(完整版)平面向量经典测试题

合集下载

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。

3 B。

2 C。

1 D。

02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。

-4 B。

-1 C。

1 D。

43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。

1 B。

5/3 C。

3/5 D。

7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。

-4 B。

-2 C。

2 D。

45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。

充分必要条件 B。

必要不充分条件 C。

充分不必要条件 D。

既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。

$\frac{8}{3}$ B。

$\frac{26}{9}$ C。

$\frac{2}{3}$ D。

$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{6}$ B。

$\frac{\pi}{4}$ C。

$\frac{\pi}{3}$ D。

$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。

18 B。

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。

2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。

3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。

5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。

6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。

7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。

8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。

9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。

二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。

A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。

A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。

平面向量练习题 (附答案)

平面向量练习题 (附答案)

平面向量练习题一.填空题。

1. +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。

1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +的模; (2)试求向量AB 与的夹角;(3)试求与垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4. 设向量)2,1(),1,3(-==OB OA ,向量垂直于向量,向量 平行于,试求,=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使 .,,)3(2y x b t a k y b t a x ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.1. 2.(-3,-4) 3.7 4.90° 5.(21,321). 6.73. 7.(-3,2). 8.-2 9.12 10.31-11.0 12. 90° 13.2- 14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2AB +=2(-1,1)+(1,5)=(-1,7).∴ |2+|=227)1(+-=50.(2)∵ ||=221)1(+-=2.||=2251+=26,·AC =(-1)×1+1×5=4.∴ cos θ =||||AC AB ⋅=2624⋅=13132.(3)设所求向量为m =(x ,y ),则x 2+y 2=1. ①又 =(2-0,5-1)=(2,4),由⊥,得2 x +4 y =0. ② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴ 33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -= ∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y y x ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即 (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。

《平面向量》测试题及答案

《平面向量》测试题及答案

《平面向量》测试题一、选择题1.若三点P (1,1),A(2,-4),B (x,-9)共线,则( )A.x=-1ﻩ ﻩB.x=3ﻩ ﻩC.x=29ﻩﻩ D.x=512.与向量a=(-5,4)平行的向量是( )A.(-5k,4k)ﻩB.(-k 5,-k 4)ﻩ C.(-10,2)ﻩ D .(5k,4k)3.若点P 分AB 所成的比为43,则A分BP 所成的比是( ) A.73ﻩ ﻩB. 37C.- 37 ﻩﻩD.-734.已知向量a 、b ,a·b=-40,|a|=10,|b|=8,则向量a 与b的夹角为( )A.60°ﻩﻩﻩB.-60°ﻩﻩﻩC .120° D.-120°5.若|a-b|=32041 ,|a|=4,|b|=5,则向量a ·b=( )A.103 ﻩB.-103 ﻩ C .102 ﻩ D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c+a)∥b ,c ⊥(a +b ),则c =( )A .错误! B.错误! C .错误! D .错误!7.已知向量a =(3,4),b=(2,-1),如果向量(a+x)·b 与b 垂直,则x 的值为( )A.323ﻩﻩﻩB.233ﻩ C.2 D.-528.设点P 分有向线段21P P 的比是λ,且点P在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0)ﻩ C.(-∞,0)ﻩ D.(-∞,-21)9.设四边形ABCD 中,有=21,且||=||,则这个四边形是( )A.平行四边形ﻩ B.矩形 C.等腰梯形 D .菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C′的解析式为( )A .y =x+10 B.y=x-6 C.y=x+6 D.y=x -1011.将函数y =x 2+4x+5的图像按向量a 经过一次平移后,得到y =x 2的图像,则a 等于( )A .(2,-1)ﻩﻩﻩB.(-2,1)ﻩﻩ C.(-2,-1)ﻩ D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是()A.(2a,b)ﻩﻩﻩB.(a-b,a+b)ﻩﻩC .(a+b,b -a) D .(a-b,b-a )二、填空题13.设向量a=(2,-1),向量b 与a 共线且b与a同向,b的模为25,则b= 。

平面向量测试题及含

平面向量测试题及含

平面向量测试题及答案平面向量测试题一. 选择题1.以下说法错误的选项是()A.零向量与任一非零向量平行 B. 零向量与单位向量的模不相等C.平行向量方向同样D.平行向量一定是共线向量2.以下四式不可以化简为AD的是()A.(AB+CD)+BC;B.(AD+MB)+(BC+CM);C.MB+AD-BM;D.OC-OA+CD;3.已知a =(3,4),b =(5,12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知a、b均为单位向量 , 它们的夹角为 60°, 那么 | a+ 3b| = ()A.7B.10C.13D.45.已知 ABCDEF是正六边形,且AB=a,AE=b,则BC=()(B)12(ba) (C)a +12b(D)12(a b)(A)12(ab)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b , 则以下关系式中正确的选项是()2(A ) AD = BC(B ) AD =2 BC(C ) AD =- BC (D )AD=- 2 BC7.设 e 1与 e 2是不共线的非零向量,且k e 1+ e 2与 e 1+k e 2共线,则 k 的值是()(A ) 1(B ) -1(C ) 1(D ) 任意不为零的实数8.在四边形 ABCD 中, AB = DC ,且 AC · BD =0,则四边形 ABCD 是()(A ) 矩形 (B ) 菱形(C ) 直角梯形(D )等腰梯形9.已知 M (- 2,7)、N (10,- 2),点 P 是线段 MN 上的点,且 PN =-2PM ,则P 点的坐标为()(A )(- 14,16)( B ) (22,-11)(C ) (6,1)(D ) (2,4)10.已知a =(1,2),b =(-2,3),且 k a +b 与a -k b垂直,则 k =( )(A )1 2 (B )2 1(C )2 3 (D ) 32r r(2 x 3,x)相互平行,此中 x R . 则11、若平面向量 a (1, x) 和 br r)a b(A.2或 0; B.2 5;C. 2或 2 5 ; D.2或 10.312、下边给出的关系式中正确的个数是()①0 a 0 ② a b b a ③a2a 2④(a b)ca(b c) ⑤ a b a b(A) 0(B) 1(C) 2(D) 3二.填空题13.若AB (3,4),A点的坐标为(-2,-1),则B点的坐标为.14.已知a (3, 4), b (2,3),则2 | a | 3a b.15 、已知向量a 3, b (1,2),且a b,则 a 的坐标是_________________。

平面向量测试题及答案

平面向量测试题及答案

平面向量测试题一、选择题:1。

已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( B )(A ) →b +→a 21(B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 21 2.已知B 是线段AC 的中点,则下列各式正确的是( D )(A ) −→−AB =-−→−BC (B ) −→−AC =−→−BC 21(C ) −→−BA =−→−BC (D ) −→−BC =−→−AC 213.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( D )(A ))(21→→-b a (B ))(21→→-a b (C ) →a +→b 21 (D ))(21→→+b a4.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( B )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC(C )−→−AD =-−→−BC(D )−→−AD =-2−→−BC5.将图形F 按→a =(h,k )(其中h>0,k>0)平移,就是将图形F (A ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。

(D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。

6.已知→a =()1,21,→b =(),2223-,下列各式正确的是( A )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( C ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是(B ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( D )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( A ) (A ) 21±-(B ) 12±(C ) 32±(D ) 23±11.把函数2)sin(3--=πx y 的图象经过按→a 平移得到x y sin =的图象,则→a =( A ) (A ) ()2,3π-(B ) ()2,3π(C ) ()2,3--π(D ) ()2,3-π 12.△ABC 的两边长分别为2、3,其夹角的余弦为31 ,则其外接圆的半径为( C ) (A )229(B )429(C )829(D )922二、填空题:13.已知M 、N 是△ABC 的边BC 、CA 上的点,且−→−BM =31−→−BC ,−→−CN =31−→−CA ,设−→−AB =→a ,−→−AC =→b ,则−→−MN =→→-a b 323114.△ABC 中,C A B cos sin sin =,其中A 、B 、C 是△ABC 的三内角,则△ABC 是三角形。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量测试题
新泰一中 闫辉
一.选择题(5分×10=50分)
1.下列命题中正确的是( )
A.单位向量都相等
B.长度相等且方向相反的两个向量不一定是共线向量
C.若a ,b 满足|a |>|b |且a 与b 同向,则a >b
D.对于任意向量a 、b ,必有|a +b |≤|a |+|b |
2.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( )
A .e 1=(0,0), e 2 =(1,-2) ;
B .e 1=(-1,2),e 2 =(5,7);
C .e 1=(3,5),e 2 =(6,10);
D .e 1=(2,-3) ,e 2 =)4
3,21
( 3.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )
①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对;
③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2);
④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0.
A .①②
B .②③
C .③④
D .仅②
4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3)
若点C (x , y )满足OC =αOA +βOB ,其中α,β∈R 且α+β=1,
则x , y 所满足的关系式为 ( )
A .3x +2y -11=0
B .(x -1)2+(y -2)2=5
C .2x -y =0
D .x +2y -5=0
5.已知O 是ABC △所在平面内一点,D 为BC 边中点,且
2OA OB OC ++=0,那么( )
A.AO OD = B.2AO OD =
C.3AO OD =
D.2AO OD =
6.若三点P (1,1),A (2,-4),B (x,-9)共线,则( )
A.x=-1
B.x=3
C.x=2
9 D.x=51 7.设四边形ABCD 中,有DC =21
AB ,且|AD |=|BC |,则这个
四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形
8.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),
则它的第4个顶点D 的坐标是( )
A .(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a)
9.三角形ABC ,已知AB
→=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD
→,则AD →等于( )
A .a +34b B.14a +34b C.14a +14b D.34a +14
b
10.已知D 、E 、F 分别是△AB C 的边BC 、CA 、AB 的中点,且BC =a ,CA =b ,AB =c ,则下列各式:①21=EF c -2
1b ②BE =a +21b ③21-=CF a +2
1b ④CF BE AD ++=0 其中正确的等式的个数为( )
A.1
B.2
C.3
D.4
二.填空题(4分⨯5=20分)
11. 已知A (2,3),B (1,4)且1
2
AB =(sin α,cos β), α,β∈(-2π,2
π),则α+β=
12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______.
13.e 1,e 2不共线,当k =_____时,a =k e 1+e 2,b =e 1+k e 2共线.
14.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,AB mAM =,AC nAN =,则m n +的值为 2
三.解答题(10分×5=50分)
15.(10分)如图,ABCD 是一个梯形,AB ∥CD ,且AB=2CD ,M 、N 分别是DC 、AB 的中点,已知AB =a,AD =b,
试用a 、b 分别表示DC 、BC 、MN 。

16.(10分)
N A B
D M C
(1) 已知向量e 1、e 2不共线,若AB =e 1-e 2,BC =2e 1-8e 2,CD =3e 1+3e 2,求证:A 、B 、D 三点共线.
17.已知A (2,3)、B (5,4)、C (7,10),若()AP AB AC R λλ=+∈,试求λ为何值时,点P 在第三象限内?
18.(10分)如图,ABCD 中,点M 是AB 的中点,点N
在BD 上,且 BN =31BD ,求证:M 、N 、C 三点共线.
19.(10分)如图,已知A(2,3),B(0,1),C(3,0),点D,E 分别在AB,AC上,DE∥BC,且DE平分△ABC的面积,求点D的坐标.。

相关文档
最新文档