大学物理简答题
大学物理复习资料

大学物理复习资料一、简答题1.利用所学的物理知识解释花样滑冰运动员在双手合拢时旋转速度增大,双手展开时旋转速度减小。
答:当合外力矩等于0时物体对轴的角动量守恒,即JW=常量。
当双手合拢时旋转半径变小,J变小,旋转角速度W增大,将双手展开,J增大了,旋转角速度W又会减小。
2.“河道宽处水流缓,河道窄处水流急”,如何解释?答:由不可压缩流体的连续性方程V1△S1=V2△S2即V△S=恒量,知河流宽处△S大,V小,河流窄处△S小,V大。
3.为什么从水龙头徐徐流出的水流,下落时逐渐变细,请用所学的物理知识解释。
答;有机械能守恒定理知,从水龙头流出的水速度逐渐增大,再由不可压缩流体的连续性方程V△S=常量知,V增大时△S变小,所以水流变细。
4.请简述机械振动与机械波的区别与连续答:区别:机械振动是在某一位置附近做周期性往返运动5.用所学的物理知识总结一下静电场基本性质及基本规律。
答:性质:a.处于电场中的任何带电体都受到电场所作用的力。
b.当带电体在电场中移动时,电场力将对带电体做功。
规律:高斯定理:通过真空中的静电场中任一闭合面的电通量Φe等于包围在该闭合面内的电荷代数和∑qi的ε0分之一,而与闭合面外的电荷无关。
ΦEdSSqSε0环流定理:在静电场中,场强E的环流恒等于零。
Edl0l6.简述理想气体的微观模型。
答:①分子可以看做质点②分子作匀速直线运动③分子间的碰撞是完全弹性的7.一定质量的理想气体,当温度不变时,其压强随体积的减小而增大,当体积不变时,其压强随温度的升高而增大,请从微观上解释说明,这两种压强增大有何区别。
答:当温度不变时,体积减小,分子的平均动能不变,但单位体积内的气体分子数增加,故而压强增大;当体积不变时,温度升高,单位体积内的气体分子数不变,但分子的平均动能增加,故压强增大。
这两种压强增大是不同的,一个是通过增加分子数密度,一个是通过增加分子的平均平动动能来增加压强的。
9.请简述热力学第一定律的内容及数学表达式。
大学物理考试题及答案

大学物理考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 m/hD. 299,792,458 km/h2. 牛顿第一定律描述的是()。
A. 物体在不受力时的运动状态B. 物体在受力时的运动状态C. 物体在受力时的加速度D. 物体在受力时的位移3. 根据热力学第一定律,能量()。
A. 可以被创造B. 可以被消灭C. 既不能被创造也不能被消灭D. 可以被转移4. 电磁波谱中,波长最长的是()。
A. 无线电波B. 微波C. 红外线D. 可见光5. 根据欧姆定律,电阻R、电流I和电压V之间的关系是()。
A. R = I/VB. R = V/IC. I = R/VD. V = R*I6. 质能等价公式E=mc^2中,E表示()。
A. 能量B. 质量C. 速度D. 动量7. 在理想气体状态方程PV=nRT中,P表示()。
A. 温度B. 压力C. 体积D. 物质的量8. 根据电磁感应定律,当磁场变化时,会在导体中产生()。
A. 电流B. 电压C. 电阻D. 电容9. 波长、频率和波速之间的关系是()。
A. 波长× 频率 = 波速B. 波长÷ 频率 = 波速C. 波长 + 频率 = 波速D. 波长 - 频率 = 波速10. 根据量子力学,电子在原子中的运动状态是由()描述的。
A. 经典力学B. 量子力学C. 相对论D. 热力学二、填空题(每题2分,共20分)1. 光的双缝干涉实验证明了光具有_______性。
2. 牛顿第二定律的公式是_______。
3. 热力学第二定律指出,不可能从单一热源吸热使之完全转化为_______而不产生其他效果。
4. 电磁波的传播不需要_______介质。
5. 欧姆定律的公式是_______。
6. 质能等价公式E=mc^2是由物理学家_______提出的。
物理试题及答案大学

物理试题及答案大学一、选择题(每题2分,共20分)1. 光在真空中传播的速度是()。
A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 cm/sD. 299,792,458 mm/s2. 根据牛顿第二定律,力和加速度的关系是()。
A. F = maB. F = ma^2C. F = m/aD. F = a/m3. 以下哪种物质是绝缘体()。
A. 铜B. 橡胶C. 铁D. 铝4. 电磁波的波长和频率成()关系。
A. 正比B. 反比C. 无关D. 相等5. 根据热力学第一定律,能量守恒定律的表达式是()。
A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q + W + C6. 绝对零度是()。
A. -273.15°CB. 0°CC. 273.15°CD. 100°C7. 以下哪种力不是基本力()。
A. 引力B. 电磁力C. 强相互作用力D. 摩擦力8. 光的折射定律由哪位科学家提出()。
A. 牛顿B. 爱因斯坦C. 麦克斯韦D. 斯涅尔9. 根据量子力学,电子在原子中的能量状态是()。
A. 连续的B. 离散的C. 随机的D. 均匀分布的10. 以下哪种现象不是相对论效应()。
A. 时间膨胀B. 长度收缩C. 质量增加D. 牛顿运动定律二、填空题(每题2分,共20分)1. 光年是______的单位。
2. 欧姆定律表达式为V = __________。
3. 一个物体的动能可以通过公式Ek = __________计算。
4. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为__________而不产生其他效果。
5. 原子核由__________和中子组成。
6. 光的偏振现象说明光是一种__________。
7. 根据相对论,当物体的速度接近光速时,其质量会__________。
大学物理简答题目

大学物理简答题目
⒈简述毕奥—萨伐尔定律的内容及其定义式
⒉简述稳恒磁场的高斯定理的内容及其公式
⒊简述安培环路定理的内容及其公式
4磁介质的分类有哪些?
5什么是电磁感应现象
6简述楞次定律的内容
7电磁感应定律的基本表述是什么?
8感应电动势的分类有哪些
9简述自感现象和互感应现象
10.什么是位移电流?位移电流的定义式是什么?
11.简述位移电流与传导电流的关系?
12.写出麦克斯韦方程组的积分形式
13.麦克斯韦电磁场理论的局限性是什么?
14.场物质与实物物质的不同是什么?
15.简谐振动动的判断(满足其中一条即可)
16.什么是拍现象?产生拍现象的条件是什么?
17.什么是驻波?形成驻波后,介质中各个质点振动的振幅,频率,相位等特征量有何特点?
18.简述马吕斯定律及其公式
19. 请描述布儒斯特角和布儒斯特定律;
20. 简述惠更斯原理;
21.简述光程的定义;
22.写出稳恒磁场高斯定理的表达式。
23.什么是简谐振动(或称简谐运动)?24.简述波传播的独立性的内容。
大学物理考试题类型及答案

大学物理考试题类型及答案# 大学物理考试题类型及答案一、选择题1. 光在同一均匀介质中传播时,其传播速度为:A. 减小B. 增大C. 不变D. 无法确定答案:C2. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
这是热力学第二定律的哪种表述?A. 克劳修斯表述B. 开尔文表述C. 熵增加表述D. 能量守恒表述答案:C二、填空题3. 牛顿第二定律的数学表达式为:_________。
答案:F = ma4. 电磁波谱中,波长最短的是_________。
答案:伽马射线(γ射线)三、简答题5. 请简述什么是多普勒效应,并给出一个实际应用的例子。
答案:多普勒效应是指波的频率或波长因为波源和观察者的相对运动而发生改变的现象。
当波源和观察者相互靠近时,观察到的波频率会增加;反之,当两者相互远离时,观察到的波频率会减小。
一个实际应用的例子是医学领域的多普勒超声,它可以用来测量血液流动的速度。
6. 什么是镜面反射和漫反射?它们在实际应用中有何不同?答案:镜面反射是指光线射到平滑表面上,反射光线射向同一方向的现象。
而漫反射是指光线射到粗糙表面上,反射光线射向各个方向的现象。
在实际应用中,镜面反射常用于需要集中光线的场合,如激光指示器;漫反射则常用于需要散射光线的场合,如室内照明,以避免光线过于集中而刺眼。
四、计算题7. 一个质量为2kg的物体在水平面上以15m/s的速度运动,如果一个大小为10N的力作用于该物体,使其减速至5m/s,求物体减速至5m/s所需的时间。
答案:首先,我们使用牛顿第二定律计算物体的加速度:\( F = ma \)\( 10N = 2kg \cdot a \)\( a = 5m/s^2 \)然后,我们使用加速度来计算减速所需的时间:\( v = u + at \)\( 5m/s = 15m/s - 5m/s^2 \cdot t \)\( t = 2s \)物体减速至5m/s所需的时间是2秒。
《大学物理》考试试卷E及答案解析

《大学物理》考试试卷E 及答案解析一、简答题(每题4分,共16分)1. 哪个物理量描写了刚体的转动惯性?并说明它的大小与哪些因素有关?答案: 转动惯量描写了刚体的转动惯性;它的大小与刚体的质量、刚体的质量分布、转动轴的位置有关。
2. 列举静电场及磁场中的高斯定理,并指出静电场、磁场哪个是有源场? 答案:静电场高斯定理:0ε∑⎰⎰=⋅=Φi q s s d E e ,静电场高斯定理:0==s s d B ϕ, 静电场为有源场。
3. 简述静电平衡条件及静电平衡时导体表面电荷密度与导体表面曲率半径的关系。
答案:导体达到静电平衡时,导体内部的任意处的电场强度为零;导体表面电场强度的方向都与导体面垂直。
或:导体内部场强为零;导体为等势体;净电荷分布在导体的外表面。
达到静电平衡时导体表面电荷密度与导体表面曲率半径成反比。
4. 简述感生电场与静电场的区别。
答案:静电场是由静止电荷激发;电力线为非闭合曲线;电场为散场、有源场、保守力场。
感生电场是由变化的磁场激发的;电力线为闭合曲线;电场为旋场、无源场、非保守力场。
二、单项选择题(每题3分,共24分)1. 一质点沿x 轴运动,其运动方程为()SI t t x 324-=,当t=2s 时,该质点正在( )(A)加速 (B)减速 (C)匀速 (D)静止2.对动量和冲量,正确的是( )(A )动量和冲量的方向均与物体运动速度方向相同。
(B )质点系总动量的改变与内力无关。
(C )动量是过程量,冲量是状态量。
(D )质点系动量守恒的必要条件是每个质点所受到的力均为0。
3.对功的概念有以下几种说法正确的是( )(A )保守力作正功时系统内相应的势能增加。
(B )非保守力也有势能。
(C )作用力与反作用力大小相等、方向相反,故两者所作的功的代数合必为零。
(D )质点运动经一闭合路径,保守力对质点作的功为零。
4.下列说法中正确的是( )(A )电势不变的空间,电场强度必为零 (B )电场强度不变的空间,电势必为零(C )电场线和等势面可能平行 (D )电势越大的地方,电场强度也越大。
大学物理试题讲解及答案

大学物理试题讲解及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^9 km/sD. 3×10^11 m/s答案:B2. 根据牛顿第二定律,力和加速度的方向()。
A. 总是相同B. 总是相反C. 有时相同,有时相反D. 无关答案:A3. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是()。
A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 无法确定答案:A4. 一个点电荷在电场中从静止开始运动,其电势能将()。
A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B5. 根据热力学第一定律,一个系统在绝热过程中()。
A. 内能增加B. 内能减少C. 内能不变D. 无法确定答案:D6. 光的折射定律表明,入射角和折射角的关系是()。
A. 入射角大,折射角小B. 入射角小,折射角大C. 入射角和折射角成正比D. 入射角和折射角成反比答案:C7. 一个物体在自由下落过程中,其动能和重力势能的关系是()。
A. 动能增加,重力势能减少B. 动能减少,重力势能增加C. 动能和重力势能之和保持不变D. 动能和重力势能之和增加答案:C8. 根据麦克斯韦方程组,电磁波的传播速度是()。
A. 光速的一半B. 光速C. 超过光速D. 低于光速答案:B9. 在理想气体定律中,气体的压强与体积成()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:B10. 根据欧姆定律,电阻两端的电压与通过电阻的电流之间的关系是()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在_________上。
答案:不同物体2. 在国际单位制中,力的单位是_________。
大学物理考题及答案

一、简答题:(每小题6分,共5题,合计30分) 1、简谐运动的概念是什么?
参考答案:如果做机械振动的质点,其位移与时间的关系遵从正弦(或余弦)函数规律,这样
的振动叫做简谐运动,又名简谐振动。
因此,简谐运动常用sin()x A t ωϕ=+作为其运动学定义。
其中振幅A ,角频率ω,周期T ,和频率f 的关
系分别为: 2T
π
ω=
、2f ωπ= 。
2、相干光的概念是什么?相干的条件是什么?
参考答案:频率相同,且振动方向相同的光称为相干光。
或满足相干条件的光也可称为相干光。
相干条件如下
这两束光在相遇区域;振动方向相同;振动频率相同;相位相同或相位差保持恒定; 那么在两束光相遇的区域内就会产生干涉现象。
3、高斯定理的定义是什么?写出其数学公式
通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和。
1
01
n
e i
i E dS q ε=Φ=
⋅=∑⎰
4、什么叫薄膜干涉?什么叫半波损失?
参考答案:由薄膜两表面反射光或透射光产生的干涉现象叫做薄膜干涉;
波从波疏介质射向波密介质时反射过程中,反射波在离开反射点时的振动方向相对于入射波到达入射点时的振动相差半个周期,这种现象叫做半波损失。
5、元芳,此题你怎么看?
2L
B dl B r π⋅=⎰
0 (r 2I
B r
μπ=
≥即圆柱面外一点的磁场与全部电流都集中在轴线上的一根无限长线电流产生的磁场相同的。
2L
B dl B r π⋅=⎰
0 (r<R)B = 即圆柱面内无磁场。
11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.伽利略的科学贡献是什么?物理学的研究方法有哪些?一、伽利略的天文发现及其影响1609年他研制成历史上第一架天文望远镜,经过改进,望远镜的放大倍率逐渐提高到33 ,并用自制的望远镜对星空观测,取得了许多重大的发现:木星拥有4 颗卫星绕其转动;金星也有类似于月亮“从新月到满月”的相的变化;太阳表面布满暗斑,并且似乎太阳也有自转. 这些观察对哥白尼的地动假说具有关键性的支持作用.二、伽利略是经典力学的主要奠基人自由落体定律的研究是伽利略最重要的一项力学工作伽利略认为, 在重力的作用下, 任何物体在真空下落的加速度都相同, 与它们的重量和组成材料均没有关系这就是著名的“ 自由落体定律伽利略对经典力学的探索还有很多在静力学方面, 他曾经研究过物体的重心和平衡, 研究过船体放大的几何比例和材料的强度问题他利用阿基米德浮力定律制作了流体静力学天平还证明空气有重量等在动力学方面他发现了摆的等时性, 区分了速度和加速度, 研究过运动的合成和抛射体问题, 并且用几何方法证明了一个平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体两种分运动, 在抛物体初速度相同的情况下, 抛射角为45°时, 射程最远正是通过伽利略这一系列的工作, 彻底推翻了两千多年来被奉为金科玉律的亚里士多德的物理学, 为牛顿最后完成经典力学奠定了坚实的基础。
三、伽利略首创了实验与数学理论相结合的科学方法他倡导实验与理论计算相结合的方法,把实验事实与抽象思维结合起来,用实验检验理论推导,开创了以实验为基础具有严密逻辑理论体系的近代科学,被誉为“近代科学之父”. 爱因斯坦为之评论说:“伽利略的发现,以及他所用的科学推理方法,是人类思想史上最伟大的成就之一,而且标志着物理学的真正开端.1。
等效法2。
模型法3。
归纳法4。
分类法5。
类比法6。
控制变量法7。
转换法8假设法9比较法2.万有引力发现借鉴了前人哪些成果?牛顿的自然哲学思想是什么?伽利略、笛卡尔——惯性定律开普勒——开普勒第一、第二和第三定律法则一除那些真实而已足够说明其现象者外,不必再去寻求自然界事物的其他原因法则二所以对于自然界中同一类结果,必须尽可能归之于同一种原因法则三物体的属性,凡是即不能增强也不能减弱者,又为我们实验所能及的范围的一切物体所具有者,就应视为所有物体的普遍属性法则四在实验哲学中,我们必须把那些从各种现象中运用一般归纳而导出的命题看做是完全正确的或很接近于真实的,虽然可以想象出任何相反的假说,但是在没有出现其他现象足以使之更为正确或者出现例外之前,仍然应当给予如此的对待。
3.动量、机械能、角动量守恒的条件是什么?哪个守恒可解释开普勒第二定律?动量守恒的条件是力学系统不受外力或外力的矢量和为零。
机械能守恒也是有条件的,即只有在保守力场中才成立。
所谓保守力是指在这种力的作用下,所做的功与运动物体所经历的路径无关,仅由物体的始点和终点的位置决定。
如果物体在运动过程中,所受合力相对于固定点(或固定轴)的力矩为零,则物体相对该固定点(或固定轴)的角动量守恒。
对正在转动的物体来讲,只有当外力矩M=0时,才能保持角动量不发生改变,即角动量守恒。
角动量守恒可解释开普勒第二定律4.电流磁效应及规律是如何发现的?1600年著有《磁学论》一书的英国人吉尔伯特断言电与磁是截然不同的两种自然现象1785年,库伦发现了电场力与磁场力都满足平方反比定律,说明电与磁有相似性1820年4月的一天晚上,奥斯特在为精通哲学及具备相当物理知识的学者讲课时,突然来了“灵感”,在讲课结束时说:“让我把通电导线与磁针平行放置来试试看!”于是,他在一个小伽伐尼电池的两极之间接上一根很细的铂丝,在铂丝正下方放置一枚磁针,然后接通电源,小磁针微微地跳动,转到与铂丝垂直的方向。
小磁针的摆动,对听课的听众来说并没什么,但对奥斯特来说实在太重要了,多年来盼望出现的现象,终于看到了,当时简直使他愣住,他又改变电流方向,发现小磁针向相反方向偏转,说明电流方向与磁针的转动之间有某种联系。
奥斯特当时把电流对磁体的作用称为“电流碰撞”,他总结出了两个特点:一是电流碰撞存在于载流导线的周围;二是电流碰撞“沿着螺纹方向垂直于导线的螺纹线传播”5.法拉第在电磁学上有哪些重大贡献?楞次定律是什么?发现了电磁感应现象在实验根蒂根基上总结出法拉第电磁感应定律提出了电场和磁力场的观点暗示了电磁波存在的可能性,并预言了光多是一种电磁振荡的流传楞次定律(Lenz law)是一条电磁学的定律,从电磁感应得出感应电动势的方向。
其可确定由电磁感应而产生之电动势的方向。
它是由俄国物理学家海因里希·楞次(Heinrich Friedrich Lenz)在1834年发现的。
楞次定律是能量守恒定律在电磁感应现象中的具体体现。
楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。
6.麦克斯韦有哪些思想创新及贡献?麦克斯韦在1856年发表了题为“论法拉第的力线”的论文。
这篇论文是麦克斯韦把法拉第力线数学化的最早尝试。
1860年发表了奠定气体分子论基础的重要论文“气体分子运动论的说明”。
1862年又发表了论文“论物理的力线”,这是他在电磁学研究方面的第二篇重要论文。
1864年在论文“电磁场的动力学理论”中,首次给出了一组描述电磁现象的方程(即麦克斯韦方程组),一个成熟的经典电磁场理论终于脱颖而出。
麦克斯韦创立电磁场理论的功绩完全可以和牛顿当年创立力学的功绩相提并论,是继牛顿力学之后在物理学发展史上的又一重要里程碑。
麦克斯韦的名字和牛顿的名字一样,是近代物理学的象征。
7.关于光的本性有哪三个学说?依据是什么?光的微粒说1.牛顿在对光的色散现象的研究中提出了光的微粒说.牛顿在光学研究中,从光的色散现象中得出结论;单色的光束是不能再改变的.它们可以说是光的“原子”,就象物质的原子一样.支持光的微粒说的人们认为:单色光是由单一粒子构成的,白光则是各种光粒子的混合物,棱镜只是将它们分类,使各种光粒子有不同的偏转角度.因而牛顿及其追随者把色散现象看作是微粒说的一个证明.而在当时很不完善的波动说却很难解释光的色散问题.惠更斯虽然他知道牛顿的这一研究成果,但在他的著作中却避开而不谈这一问题.2.牛顿根据光的直线传播性质,提出光是微粒流的理论.牛顿在1704年出版的《光学》一书中,根据光的直线传播性质,提出了光是微粒流的理论.他认为光的直线传播是由于这些微粒从光源飞出来,在真空或均匀物质内由于惯性而作匀速直线运动.他说:“光线是否是发光物质发射出来的很小的物体?因为这样一些物体能够直线穿过均匀媒质而不弯曲到影子区域里去,这正是光线的本性。
”3.牛顿在解释光的折射定律、衍射、干涉等现象的过程中进一步发展和完善了光的微粒说.牛顿在分析折射定律时,坚持微粒说的观点,认为光在光密媒质中的速度大于光疏媒质中的速度(实际上这是一种错误观点),但这在当时无法用实验加以检验的.牛顿解释光的衍射现象时认为,当光粒子通过障碍的边缘时,由于两者之间有引力作用,使光束进入了几何阴影区.这种解释在当时曾被多数人所接受.牛顿在解释光的干涉现象时,认为当光投射到一个物体上的时候,可能激起物体中以太粒子的振动,就好像投入水中的石块在水面上激起波纹一样.他甚至设想可能正是由于这种波依次地赶过光线而引起干涉现象.在解释薄膜干涉时,牛顿已接触到光的周期性概念.从以上可看出,牛顿对光的本性的看法基本上是倾向于微粒说的观点,但其中也包含一些波动性的观点.而牛顿当时的支持和崇拜者们却把牛顿推举为微粒说的代表光的波动说光的波动说在经托马斯·杨和菲涅耳等人的努力再度复兴之后,在十九世纪中叶和后半叶又得到了很快地发展.1845 年法拉弟发现了光的偏振面在强磁场中会发生旋转的现象,揭示了光和电磁现象之间的内在联系.1852 年,德国物理学家韦伯(1804—1891)发现并测定了电荷的电磁单位与静电单位的比值等于光在真空中的传播速度,进一步说明了光和电磁之间的内在联系.1849 年法国物理学家菲索测定了光速,1862 年傅科又使用旋转镜法得到了更加精确的测定值,并测定了光在水中的速度小于在空气中的速度,从而给光的波动说以充分精确的实验证明.光速的测定为光的电磁理论提供了有力的证据.1864 年麦克斯韦电磁场理论的建立使光的波动说达到了成功的顶峰.至此光的波动说似乎十分圆满了,但是把波动看作“以太”中的机械弹性波,就必须赋予以太许多附加甚至相互矛盾的性质,如光是横波,则“以太”必须有非常大的切变弹性,而这种性质只有固体才具有,因此波动说仍然面临困难.而且随后的实验发现也证明了光的波动说具有一定的局限性.光的量子说1900 年普朗克提出量子假设,1905 年爱因斯坦发表论光的量子理论著名论文,题目是《一个关于光的产生和转化的启发性观点》.他指出,用连续空间函数表示能量的光波理论,当应用于光的产生和转化等现象时,会导致与经验相矛盾的结果.对于黑体辐射、光致发光、光电效应这些现象如果用光量子的假设来说明,似乎更容易理解.他发展了普朗克提出的能量子概念,认为电磁辐射的能量可以分成一小份、一小份的“微粒”式结果,这些能量颗粒就是光量子,简称光子.它的大小用hv 表示.(h—普朗克常数,v—光的频率).光量子适用于一切光的产生与转化问题,在自由空间中光量子是一种存在的“实体”,爱因斯坦用光量子概念圆满地解释了经典物理理论无法解决的实验事实:光电效应.因为按照光的波动说,它是与光电效应的实验事实相矛盾的.其一,按照光的波动说,在光的照射下,金属中的电子将从入射光中吸收能量,从而逸出金属表面.逸出时的初动能应决定于光振动的振幅,即决定于光的强度.因而光电子的初动能应随入射光强度而增加.这与光电效应的实验结果不符.其二,根据波动说,如果光强足够供应从金属释出光电子所需要的能量,那么光电效应对各种频率的光都会发生,但实验事实是每种金属都存在一个红限ν0,对于频率小于ν0 的入射光,不管入射光的强度多大,都不能发生光电效应.其三,按照光的波动说,金属中的电子从入射波中吸收能量必须积累到一定的量值,才能释放电子,显然入射光越弱,能量积累的时间越长.但事实是当物体受到光的照射时,无论光怎样弱,只要频率大于红限频率,光电子几乎是立刻发射出来的.爱因斯坦则根据光的量子理论成功地解释了光电效应.并总结出了光电效应方程式8.什么是多普勒效应、光电效应和康普顿效应?多普勒效应:物体辐射的波长因为光源和观测者的相对运动而产生变化光电效应:定义1:物质由于吸收光子而产生电的现象。
定义2:物质在光的作用下发射电子或电导率改变,或者两种材料的界面上产生电势的现象。
康普顿效应:短波电磁辐射(如X射线,伽玛射线)射入物质而被散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象。