作者陈苍林 刊名中国酿造 单位漳州市酱油厂福建漳州363000

厌氧发酵过程三阶段理论

厌氧发酵过程三阶段理论: 一、有机物水解和发酵细菌作用下,使碳水化合物、蛋白质与脂肪转化为单糖氨 基酸、脂肪酸、甘油、CO2、H等 二、把第一阶段产物转化为H、CO2和CH3COOH 三、通过两组生理物质上不同产CH4菌作用,将H和CO2转化为CH4,对CH3脱 羧产生CH4。 厌氧消化原理:有机物厌氧消化过程主要包括产酸和产甲烷两个阶段。而对于不溶性有机物(有机垃圾),一般可认为在上述两个阶段之前多一个“水解 阶段”,水解阶段起作用的细菌包括纤维素分解菌、脂肪分解菌和蛋白质水解菌;在水解酶作用下,转化产生单糖、酞和氨基酸、脂肪酸和甘油。产酸阶段起作用细菌是发酵性细菌,产氢产乙酸和耗氢产乙酸菌在胞内酶作用下,转化产生挥发性脂肪酸、醇类、氢和二氧化碳;产甲烷阶段是产甲烷菌利用H2、CO2、乙酸、甲醇等化合物为基质,将其转化成甲烷,其中H2、CO2和乙酸是主要基质。 名词: VFA: Volatile acid 挥发酸

COD: Chemical oxygen demand 化学需氧量 BOD: Biochemical oxygen demand 生物需氧量 TOD: Total oxygen demand 总需氧量 TOC: Table of content 总有机碳 TS: Total solid 总固体 SS: Suspend solid 悬浮固体 VS: Volatile solid 挥发固体 HRT: 水利滞留时间=消化器有效容积/每天进料量 SRT: 污泥停留时间:单位生物量在处理系统中的平均停留时间 SVT: 污泥体积系数:单位体积水样在静置30min后,污泥体积数 MRT: 微生物滞留时间 PFR:塞流式反应器(Plug flow reactor)高浓度悬浮固体发酵原料一段进入,从另一段排除。 USR:生流式固体反应器(Upflow solid reactor)原料从底部进入消化器,上清从消化器上部溢出 UASB:生流式厌氧污泥床(Upflow anaerobic sludge bed)自下而上流动污水通过膨胀的颗粒状污泥床消化分解,消化器分为污泥床、污泥层和三相分离器。 UBF:污泥床过滤器。将UASB和厌氧过滤器结合为一体的厌氧消化器,下部为污泥床,上部设置纤维填料。 EGSB:膨胀颗粒污泥床(Expanded granular sludge bed)与UASB反应器有相似之处,可分为进水配水系统、反应区、三相分离区和出水渠系统,EGSB没有专门的出水回流系统。 ABR:厌氧折板反应器(Anaerobic baffled reactor) SBR:间歇曝气方式运行活性污泥水处理技术,又称序批式活性污泥发(Sequencing batch reactor actirated sludge process) USSB:(Upflow staged sludge bed)

第三章厌氧生物处理

第三章 厌氧生物处理 3.1 基本概念 3.1.1厌氧生物处理的基本原理 一、厌氧生物处理的基本生物过程及其特征 ——又称厌氧消化、厌氧发酵; ——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1、厌氧生物处理工艺的发展简史: ①上述的厌氧过程广泛地存在于自然界中; ②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras 的“自动净化器”; ③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污 泥(如各种厌氧消化池等); ——长的HRT 、低的处理效率、浓臭的气味等; ④50、 60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废 水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开始大规模地应用于废水处理; ——HRT 大大缩短,有机负荷大大提高,处理效率也大大提高; ——厌氧接触法、厌氧滤池(AF )、上流式厌氧污泥床(UASB )反应器、厌氧流化床(AFB )、AAFEB 、 厌氧生物转盘(ARBC )和挡板式厌氧反应器等; ——HRT 与SRT 分离,SRT 相对很长,HRT 则可以较短,反应器内生物量很高。 ⑤最近(90年代以后),随着UASB 反应器的广泛应用,在其基础上又发展起来了EGSB 和IC 反应器; ——EGSB 反应器可以在较低温度下处理低浓度的有机废水; ——IC 反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。 2、厌氧消化过程的基本生物过程 ①两阶段理论: ——30~60 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段; ——水解和酸化,产物主要是脂肪酸、醇类、CO 2和H 2等; ——主要参与微生物统称为发酵细菌或产酸细菌; ——其特点有:1)生长快,2)适应性(温度、pH 等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段; ——产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2; ——主要参与微生物统称为产甲烷菌; 图1厌氧反应的两阶段理论图示 内源呼 吸产物 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇类、 H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

相关文档
最新文档